State/Event-based Software Model Checking

Sagar Chaki Joél Ouaknine Natasha Sharygina Nishant Sinha

Computer Science Department, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh PA 15213, USA

Abstract. We present a framework for model checking concurrent soft-
ware systems which incorporates both states and events. Contrary to
other state/event approaches, our work also integrates two very powerful
verification techniques, counterexample-guided abstraction refinement,
and compositional reasoning. Our specification language is a state/event
extension of linear-time temporal logic, and allows us to express many
properties of software in a very concise and intuitive manner. We also
show how standard automata-theoretic LTL verification techniques can
be ported to our framework, and have implemented these within our C
model checker, MAGIC. Preliminary investigations suggest that this new
approach not only reduces human effort, but also boasts important gains
both in space and in time.

1 Introduction

Control systems ranging from smart cards to automated flight controllers are
increasingly being incorporated within complex software systems. In many in-
stances, errors in such systems can have dramatic consequences, hence the urgent
need to be able to ensure and guarantee the correctness of software.

In this endeavor, the well-known methodology of model checking [CES81,
CES86, QS81, CGP99] has so far had very little success. This state of affairs
is at first sight surprising, given the many well-documented happy applications
of model checking in the hardware world. However, applying model checking to
software is complicated by several factors, ranging from the difficulty to model
computer programs—due to the complexity of programming languages as com-
pared to hardware description languages—to difficulties in specifying meaning-
ful properties of software using the usual temporal logical formalisms of model
checking. A third reason is the perrenial state space explosion problem, whereby
the complexity of verifying an implementation against a specification becomes
prohibitive.

It has often been observed that, in attempting to address these issues, trade-
offs are inevitable. More expressive specification formalisms, such as the mu-
calculus, tend to have costlier verification complexity, and vice-versa. In this
paper, we propose an original combination of several approaches and method-
ologies to engineer a pleasantly expressive framework which nonetheless leaves
us free to exploit some powerful state-space explosion-fighting tools, such as

2 Sagar Chaki Joél Ouaknine Natasha Sharygina Nishant Sinha

counterexample-guided abstraction refinement [CGJ*T00] and compositional rea-
soning.

The most common instantiations of model checking to date have focused on
finite-state models and either branching-time (CTL) or linear-time (LTL) tem-
poral logics. Initially, model checking was primarily used to reason about the
correctness of hardware designs and communication protocols. One of the major
difficulties in applying model checking to software is the complexity of specify-
ing temporal logic properties over the finite-state abstracted models of computer
programs. This problem is even more pronounced when reasoning about concur-
rent software. Indeed, in concurrent programs, communication among modules
proceeds via actions (or events), which can represent function calls, requests
and acknowledgements, etc. Moreover, such communication is commonly data
dependent. Software behavioral claims, therefore, are often specifications defined
over combinations of program actions and data valuations.

Existing modeling techniques usually represent finite-state machines as la-
beled transition systems (LTS) using either state-based or event-based formalisms.
Both frameworks are interchangeable: an action can be encoded as a change in
state variables, and likewise one can equip a state with different actions to reflect
different values of its internal variables. This approach is not practical however
for large-scale software, and further worsens when actions are data-dependent:
considerable domain expertise is then required to annotate the program and to
specify proper claims.

This work therefore proposes a framework in which both state-based and
action-based properties can be expressed, combined, and verified. The mod-
elling framework consists of labeled Kripke structures (LKS), which are LTSs in
which in addition transitions are labeled with actions. The specification logic
is a state/event derivative of LTL. This allows one to represent both software
implementations and specifications directly without any program annotations,
or privileged insight into the program execution. We further show that standard
efficient LTL model checking algorithms can be applied to help reasoning about
state/event-based systems. We have implemented our approach within the con-
current C verification tool MAGIC [CCG103, COYCO03], and report promising
results in the preliminary examples which we have tackled.

The state/event-based formalism presented in this paper is suitable for both
sequential and concurrent systems. One of the benefits of restricting ourselves
to linear-time logic (as opposed to a more expressive logic such as CTL* or the
modal mu-calculus) is the ability to invoke the MAGIC compositional abstrac-
tion refinement procedures developed for the efficient verification of concurrent
software. These procedures are embedded within a counterexample-guided ab-
straction refinement framework (CEGAR for short), one of the core features of
MAGIC. CEGAR lets us investigate the validity of a given specification through
a sequence of increasingly refined abstractions of our system, until the property
is either established or a real counterexample is found. Moreover, thanks to com-
positionality, the abstraction, counterexample validation, and refinement steps

State/Event-based Software Model Checking 3

can all be carried out component-wise, thereby alleviating the need to build the
full state space of the distributed system.

We illustrate our state/event paradigm with a current surge protector ex-
ample. We contrast our approach with equivalent purely state-based and event-
based alternatives, and show that the state/event methodology yields significant
gains in human effort (ease of expressiveness), state space, and verification time,
at no discernible cost.

1.1 Related Work

The idea of combining state-based and event-based formalisms is certainly not
new. De Nicola and Vaandrager [NV95], for instance, introduce ‘doubly labeled
transition systems’, which are very similar to our LKSs. From the specification
point of view, our state/event version of LTL is also comprehensively subsumed
by the modal mu-calculus [Pnu86, BS01]. The novelty of our approach, however,
is the way in which we efficiently integrate an expressive state/event formalism
with very powerful verification techniques, namely CEGAR as well as composi-
tional reasoning. We are able to achieve this precisely because we have adequately
restricted the expressiveness of our framework. To our knowledge, our work is
the first to combine these three features within a single setup.

Kindler and Vesper [KV98] propose a state/event-based temporal logic (ESTL)
for Petri nets. Interestingly, they argue that purely state-based or event-based
formalisms lack expressiveness in important respects. However it is not straight-
forward to compare their work to ours since the underlying foundations differ in
very significant ways.

Huth et al. [MHO1] also propose a state/event framework, and also define
rich notions of abstraction and refinement. In addition, they provide ‘may’ and
‘must’ modalities for transitions, and show how to perform efficient three-valued
verification on such structures. They do not, however, provide an automated
CEGAR framework, and it is not clear whether they have implemented and
tested their approach.

1.2 Outline

The paper is organized as follows. Section 2 defines our state/event implementa-
tion formalism, labeled Kripke structures. We also lay the basic definitions and
results needed for the presentation of our compositional CEGAR verification al-
gorithm. In Section 3, we present our state/event specification formalism, based
on linear temporal logic. We review standard automata-theoretic model checking
techniques, and show how these can be adapted to the verification task at hand.
In Section 4, we illustrate these ideas by modelling a simple surge protector. We
also contrast our approach with purely state-based and event-based alternatives,
and show that both the resulting implementations and specifications are signif-
icantly more cumbersome. We then use MAGIC to check these specifications,
and discover that the non-state/event formalisms incur an important time and

4 Sagar Chaki Joél Ouaknine Natasha Sharygina Nishant Sinha

space penalty during verification.! Section 5 details our compositional CEGAR
loop. Finally, Section 6 summarizes the contribution of the paper and outlines
several avenues for future work.

2 Labeled Kripke Structures

A labeled Kripke structure (LKS for short) is a 7-tuple (S, Init, P,L,T,X,£)
with S a finite set of states, Init C S a set of initial states, P a finite set of
(atomic) state propositions, L : S — 2F a state-labeling function, T C S x S a
transition relation, X' a finite set (alphabet) of events (or actions), and £ : T —

(2% \ {0}) a transition-labeling function. We often write s 45 s to mean that
(s,8') € T and A C &(s,5').2 In case A is a singleton set {a} we write s — s’

rather than s @) s'. Note that both states and transitions are ‘labeled’, the

former with sets of atomic propositions, and the latter with non-empty sets of
events. We also point out that, in contrast with many like formalisms, we do not
require our transition relation T to be total, in order to be able to account for
deadlock.?

A finite path ™ = (s1,a1, 82,02, 83,... ,8k) of an LKS is a valid alternating
finite sequence of states and events: for each 1 < i < k, s; € S, a; € X, and (for
i < k) s; 5 s5;41. An infinite path is likewise defined to be a valid alternating
infinite sequence of states and events. Lastly, a maximal path is either an infinite
path, or a finite path which cannot be properly extended.

The language of an LKS M, denoted L(M), consists of the set of maximal
paths of M whose first state lies in the set Init of initial states of M.

2.1 Abstraction

Let M = (SM,InitM,PM,ﬁM,TM,EM,EM) and A = (SA,InitA,PA,,CA,TA,EA,EA)
be two LKSs. We say that A is an abstraction of M, written M C A, iff

1. P4 C Py,

2. Sa= S,

3. For every path # = (s1,a1,...,5;) € L(M) there exists a path 7' =
(sh,al,...,s}) € L(A) such that, for each i, a} = a; and L4(s}) = Lar(s;) N
PA, and

4. Same as (3) for infinite paths.

!'In order to invoke MAGIC, we code the LKSs and LTSs as simple C programs;
the algorithm used by MAGIC implements the techniques described in the paper.
Lack of space prevents us from discussing predicate abstraction, whereby MAGIC
transforms a (potentially infinite-state) C program into a finite-state machine. We
refer the reader to [CCGT03] for a detailed exposition of this point.

% In keeping with standard mathematical practice, we write £(s, s’) rather than the
more cumbersome £((s, s)).

3 Deadlock is an inevitable consequence of our decision to handle synchronous parallel
composition.

State/Event-based Software Model Checking 5

In other words, A is an abstraction of M if the ‘propositional’ language accepted
by A contains the ‘propositional’ language of M, when restricted to the atomic
propositions of A. This notion of abstraction generalizes a well-known ‘existential
abstraction’ for Kripke structures. It is important to also note that, as defined
here, abstractions preserve deadlocking behavior (thanks to clause (3)).

Two-way abstraction defines an equivalence relation ~ on LKSs: M ~ M’
iff M E M'" and M' C M. We shall in general not wish to distinguish between
~-equivalent LKSs.

2.2 Parallel Composition

As mentioned in the Introduction, the notion of parallel composition we consider
here allows for communication through shared actions only; in particular, we
forbid the sharing of variables. This restriction enables us to use compositional
reasoning to verify specifications.

Let M1 = (51, Im'tl, Pl, El, Tl, 21, 51) and M2 = (SQ, I’n'l:tz, PQ, EQ, TQ, 22, 52)
be two LKSs. M7 and M, are said to be compatible if they do not share variables:
S1 NSy = PN P, = . The parallel composition of M; and M, defined only
for compatible LKSs, is given by M ||Ms = (S % Sz, Init; x Inity, P, U Py, L1 U
Lo, T, X1 U X5, E), where (£1 U L3)(s1,82) = L£1(51) U L2(s2), and T and & are

such that (s1,s2) N (s, %) iff A# 0 and one of the following holds:

A
1. AC X\ X and 51 — s} and s) = 59
2. AC X\ X andszi)s’2 and s =51
A A
3. AC X NZX; and 51 — s} and sy —> sb.
In other words, components must synchronize on shared actions and proceed
independently on local actions. Moreover, local variables are preserved by the re-

spective states of each component. This notion of parallel composition is derived
from CSP.

Let M; and M, be as above, and let 7 = ((s{,%),a1,...,(s}, s2)) be an
alternating finite sequence of states and events of M || M. The projection 7 M;
of m on M;j consists of the subsequence of (s},ay,... ,s}) obtained by simply

removing all pairs (a;,s%,) for which a; ¢ X;. In other words, we keep from
7 only those states that belong to M;, and excise any transition labeled with
an event not in M;’s alphabet. For 7 an infinite path, the definition of 7w [M; is
adapted in the obvious way.

We now record the following theorem, which extends similar standard results
for the process algebra CSP (for proofs, we refer the reader to [Ros97]).

Theorem 1.

1. Parallel composition is (well-defined and) associative and commutative up to
~-equivalence. Thus, in particular, no bracketing is required when combining
more than two LKSs.

6 Sagar Chaki Joél Ouaknine Natasha Sharygina Nishant Sinha

2. Let My,...,M, be compatible LKSs, and let A1,...,A, be respective ab-
stractions of the M;: for each i, M; T A;. Then M||...||M, C Aq]|...||An.
In other words, parallel composition preserves the abstraction relation.

3. Let My, ..., M, be compatible LKSs with respective alphabets Xy, ... , Xy,
and let © be a (finite of infinite) alternating sequence of states and events
of My||...||Mp. Then m € L(M]||...||My,) iff, for each i, there exists 7, €
L(M;) such that 1[M; is a prefiz of 7}, and in addition © cannot properly be
extended as the parallel composition of the w}. In other words, whether a path
belongs to the language of a parallel composition of LKSs can be checked by
projecting and examining the path on each individual component separately.

Theorem 1 forms the basis of our compositional approach to verification: ab-
straction, counterexample validation, and refinement can all be done component-
wise.

3 State/Event Linear Temporal Logic

We now present a logic enabling us to refer easily to both states and events when
constructing specifications.

Given an LKS M = (S, Init, P,L,T, X, &), we consider linear temporal logic
state/event formulas over the sets P and X' (here p ranges over P and a ranges
over X):

pu=pla[-¢[¢Ad|Xp|Go|Fg|oU ¢

We write SE-LTL to denote the resulting logic, and in particular to distinguish
it from (standard) LTL.

Let 7 = (s1, a1, 82,a2,... ,8;) or T = (81,01, S2, a2, . ..) be a finite or infinite
path. We define 7 stand for the suffix of 7 starting in state s;, with the conven-
tion that 7* denotes the empty sequence whenever i exceeds the largest index of
7. We then inductively define path-satisfaction of SE-LTL formulas as follows:

7 E p iff s is the first state of 7 and p € L(s1).

7w E a iff a is the first event of 7.

mE ¢ iff T KE .

TE @1 Ay iff mE ¢y and 7 E ¢s.

7 EX¢ iff 72 # () and 7% F ¢.

7 E G iff, foralli > 1, 7' E ¢ or 7t = ().

7 E F¢ iff, for some i > 1, 7¢ # () and 7t E ¢.

7 E ¢ U ¢y iff there is some i > 1 such that 7! # (), 7° E ¢ and, for all
1<j<i—1, 70 F¢r.

© N oA W

We then let M F ¢ iff, for every path 7 € L(M), 7 F ¢.

As a simple illustrating example, the reader may wish to verify that the SE-
LTL formula GXtrue expresses deadlock-freedom (here true can be defined to
be, say, p V —p, for any p € P).

State/Event-based Software Model Checking 7

3.1 Awutomata-based Verification

We aim to reduce SE-LTL verification problems to standard automata-theoretic
techniques for LTL. Since the latter usually deal exclusively with infinite paths,
we must first perform some preliminary transformations. Given an LKS M, we
construct an LKS M, , which is identical to M, except that every deadlocked

state s of M is given in M, a new transition s RN 1, where ! is a new event
and L is a new state. Moreover, we postulate in M a !-labelled self-transition.
Lastly, M is endowed with a single extra atomic proposition, dk, which uniquely
labels L.

Given an SE-LTL formula ¢ over (the atomic propositions and alphabet of)
M, define inductively a new SE-LTL formula ¢, over M, , as follows:

pL=p.

a|; = a.

(=)L = (o).

(prAp2)L =1 N2, .

(X¢) L = X(¢pL A —dk).

(Gp)1 = G(¢1 V dk).

(Fo) L = F(pL A—dk).

(01 U)1 =11 U (¢, Adk).

We now have:

e S o

Lemma 2. For any LKS M and SE-LTL formula ¢ over M,
ME@iff M, E¢,.
Proof. Straightforward structural induction. O

We now recall some basic results about (standard) LTL, Kripke structures,
and automata-based verification.

A Kripke structure is simply an LKS minus the alphabet and the transition-
labeling function; in addition, the transition relation of a Kripke structure is
required to be total. An LTL formula is an SE-LTL formula which makes no use
of events as atomic propositions.

Let M = (S, Init, P, L, T) be a Kripke structure, and let B = (Sp, Initg, P,Lp,Tr, Acc)
be a Biichi automaton. Note that Lp takes states in Sp to arbitrary boolean
combinations of atomic propositions in P (rather than merely conjunctions of
such).

The Kripke structure M can be viewed as a Biichi automaton in which ev-
ery state is Biichi-accepting. We can therefore define the product M x B =
(S, Init', —, —,T', Acc') as a product of Biichi automata. More precisely,

1. §" = {(s,b)| L(s) implies Lp(b)}, where L(s) is interpreted as a conjunction
of atomic propositions,

2. (s,b) — (s",b) iff s — s' and b — ¥,

3. (s,b) € Init' iff s € Init and b € Init', and

8 Sagar Chaki Joél Ouaknine Natasha Sharygina Nishant Sinha

4. (s,b) € Acc' iff b € Acc.
The main technical tool is the following result of Gerth et al. [GPVW95]:

Theorem 3. Given a Kripke structure M and LTL formula ¢, there is a Biichi
automaton B_g such that

ME ¢ iff L(M x B_4) =0.

An efficient tool to convert LTL formulas into optimized Biichi automata,
with the above property is Somenzi and Bloem’s Wring [Wri, SB00].

We now define the product of a labeled Kripke structure with a Biichi au-
tomaton. Let M = (S, Init, P, £, T, ¥, £) be an LKS, and let (S, Initg, P,Lp,Ts, Acc)
be a Biichi automaton. Their product M ® B = (S', Init', —, —,T', Acc') is a
Biichi automaton that satisfies

1. §" = {(s,b)| L(s) implies Lp(b)}, where L(s) is interpreted as a conjunction
of atomic propositions,

2. (s,b) — (s', ") iff there exists € X such that s — s’ and = implies Lp(b)

(where the event z is viewed as an atomic SE-LTL proposition),

3. (s,b) € Init' iff s € Init and b € Initg, and

(s,b) € Acc' iff b € Acc.

Finally, we have:

Theorem 4. For any LKS M and SE-LTL formula ¢,

Proof. From Lemma 2 we know that M F ¢ ifft M, F ¢,. Now observe that a
state of M, can have several differently-labeled transitions emanating from it.
However, by duplicating states (and transitions) as necessary, we can transform
M into a ~-equivalent LKS M having the following property: for every state
s of M, the transitions emanating from s are all labeled with the same (single)
event. As a result, the validity of an SE-LTL atomic event proposition a in a
given state of M| does not depend on the particular path to be taken from that
state, and can therefore be recorded as a propositional state variable of the state
itself. But this is precisely what occurs when one interprets the SE-LTL formula
¢1 as an LTL formula (over a set of atomic variables which includes X). The
claim then follows from Theorem 3.]

The significance of Theorem 4 is that it enables us to make use of the highly
optimized algorithms and tools available for verifying LTL formulas on Kripke
structures to verify SE-LTL specifications on labeled Kripke structures. (How-
ever, we argue later on that a direct algorithm would probably be appreciably
more efficient.)

State/Event-based Software Model Checking 9
4 Example: A Surge Protector

We describe a safety-critical current surge protector in order to illustrate the
advantages of state/event-based implementations and specifications over both
the pure state-based and the pure event-based approaches.

The surge protector is meant at all times to disallow changes in current
beyond a varying threshold. The labelled Kripke structure in Figure 1 captures
the main functional aspects of such a protector in which the possible values of
the current and threshold are 0, 1, and 2. The threshold value is stored in the
variable m, and changes in threshold and current are respectively communicated
via the events m0, m1, m2, and ¢0, cl, c2.* Note, for instance, that when m =1
the protector accepts changes in current to values 0 and 1, but not 2 (in practice,
an attempt to hike the current up to 2 should trigger, say, a fuse and a jump to
an emergency state, behaviors which are here abstracted away).

m2

Fig. 1. The LKS of a surge protector

The required specification is neatly captured as the following SE-LTL for-
mulas:

dse = G((c2om=2)A(cl = (m=1Vm=2))).

By way of comparison, Figure 2 represents the (event-free) Kripke structure
that captures the same behavior as the LKS of Figure 1. In this pure state-based
formalism, nine states are required to capture all the reachable combinations of
threshold (m = 1) and last current changes (¢ = j) values.

The data (9 states and 39 transitions) compares unfavorably with that of
the LKS in Figure 1 (3 states and 9 transitions). Moreover, as the allowable

4 The reader may object that we have only allowed for boolean variables in our defi-
nition of labeled Kripke structures; it is however trivial to implement more complex
types, such as bounded integers, as boolean encodings, and we have therefore ellided
such details here.

10 Sagar Chaki Joél Ouaknine Natasha Sharygina Nishant Sinha

Fig. 2. The Kripke structure of a surge protector

current ranges increase, the number of states of the LKS will grow linearly,
as opposed to quadratically for the Kripke structure. The transitions of both
will grow quadratically, but with a roughly four-fold larger factor for the Kripke
structure. These observations highlight the advantages of a state/event approach
when modeling certain kinds of systems.

Another advantage of the state/event approach is witnessed when one tries
to write down specifications. In this instance, the specification we require is

s =G(((c=0Ve=2)AX(c=1) > (m=1Vvm=2)A
G(((c=0ve=1)AX(c=2)) >m=2),

which is arguably significantly more complex than ¢ge.
The pure event-based specification ¢, capturing the same requirement is also
clearly more complex than ¢ge:

e = G(m0 = ((—cl) U (mlV m2)))A
G(m0 — ((—¢2) Um2)) A
G(ml = ((—¢2) U m2)).

The greater simplicity of the implementation and specification associated
with the state/event formalism is not purely a matter of esthetics, or even a
safeguard against subtle mistakes; preliminary experiments also suggest that
the state/event formulation yields significant gains in both time and memory

State/Event-based Software Model Checking 11

during verification. We implemented three parameterized instances of the surge
protector as very simple C programs, in one case allowing message passing (repre-
senting the LKS), and in the other relying solely on local variables (representing
the Kripke structure). We also wrote corresponding specifications respectively as
SE-LTL and LTL formulas (as above), and converted these into Biichi automata
using the tool Wring [Wri]. Figure 3 records the number of Biichi states and tran-
sitions associated with the specification, as well as the time (in seconds) taken
by MAGIC to confirm that the corresponding implementation indeed meets the
specification.

current state/event pure state

range B-states|B-trans. |time|B-states|B-trans. | time
0<m,c<2 4 6 20.4 8 12 71.4
0<m,c<3 5 8 359 14 23 |204.6
0<m,c<4 6 10 (51.0] 22 38 558.2

Fig. 3. Comparison of state/event and pure state formalisms. B-states and B-trans.
respectively denote the number of states and transitions of the Biichi automaton cor-
responding to the specification. Times are given in milliseconds.

5 Compositional Counterexample-Guided Verification

We now discuss how our framework enables us to verify SE-LTL specifications
on parallel compositions of labeled Kripke structures incrementally and compo-
sitionally.

When trying to determine whether an SE-LTL specification holds on a given
LKS, the following result is the key ingredient to be able to exploit abstractions
in the verification process:

Theorem 5. Let M and A be LKSs with M T A. Then for any SE-LTL formula
¢ over M which mentions only propositions (and events) of A, if A F ¢ then
M E ¢.

Proof. This follows easily from the fact that every path of M is matched by
a corresponding property-preserving path of A. Note that the fact that this

correspondence preserves deadlock is crucial. O

Let us now assume that we are given a collection M,..., M, of LKSs,
as well as an SE-LTL specification ¢, with the task of determining whether
Mi||...||M, E ¢. We first create initial abstractions A; I My,... , A, 3 M,, in
a manner to be discussed shortly. We then check whether A4;||...||4, F ¢. In the
affirmative, we conclude (by Theorems 1 and 5) that M||...||M, E ¢ as well. In

the negative, we are provided with a counterexample 74 € L(A4]|...||4,) such

12 Sagar Chaki Joél Ouaknine Natasha Sharygina Nishant Sinha

that 74 ¥ ¢. We must then determine whether this counterexample is real or
spurious, i.e., whether it corresponds to a counterexample m € L(M||... || My).

This validation check can be performed compositionally, as follows. According
to Theorem 1, the counterexample is real iff for each i, the projection m4[A;
corresponds to a valid behavior of M;. To this end, we ‘simulate’ w4 [A; on M;.
If M; accepts the path, we go on to the next component. Otherwise, we refine
our abstraction A;, yielding a new abstraction A} with M; C A} C A; and such
that A} also rejects the relevant projection of the spurious counterexample 4.

This process is iterated until either the specification is proved, or a real coun-
terexample is found. Termination follows from the fact that the LKSs involved
are all finite, and therefore admit only finitely many distinct abstractions.

It remains to explain how initial abstractions are generated, and how abstrac-
tions are refined. One can use the standard technique of hiding state variables
and then increasingly restoring them to rule out spurious counterexamples as
needed—details of this approach (in the context of Kripke structures) may be
found in [CGJ100]. However, for this technique to be sound it is necessary to
ensure that the abstractions thus obtained preserve any deadlocking behavior of
the concrete model (which in general may not be the case). In practice, we may ei-
ther verify (through model checking® or otherwise) that the system Mj||...||M,
is deadlock-free, or alternately subsequently validate the specification ¢ on all
the deadlocking paths of M| ... ||M,.

6 Conclusion and Future Work

In this paper, we have presented an attractive framework for modelling and ver-
ifying linear-time specifications on concurrent software systems. Qur approach
is based on both states and events, and supports compositional counterexample-
guided abstraction refinement. We have also shown how standard automata-
theoretic techniques for verifying linear temporal logic formulas can be ported
to our framework, and have implemented these on our C model checker MAGIC.
Preliminary investigations with MAGIC yield very promising results as com-
pared to more standard state-only or event-only approaches.

There remain many avenues for further research. One is to try to further op-
timize the automata-theoretic part of the verification, by directly transforming
an SE-LTL formula into a labelled Biichi automaton. An examination of a cer-
tain number of examples suggests that this could lead to a state space reduction
of a factor of at most the cardinality of the alphabet set. Another direction is
to investigate other, even less restrictive (and perhaps specification-dependent),
notions of abstraction. We have also begun work on a compositional CEGAR-
based algorithm to check deadlock-freedom. MAGIC is at present an explicit
model checking tool—it could be extremely interesting to explore symbolic and
partial order techniques to further tackle the state space explosion problem.

® We are currently working on developing an entirely different counterexample-guided
compositional technique to check deadlock-freedom.

State/Event-based Software Model Checking 13

Another promising area would be to develop mechanisms to handle shared vari-
ables; at present, these can only be dealt with in clumsy fashion through shared
actions. Other modifications to the basic setup could include the ability to add
fairness constraints. Lastly, we are actively looking to model and verify much
larger, industrial-size case studies.

References

[BS01]

[CCGT03]

[CES1]

[CESS6]

[CGIT00]

[CGP99]

[COYC03]

[GPVW95]

[KV98]

[MHO1]

[NV95]

[Pnus6]

[QS81]

Julian Bradfield and Colin Stirling. Modal Logics and Mu-Calculi : An In-
troduction, pages 293-330. Handbook of Process Algebra. Elsevier, 2001.
Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut
Veith. Modular verification of software components in C. In Proceedings
of ICSE 2003, pages 385-395, 2003.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. Lecture Notes in Computer
Science, 131, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244—
263, 1986.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Computer Aided Verification, pages
154-169, 2000.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
December 1999.

Sagar Chaki, Joél Ouaknine, Karen Yorav, and Edmund M. Clarke. Auto-
mated compositional abstraction refinement for concurrent C programs:
A two-level approach. In Proceedings of SoftMC 03. ENTCS 89(3), 2003.
Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Protocol
Specification Testing and Verification, pages 3—-18, Warsaw, Poland, 1995.
Chapman & Hall.

Ekkart Kindler and Tobias Vesper. ESTL: A temporal logic for events
and states. Lecture Notes in Computer Science, 1420:365-383, 1998.
David Schimidt Michael Huth, Radha Jagadeesan. Modal transition sys-
tems : A foundation for three-valued program analysis. In Lecture Notes
in Computer Science, volume 2028, page 155. Springer-Verlag Heidelberg,
2001.

Rocco De Nicola and Frits Vaandrager. Three logics for branching bisim-
ulation. Journal of the ACM (JACM), 42(2):458-487, 1995.

Amir Pnueli. Application of temporal logic to the specification and verifi-
cation of reactive systems: A survey of current trends. In J.W. de Bakker,
Willem P. de Roever, and Grzegorz Rozenburg, editors, Current Trends
in Concurrency, volume 224 of Lecture Notes in Computer Science, pages
510-584. Springer, 1986.

J.P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In proceedings of Fifth Intern. Symposium on Pro-
grammaing, pages 337-350, 1981.

14 Sagar Chaki Joél Ouaknine Natasha Sharygina Nishant Sinha

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall
International, London, 1997.
[SBOO] Fabio Somenzi and Roderick Bloem. Efficient buchi automata from ltl

formulae. In Computer-Aided Verification, pages 248-263, 2000.
[Wri] Wring website. http://vlsi.colorado.edu/~rbloem/wring.html.

