A Counter Example Guided Abstraction
Refinement Framework for Compositional
Verification of Concurrent C Programs

Sagar Chaki, CMU
December 9, 2002

Abstract

Automatic verification of software implementations is a major challenge in the do-
main of formal methods. The state of the art solutions to this problem suffer from
one or more of the following drawbacks. First, most tools attempt to scale to large
implementations. But since they use trace containment as a notion of conformance,
they risk an exponential blowup in the size of the specification. This potentially pre-
vents them from handling examples where the specifications are large and complex.
Second, there is little support for compositional reasoning. Third, abstraction refine-
ment is performed either manually or by considering one counter example at a time.
Multiple counter examples are not used simultaneously even though this could lead to
better refinement schemes. Finally, counter example guided abstraction refinement is
not integrated smoothly with the handling of concurrency. In this proposal I present
a methodology that attempts to overcome all of these hurdles. First, exponential
blowup due to complex specifications is avoided by using weak simulation as a notion
of conformance. Second, compositional analysis is allowed for naturally by letting
individual procedures be verified against their respective specifications. Third, dur-
ing each abstraction refinement step, multiple counter examples are used to obtain a
minimal set of predicates that suffices to refine the abstraction. Last, a two-level ab-
straction refinement scheme achieves smooth integration of concurrency with counter
example guided abstraction refinement. In conjunction, these techniques are expected
to enable verification of concurrent C programs against complicated specifications in
an automated manner.

Contents

1 Motivation 2
2 Software Verification: Past and Present 3
3 LTS as Model and Specification 5

4 Simulation as Conformance 7

5 CEGAR for Simulation 9
5.1 Counter-Example o 9
5.2 Validity of a CE-DAG 10
5.3 Refining the Abstraction 11

6 Concurrency 12
6.1 Two Level Abstraction Refinement 13

7 Milestones and Deadlines 15

8 Conclusion 16

1 Motivation

The ability to reason about the correctness of programs is no longer a subject of
primarily academic interest. With each passing day the complexity of software
artifacts being produced and employed is increasing dramatically. There is
hardly any aspect of our day-to-day lives where software agents do not play
an often silent yet crucial role. The fact that many of such roles are safety-
critical mandates that these software artifacts be validated rigorously before
deployment. So far, however, this goal has largely eluded us.

Several factors contribute to this undesirable state of affairs. First, the
sheer complexity of software. Binaries obtained from hundreds of thousands
of lines of source code are routinely executed. The source code is written in
languages ranging from C/C++/Java to ML/Ocaml. These languages differ
not only in their flavor (imperative, functional) but also in their constructs
(procedures, objects, pattern-matching, dynamic memory allocation, garbage
collection), semantics (loose, rigorous) and so on.

This sequential complexity is but one face of the coin. Matters are further
exacerbated by what can be called parallel complexity. State of the art software
agents rarely operate in isolation. Usually they communicate and cooperate with
other agents while performing their tasks. With the advent of the Internet,
and the advance in networking technology, the scope of such communication
could range from multiple threads communicating via shared memory on the
same computer to servers and clients communicating via SSL channels across
the Atlantic. Verifying the correctness of such complex behavior is a daunting
challenge.

Another, much less visible yet important, factor is the development process
employed in the production of most software and the role played by validation
and testing methodologies in such processes. A typical instance of a software
development cycle consists of five phases - (i) requirement specification, (ii)
design, (iii) design validation, (iv) implementation and (v) implementation val-
idation. The idea is that defects found in the design (in phase iii) are used to
improve the design and those found in the implementation (in phase v) are used

to improve the implementation. The cycle is repeated until each stage concludes
successfully.

Usually the design is described using a formal notation like UML. The dy-
namic behavior is often described using Statecharts (or some variant of it.) The
design validation is done by some exhaustive technique (like model checking.)
However, what matters in the final tally is not so much the correctness of the
design but rather the correctness of the implementation. Nevertheless, in real-
ity, verification of the implementation is done much less rigorously. This makes
it imperative that we focus more on developing techniques that enable us to
verify actual code that will be compiled and executed. A major fraction of such
code has been written, continues to be written and, in my opinion, will continue
to be written in C.

Present day code validation falls in two broad categories - testing and formal
verification. The merits and demerits of testing are well-known and thus it is
unnecessary to dwell on them in detail here. It suffices to mention that the
necessity of being certain about the correctness of a piece of code precludes ex-
clusive reliance on testing as the validation methodology, and forces us to adopt
more formal approaches. In summary, the demand for better formal techniques
to verify concurrent and distributed C programs is currently overwhelming. This
proposal attempts to provide a road map to a solution.

2 Software Verification: Past and Present

State of the art formal software verification is an extremely amorphous entity.
Originally, most approaches in this field could be categorized as belonging to
either of two schools of thought: theorem proving and model checking. In the-
orem proving, one attempts to construct a formula ¢ (in some suitable logic
like higher-order predicate calculus) that represents both the system to be ver-
ified and the correctness property to be established. The validity of ¢ is then
established using a theorem prover. As can be imagined, this approach is ex-
tremely powerful and can be used to verify virtually any imaginable system and
property. The flip-side is that it involves a lot of manual effort. Furthermore it
yields practically no diagnostic feedback that can be used for debugging if ¢ is
found to be invalid.

Model Checking. Where theorem proving fails, model checking [18] shines.
In this approach, the system to be verified is represented by a finite state tran-
sition system M (often a Kripke structure) and the property to be established
is expressed as a temporal logic [31] (usually CTL with fairness or LTL) for-
mula ¢. The model checking problem is then to decide whether M is a model
of ¢. Not only can this process be automated to a large degree, it also yields
extremely useful diagnostic feedback (often in the form of counter examples) if
M is found not to model ¢. Owing to these and other factors, the last couple of
decades have witnessed the emergence of model checking as the eminent formal
verification technique. Various kinds of temporal logics have been extensively

studied [22] and efficient model checking algorithms have been designed [15, 39].
The development of techniques like symbolic model checking [28], bounded model
checking [11], compositional reasoning [14] and abstraction [17] have enabled us
to verify systems with enormous state spaces [29].

One of the original motivations behind the development of model checking
was to extract and verify synchronization skeletons of concurrent programs, a
typical software verification challenge. Somewhat ironically, the meteoric rise
of model checking to fame was largely propelled by its tremendous impact on
the field of hardware verification. I would argue that a major factor behind this
phenomenon is that model checking can only be used if a finite model of the
system is available. Also since real system descriptions are often quite large,
the models must be extracted (semi)automatically. While this process is often
straightforward for hardware, it is much more involved for software. Typically
software systems have infinite state spaces. Thus extracting a finite model often
involves a process of abstraction as well.

Predicate Abstraction. For a long time, the applicability of model checking
to software was somewhat handicapped by the absence of powerful automated
model extraction techniques. This scenario changed with the advent of predicate
abstraction [40] (a related notion called data type abstraction used by systems
like Bandera [1, 21] can be viewed as a special instance of predicate abstrac-
tion.) Even though predicate abstraction was quickly picked up for research in
hardware verification as well [19, 20], its effect on code verification was rather
dramatic. It forms the backbone of two of the major code verifiers in existence,
SLAM [5, 9] and BLAST |2, 26].

Predicates abstraction is parameterized by a set of predicates involving the
variables of the concrete system description. It also involves non-trivial use of
theorem provers (in fact the its original use [40] was to create abstract state
transition graphs using the theorem prover PVS.) Thus it has triggered a more
subtle effect - it has caused the boundary between model checking and theorem
proving to become less distinct. I believe this is an extremely promising trend
and I plan to investigate other applications of theorem provers to facilitate the
extraction of more precise models from software.

Counter Example Guided Abstraction Refinement. Even with progress
in automated model extraction techniques, verifying large software systems re-
mains an extremely tedious task. A major obstacle is created by the abstraction
that happens during model extraction. Abstraction usually introduces addi-
tional behavior that is absent in the concrete system. Suppose that the model
check fails and the model checker returns a counter example C. This does not
automatically indicate a bug in the system because it is entirely possible that
C is an additional behavior introduced by abstraction (such a C is often called
a spurious counter example.) Thus we need to verify whether C is spurious and
if so we need to refine our model so that it no longer allows C as an admissible
behavior. This process is called abstraction refinement. Since the extracted

models and counter examples generated are quite large, abstraction refinement
must be (semi)automated to be practically effective.

The above requirements lead naturally to the paradigm called counter ex-
ample guided abstraction refinement (CEGAR). In this approach, the entire
verification process is captured by a three step abstract-verify-refine loop. The
actual details of each step depend on the kind of abstraction and refinement
methods being used. The steps are described below in the context of predicate
abstraction, where P denotes the set of predicates being used for the abstraction.

1. Step 1 : Model Creation. Extract a finite model from the code using
predicate abstraction with P and go to step 2.

2. Step 2 : Verification. Check whether the model satisfies the desired
property. If this is the case, the verification successfully terminates; other-
wise, extract a counter example C and go to step 3.

3. Step 3 : Refinement. Check if C is spurious. If not we have an actual
bug and the verification terminates unsuccessfully. Otherwise we improve
P so that C and all previous spurious counter examples will be inadmissible
if the model is extracted using the new P and go to step 1.

The methodology 1 propose will follow the CEGAR paradigm and will use
predicate abstraction as one of the abstraction techniques. Two (and to the
best of my knowledge, only two) other projects, SLAM [5] and BLAST [2], have
similar goals and approaches. The natural question that arises is: how does
my proposal relate to them? In the following sections I will layout the salient
features and intended contributions of my proposal. I will also contrast and

compare my proposal with related projects, and in particular with SLAM and
BLAST.

3 LTS as Model and Specification

The first salient feature of my proposal is the uniform use of labeled transition
systems (LTSs) to represent both the model of the system being verified and
the property being checked.

LTS. Formally, a labeled transition system M is a 4-tuple (S5,So, Act,T),
where (i) S is a finite non-empty set of states, (i) Sp C S is the set of ini-
tial states, (iii) Act is the set of actions, and (iv) T' C S x Act x S is the
transition relation. We assume the presence of a distinguished action in the set
Act, which we denote by €. If (s,a,s") € T, then (s, s’) will be referred to as a

a-transition and will be denoted by s % s’. If s is reachable from s’ via zero or
more e-transitions, we will denote this by s = s’. The relation = is defined as

*

aq . . e* a €
follows: s = s’ iff there exist s; and sy such that s — s; — s9 — s’.

Action. Actions are atomic, and are distinguished simply by their names.
Often, the presence of an action indicates a certain behavior which is achieved

lock return{ 0} int proc()

i f(do_lock())
Spec return O;
return{ 1} el se

return 1;
Spec State Machine Code to be analysed

Figure 1: The example S and proc.

by a library routine in the implementation. Since we shall analyze a procedural
language, namely C, we will model the termination of a procedure (i.e., a return
from the procedure) by a special class of actions called return actions. Every
return action a is associated with a unique return value RetVal(a). Return
values are either integers or void. All actions which are not return actions are
called basic actions. A simple example of an LTS is shown in the left part of
Figure 1.

From a theoretical point of view the presence of actions does not increase
the expressive power of LTS and other related formalisms have also been inves-
tigated and used in this context. For example, SLAM uses Boolean programs [8]
to model software while BLAST uses a variant of LTSs where the transitions
are labeled with basic blocks and assume predicates rather than actions. It is
my belief, however, that it is more natural for designers and software engineers
to express the desired behavior of systems using a combination of states and
actions. For example, the fact that a lock has been acquired or released can be
expressed naturally by lock and unlock actions. In the absence of actions, the
natural alternative is to introduce a new variable indicating the status of the
lock, and update it accordingly. The LTS approach certainly is more intuitive,
and allows both for a simpler theory and for an easier specification process.

C Implementation. In practice C programs can be quite complicated. How-
ever all non-recursive C programs can be inlined, resulting in a single monolithic
main procedure. Therefore, if we ignore recursion, it is not unnaturally restric-
tive to assume that the C implementation consists of a single procedure. Using a
single procedure as the unit of implementation also leads naturally to a composi-
tional specification and verification methodology as we shall see soon. Recursion
will be considered separately later. In the rest of the proposal I shall denote by
proc the name of the implementation procedure.

Procedure Abstraction. As already mentioned, the specification of a pro-
cedure is expressed using a LTS. Intuitively the behaviors of the specification
LTS represent the acceptable behaviors of the procedure. Thus the verification
task is to show that the possible behaviors of the procedure are also behaviors of
the specification. In practice, it often happens that a single procedure performs

quite different tasks for certain settings of its parameters. In my methodology,
this phenomenon is accounted for by allowing multiple LTSs to represent a single
procedure. The selection among these LTSs is achieved by guards, i.e., formu-
las, which describe the conditions on the procedure parameters under which a
certain LTS is applicable. This gives rise to the notion of procedure abstraction
(PA); formally a PA for a procedure proc is a tuple (d,) where

1. d is the declaration for proc, as it appears in a C header file.

2. 1 is a finite list (g1, M1),...,{gn, M,,) where each g; is a guard formula
ranging over the parameters of proc, and each M; is an LTS with a single
initial state.

The procedure abstraction expresses that proc conforms to one LTS chosen
among the L;’s. More precisely, proc conforms to L; if the corresponding guard
g; evaluates to true over the actual arguments passed to proc. The guard for-
mulas g; are required to be mutually exclusive and complete so that the choice
of L; is unambiguous and always well-defined. The role of PAs in this process
is twofold:

1. A target PA is used to describe the desired behavior of the procedure proc.

2. To assist the verification process, we employ valid PAs (called the assump-
tion PAs) for library routines used by proc.

Thus, PAs can be seen both as conclusions and as assumptions of the verification
process. Consequently, the proposed methodology yields a scalable and compo-
sitional approach for verifying large software systems. I believe that the form
of compositionality provided by my approach is unique among existing software
verification systems. In particular, such compositionality is absent in SLAM
and BLAST. In addition both these projects use transition systems without ac-
tions to express specifications. Figure 1 describes a simple case of a procedure
proc and a corresponding LTS.

4 Simulation as Conformance

The fundamental goal of a software verifier is to prove that the behavior of an
implementation conforms to that of its specification. The crucial decision is
therefore: what is an appropriate notion of conformance between two systems.
Most existing tools (including SLAM and BLAST) have opted for trace con-
tainment as the notion of conformance. This means that an implementation 7
conforms to a specification S iff every trace of 7 is also a trace of S. This choice
has an important ramification. Normally, checking trace containment between
7 and S is done in two steps:

1. Construct a system S’ such that the traces of 8’ are exactly the ones that
are not traces of S.

2. Check that no trace of 7 is a trace of S'.

The problem is that if S is allowed to be non-deterministic, the size of S’
could in general be exponential in the size of S. Note that we are implicitly
assuming that Z and S are expressed as some kind of finite state transition
system. This problem is more critical if S is relatively large, as is invariably
the case with software of even moderate complexity. Thus the necessity of
verifying large complex specifications mandates that we find a way of avoiding
this exponential blowup. In my methodology, this is achieved by using a stronger
notion of conformance viz. weak simulation.

Weak Simulation. Let M = (S,Sy, Act,T) and M’ = (5,5, Act,T") be
two LTSs. A relation £ C S x S’ is called a weak simulation between M and
M’ iff (i) for all s € Sy there exists s’ € S{ such that (s,s’) € E, (ii) (s,s') € E
implies that for all actions a € Act\ {¢} if s = s1, then there exists s} € S’ such
that s’ = s} and (s1,s}) € F and (iii) (s,s’) € E implies that if s = s, then
either (s1,s’) € F or there exists s| € S’ such that s’ = s} and (s1,s}) € E.
We say that LTS M’ weakly simulates M (denoted by M T M’) if there exists
a weak simulation relation £ C S x S’ between M and M’. In the rest of this
proposal, I shall use the convention that the terms simulation and simulates will
always mean weak simulation and weakly simulates respectively.

There exist well known polynomial time algorithms for checking simulation
between two LTSs. In particular there exists a reduction of this problem to
that of satisfiability of N-HORNSAT formulas based on [41]. There also exists
efficient online linear time N-HORNSAT satisfiability algorithm based on [7].
This enables us to check simulation between two LTSs very efficiently, putting
complex implementations and specifications within our grasp.

There is a small piece of the puzzle that is still not in place. Suppose Z is the
finite model extracted from proc using predicate abstraction. The existence of a
simulation relation between Z and S does not immediately enable us to conclude
that proc is correct. However if we are able to show that Z simulates proc, then
by the transitive property of simulation we would also be able to conclude that
S simulates proc. Then the correctness of proc would follow immediately. Thus
the general problem to be solved is summarized in the following theorem.

Theorem 1 If an LTS T is extracted from an implementation proc using pred-
icate abstraction, then I simulates proc.

I propose to prove Theorem 1 as part of my project. To the best of my
knowledge this is an entirely possible yet unproved result. Projects like SLAM
and BLAST have already shown similar results in the context of trace contain-
ment since that is their notion of conformance. It should be noted however that
simulation is a stronger notion than trace containment. Hence Theorem 1 would
immediately imply the following corollary.

Corollary 1 If an LTS T is extracted from an implementation proc using pred-
icate abstraction, then I trace contains proc.

5 CEGAR for Simulation

In this section I shall describe my proposal to incorporate CEGAR into the
simulation based framework I have built up so far. There are four critical
components of this proposal: (i) what is a counter-example when the notion of
conformance between two systems is simulation, (ii) given two systems that are
not in conformance how can we construct the counter-example efficiently, (iii)
how can we check efficiently whether the counter-example is valid or spurious
and (iv) how can we refine Z such that the counter-example can no longer
reappear in subsequent simulation checks. To the best of my knowledge these
questions have not been investigated before. Once again, projects like SLAM [10]
and BLAST have not concerned themselves with these problems simply because
they do not use simulation. I discuss some possible solutions in the following
sections. Obviously these are starting points. A final fully satisfactory solution
will require further development.

5.1 Counter-Example

Let M = (S, Sp, Act,T) and M’ = (5',5], Act, T") be two LTSs such that M’
does not simulate M. When the notion of conformance is trace containment
a counter-example is simply a trace of M that is not a trace of M’. However
with simulation a counter-example can be viewed as a directed acyclic graph
with edges labeled by actions (i.e. a directed acyclic LTS), which we call the
CE-DAG. Before we describe the CE-DAG in greater detail we need to discuss
a few other issues.

The standard iterative algorithm for computing the largest simulation rela-
tion between M and M’ proceeds as follows. It starts with S x S’ as the initial
value of the result and then iteratively refines it (i.e. removes elements from
it) till a fixed point is reached. Even though the final result (the greatest fixed
point, which we denote by X) is guaranteed to be unique, the order in which
elements are removed may vary depending on the actual implementation details
of the algorithm. However if we select a particular execution of the algorithm it
automatically induces a strict ordering on the elements of (S x S)\ X viz. >y
iff z was removed after y during the execution. Let I' be one such ordering. The
significance of this paragraph is that even though we do not use the standard
iterative algorithm to compute 3, our N-HORNSAT solver can yield such an
ordering I', and this ordering is all we need to construct a CE-DAG.

We are now ready to describe the CE-DAG. The set of nodes of the CE-DAG
is (S x S')\ . Note that since M is not simulated by M’, (S, S)) must be
a node of the CE-DAG. The edges of the CE-DAG are determined as follows.
There is an edge from (s, s’) to (¢,t") labeled with « iff the following conditions
hold:

1. (s,8") > (t,t") according to the ordering T.

2. (s,a,t) € T and if X is the set of states {z € S| (s',a,2) € T'} then (i)
t' € X and (ii) for every z € X, (t,x) € (S x S’)\ X.

Thus the edges of the CE-DAG capture causality between the exclusion of
its nodes from . In particular, an edge from x to y labeled with a indicates
that the exclusion of x from ¥ is a direct consequence of the exclusion of y
from ¥ and the execution of action a from x. Without loss of generality we
may assume that the element (Sp, SY) is the last in the ordering I' (i.e. the last
to be excluded from ¥) and is also the unique source node (has only outgoing
edges) of the CE-DAG. Given I', we can construct the CE-DAG efficiently using
polynomial time in |S|x|S’|. T shall not go into the details of the exact algorithm
for doing this now.

GGG O=GDr @G

CE-DAG

Figure 2: Two example LTSs and a CE-DAG.

Example 1 Consider the LTSs M and M’ in Figure 2. A possible ordering
T in this case is the following: (3,4) < (2,5) < (1,4). The CE-DAG has two
relevant nodes (1,4) and (2,5) with a single edge from (1,4) to (2,5) labeled with
a. It is shown in Figure 2.

5.2 Validity of a CE-DAG

Since a CE-DAG is a finite DAG it has only a finite number of paths. Each
such path p gives rise to a corresponding concrete execution path (p) in the
actual C program. Given p one can efficiently construct v(p) and then check
its validity i.e. whether v(p) is actually possible in any execution of the C
program. The CE-DAG is said to be a valid counter-example iff for each path
p in it, v(p) is a valid concrete execution path. Conversely the CE-DAG is a
spurious counter-example if there is a path p in it such that v(p) is spurious.

There are two approaches to checking the validity of a concrete path v(p) -
the forward approach based on the computation of strongest post-conditions and
the backward approach based on the computation of weakest preconditions. Let
~(p) be the sequence of statements sy, ..., s,. In both approaches to checking
the validity of v(p) we compute a set of expressions e; for 1 < i < (n + 1).
In the forward approach we start with e; = true and let e;11 be the strongest
post-condition of e; w.r.t. s;. Then ~y(p) is valid iff we can compute up to e,+1
without getting false. In the backward approach we start with e, ;1 = true and
let e; be the weakest precondition of e;11 w.r.t. s;. Then v(p) is valid iff we can
compute up to e; without getting false.

If v(p) is spurious, by combining the forward and backward approaches we
can compute a minimal spurious sub-path of v(p) as follows. We start with the
forward approach and keep computing the e;s. Let eg1 be the first time we
get false. Now starting with s, and with e,+1 = true we apply the backward

10

approach. Let e, be the first time we get false. Then s,,...,s; is the min-
imal spurious sub-path of ¥(p). Since multiple paths in the CE-DAG might
share common spurious sub-paths, by using the minimal spurious sub-paths
judiciously we hope to avoid significant redundant computation. Note that a
similar notion of minimal spurious sub-path has been used in the context of
hardware verification in [19].

5.3 Refining the Abstraction

We have arrived at the last of the four components of CEGAR viz. how to
improve our abstraction Z such that all the previously discovered spurious CE-
DAGs do not reappear in subsequent trials. In general each CE-DAG ¢ is
spurious because it contains a path p such that v(p) is spurious. We know that
if we add the e;s discovered while checking ~(p)’s validity as predicates and
recompute Z, then v(p) (and hence) can no longer reappear. However the
problem with this approach is the large number of predicates it might yield.
In particular, there might be several spurious CE-DAGs, each CE-DAG will
have a spurious path and each spurious path could yield several predicates. The
problem is particularly grave since we already know that the construction of 7
consumes exponential resources in the number of predicates involved.

Thus it would be extremely desirable to be able to solve the following prob-
lem: given a set of spurious CE-DAGs A = {4y,...,dx}, construct a minimal set
of predicates P such that the Z constructed using P may not yield any element
of A as a counter-example. We now present a solution to this problem. Let p;
be the spurious path in §; and let P; be the set of e;s discovered while check-
ing for the validity of v(p;). We know that the set P = U¥_, P; will definitely
eliminate each §; as a CE-DAG. However our goal is to come up with a smaller
subset of P that will also suffice in this regard. We achieve this by reducing
the problem to an instance of pseudo Boolean satisfiability. A pseudo Boolean
formula is a standard Boolean formula together with a minimization criterion.
The reduction is done as follows.

First, for each predicate R; € P we introduce a Boolean variable B;. Then for
each spurious path p; let C; be a set of subsets of P with the following property:
C; ={Q1,...,Qn,} such that if we use any @, as the set of predicates then the
resulting Z does not have p; as a possible execution trace. For example suppose
Cy1 = {{R1},{R2, R3}}. This means that if we use either R; or use R and
R3 as predicates, the resulting Z will not contain p; as a path. Given p; it is
possible to compute a suitable C; by trying out various possible combinations
of R; and checking which of these combinations are capable of eliminating p;.
This process could be exponential in the number of predicates in the worst case
but could be speeded up in practice using various heuristics.

Suppose Q; = {Ra,, .-, Ra,, }. Then let ¢(Q;) be the Boolean conjunctive
clause A" | B,,. Then for C; = {Q1,...,Qn, } let 1(C;) be the Boolean formula
v?;lgzﬁ(@j). Finally the Boolean formula we wish to solve is A¥_,%(C;). In
addition we wish to minimize the following quantity: ¥ g,cpB;. Once we get a
solution to this pseudo Boolean formula we choose P to be the set of predicates

11

R; such that B; is assigned true by the solution.

Example 2 Let A = {01,62} and P = {Ry,Rs, R3}. Let C7 =
{{Rl}, {RQ,Rg}} and CQ = {{RQ,Rg}} Then we get 1,[)(01) = (Bl) V (B2 /\Bg)
and Y(Cy) = By V Bs. Thus the formula to be solved is ¥(C1) A (C2) along
with the minimization criterion (B + Ba+ Bs). It is obvious that assigning true
to any two of the Boolean variables and false to the third gives a valid solution.
For example one solution is {By = true, Bo = true, By = false} which yields
7) - {Rl, RQ}

Here is the essential idea behind the above reduction. Each constraint ¢(Q;)
guarantees that all the predicates in @; will be included in P. Thus each 9 (C;)
guarantees that all the predicates from at least one of the elements of C; will be
included in P and hence p; will be eliminated as a trace. Therefore the entire
formula ensures that every p; will be eliminated as a trace. The minimization
criterion guarantees that a minimal set of predicates which eliminate every p;
will be selected as P. Note that instead of pseudo Boolean satisfiability we could
also have used logic minimization or hitting set to solve this problem. However
the major motivation behind using pseudo Boolean satisfiability is to leverage
considerable recent progress in this area [6].

6 Concurrency

The addition of concurrency causes a quantum jump in the complexity of any
verification procedure. The most apparent cause of this phenomenon is the ex-
ponential blowup in the state space due to the parallel composition of a number
of concurrently executing components. Another subtle but significant blowup
occurs in the number of possible execution interleavings if the components are
allowed to perform their actions asynchronously. Both these problems plague
hardware verification to a large degree. The blowup in the state space is tack-
led by techniques like abstraction and compositional reasoning [16, 35] while the
blowup in the interleavings is handled by partial order reduction [24, 32, 37, 44]
related approaches.

In the case of software, the above problems are further compounded by the
diversity of communication mechanisms. A host of mechanisms have been pro-
posed in the literature and used, ranging from shared memory and monitors to
blocking and non-blocking message passing. In addition a wide variety of for-
malisms have been proposed for modeling concurrency and interaction. These
range from the message passing based process algebras like CCS [33], CSP [27]
and the Pi-calculus [34] to the rendezvous based Petri nets [38]. In my method-
ology I use asynchronous parallel composition with synchronization on shared
actions as the communication mechanism. The choice is motivated by its clean
semantics and ease of integration with a CEGAR formalism.

Parallel Composition. Let M; = (51,501, Act;,T1) and My =
(S2,50,2, Acta, Tp) be two LTSs. Then the asynchronous composition of M; and

12

My (denoted by M || My) is the LTS (S|, So, ||, Act), T)|) where (i) S| = S1 xS,
(ii) So,| = (So0,1,50,2), (iii) Act) = Act1U Acts and (iv) ((s1,52),a, (t1,t2)) € T
iff one of the following conditions hold:

1. a € Actq \ Acts and t; = t5 and s; 2 9.

2. a € Acty \ Acty and 51 = sy and t; 5 ts.

3. a € Acty N Acts and s1 — s5 and ¢ — t.

A nice property of the above composition semantics is the resulting validity
of Theorem 2. I will use Theorem 2 in the following sections while presenting a
two-level abstraction refinement framework that aims to integrate concurrency
with CEGAR.

Theorem 2 (Parallel Composition and Simulation) Let Pi,...,P, and
Q1,-..,Qn be arbitrary LTSs. Then the following proof rule is valid.

(Pl [Pa) E@1 - [@n)

Several model checking based software verification tools have taken a shot
at concurrency. Surprisingly most of these tools like Bandera [1, 21], Java
PathFinder [4, 25] and Calvin [23] target Java programs. However to the best of
my knowledge these tools do not incorporate automated abstraction refinement.
On the other hand tools like SLAM and BLAST that do target automated
abstraction refinement and C have no support for concurrency. I believe that
my proposed methodology is unique in attempting to combine concurrency with
automated abstraction refinement.

6.1 Two Level Abstraction Refinement

In my framework a concurrent C program is assumed to consist of a finite
sequence of C procedures procy, ..., proc,. The idea is that the execution of the
program involves the concurrent execution of all these procedures. Then the
two level CEGAR framework can be summarized by the following steps.

1. Step 1: C Abstraction. Obtain LTS models Z; by predicate abstraction
of proc,; for 1 <1 < n. Go to step 2.

2. Step 2: LTS Abstraction. Obtain an abstract LTS A; be applying an
LTS abstraction on Z; for 1 < i < n. We denote the LTS abstraction
algorithm by ayrs. It must obey the property that £ C aprs(L) for any
LTS L. Go to step 3.

3. Step 3: Verification. Check whether (A; || ... || A,) C S. If the answer
is yes then by Theorem 1 and Theorem 2 we can conclude the verification
successfully. Otherwise let C be a counter example obtained. Go to step 4.

For simplicity I shall assume that C is a trace but the methodology works
equally well for a CE-DAG.

13

4. Step 4: LTS Abstraction refinement. Let C; be the projection of C
on the actions of A;. For 1 < i < n we check if C; is a possible path of
Z;. If this is the case for every i we proceed to step 5. Otherwise let k be
the smallest index such that Ci is not a possible path of Z. We refine Ay
such that Cy, and all previous such spurious counter examples are no longer
admissible in the new A and go to step 3. We denote this refinement
procedure by prrs.

5. Step 5:C Abstraction refinement. For 1 < i < n we check if C; is a
possible path of proc,. If this is the case for every i then we have found a real
counter example and the verification terminates unsuccessfully. Otherwise
let k be the smallest index such that Cy, is not a possible path of proc;,. We
refine 7, (using predicate abstraction refinement discussed earlier) such
that Cx and all previous such spurious counter examples are no longer
admissible in the new Z; and go to step 3.

The above algorithm captures the complete methodology I am proposing.
One should note that this approach tries to avoid state explosion problem by
only composing as small systems as possible. In other words it starts with
very small components A, ...,.4, and tries to prove or disprove the property
using them. A component is refined only if it is found to be too abstract. Also
refinement is done locally. In other words components are analyzed individually
(steps 4 and 5) to decide if they need to be refined. In the case were refinement is
necessary, it can also be done for a single component in isolation. The only step
in which composition is necessary is the actual verification (step 3). I hope to
leverage existing technology for coping with the blowup incurred in this phase.

Several of the steps in this methodology (more specifically 1, 3 and 5) have
been discussed previously in the context of verifying purely sequential programs.
The other steps involve developing effective abstraction («zrg) and refinement
(prrs) schemes for LTSs. My research in this direction is still quite nascent but
in the rest of this section I will try to briefly summarize some directions that I
intend to pursue.

LTS Abstraction. The general scheme for LTS abstraction works as fol-
lows. Let M = (S, Sy, Act,T) be an arbitrary LTS. Then ars(M) is an LTS
(S', 8}, Act’, T") such that:

e S’ is a subset of 2° such that every state in S belongs to some element of
S’ i.e. Vs € §,ds" € S’ such that s € §'.

e S|, consists of the subsets of S that contain at least one initial state of M.
In other words S) = {s’ € S | 3i € Sy such that i € s'}.

o Act' = Act.
o T ={(s,a,t') | Is,t € S such that s € ' At €t/ A (s,a,t) € T}.

The pleasant property of this abstraction scheme is that it automatically
guarantees M C arrs(M). Also it can be constructed efficiently from M.
Furthermore this scheme is completely parameterized by the set of abstract

14

states S’. In other words once S’ is fixed the rest of the abstraction is uniquely
determined. I plan to investigate several approaches to constructing S’. For
example a promising approach is to construct S’ by clubbing together states of
S whose outgoing transitions are labeled by identical sets of actions. I also plan
to investigate appropriate refinement schemes for such abstractions.

7 Milestones and Deadlines

I have already implemented a part of the proposed framework. My tool
MAGIC [13] extracts LTS models from sequential C programs using predicate
abstraction. It then checks simulation between the model and user supplied
specifications. MAGIC accepts specifications described in the FSP [30] nota-
tion. As part of MAGIC'T have implemented an online N-HORNSAT algorithm
based on [7, 42]. T have experimented with code fragments from the Linux kernel
and the OpenSSL toolkit and obtained encouraging results [13].

CEGAR. Currently I am implementing the CEGAR framework for simula-
tion. I am also experimenting with various optimization strategies for extracting
a minimal set of predicates for abstraction refinement. My goal is to be able
to verify separately the client and servers components OpenSSL example com-
pletely automatically using CEGAR. I hope to achieve by the end of April 2003.

Concurrency. I also want to start implementing the proposed framework for
handling concurrent C programs. There is tremendous scope for experimenting
with a wide spectrum of abstractions for LT'Ss and I am hopeful about getting
illuminating results from them. Once again I wish to use the OpenSSL example
as the benchmark. The advantage is that the OpenSSL protocol implementation
is inherently concurrent. It consists of code for both clients and servers. Thus,
being able to prove properties of the system comprising of both a client and a
server would be a perfect showcase for my proposed methodology. My aim is to
complete these experiments by November 2003.

Symbolic Techniques. My goal is to complete and defend my thesis by the
end of Spring 2004. Therefore, time permitting, I wish to look into a number
of other related issues. First, the current implementation is explicit state in
the sense that the transitions of the extracted model LTS are stored explicitly.
This is quite expensive in practice. I wish to investigate the problem of whether
these transitions can be computed and stored more efficiently using symbolic
techniques like BDDs [12].

Recursion. So far I have ignored recursive C programs. Though I do not
expect this to be a big problem, I would like to look into techniques for handling
recursion as well. The obvious approach is as follows - when dealing with a
recursive procedure use the same procedure abstraction both as a target and an

15

assumption simultaneously. This appears to be cyclic and therefore potentially
unsound. However I think this is still a sound approach and would like to obtain
a formal proof of this claim.

Static Analysis. Predicate abstraction can often be aided by static analysis
information. For example, the computation of precise weakest preconditions
in the presence of pointers requires the availability of aliasing information. I
would like to investigate this issue further and explore deeper connections be-
tween precise model extraction and static analysis. Part of my goal is also to
interface my tool with efficient static analysis engines like CodeSurfer [3]. In
addition, most static analysis problems can be solved by polynomial time al-
gorithms. This suggests that there are efficient reductions of these problems
to HORNSAT (which is P-complete.) Since I already have a N-HORNSAT en-
gine implemented, finding such efficient reductions would let me integrate these
analysis more tightly with MAGIC.

Proof Carrying Code. Another promising direction is to incorporate fea-
tures of proof carrying code [36] in this framework. The motivation behind
being able to generate short easily checkable proofs of conformance between a
design and an implementation is most evident in security-related applications.
For example, a web browser often downloads applets from untrusted sources and
executes them locally. If a proof of conformance of this applet to some standard
secure design was shipped along with the applet, then the web-browser could
check the proof before loading and executing the applet. Several people have
looked into the notion of proofs for model checking [43]. T am looking into this
problem with respect to my notion of conformance. For instance the maximal
simulation relation is a potential candidate for a proof.

8 Conclusion

The importance of being able to rigorously verify C programs, especially con-
current C programs, can be hardly overstated. Not only must we be able to
handle large implementations, our techniques should be capable of scaling to
large and complex specifications as well. Most existing tools focus on large im-
plementations. But by opting for trace containment as a notion of conformance
they are potentially incapable of handling large specifications. In addition, ab-
straction refinement is done by considering one counter example at a time and
support for concurrency is rarely integrated smoothly into an automated CE-
GAR framework. This proposal attempts to overcome the above shortcomings.
By using simulation as a notion of conformance it can scale to significantly large
specifications. Compositional verification is enabled naturally by allowing the
verification to be carried out on a per-procedure basis. During each abstraction
refinement step multiple counter examples are used simultaneously to obtain a
minimal set of predicates that will suffice to refine the abstraction. Finally a

16

two-level abstraction refinement scheme achieves smooth integration of concur-
rency with CEGAR. I believe that if the major goals of my project materialize,
it will result in a significant advancement of the state of the art in automated
software verification technology.

References

[1] Bandera. http://www.cis.ksu.edu/santos/bandera.

[2] BLAST. http://www-cad.eecs.berkeley.edu/ rupak/blast.

[3] Codesurfer. http://www.grammatech.com.

[4] Java PathFinder. http://ase.arc.nasa.gov/visser/jpf.

[5] SLAM. http://research.microsoft.com/slam.

[6] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah.
PBS: A Backtrack-Search Psuedo-Boolean Solver and Optimizer. In Fifth
International Symposium on the Theory and Applications of Satisfiability
Testing (SAT), 2002.

[7] Giorgio Ausiello and Giuseppe F. Italiano. On-line algorithms for poly-
nomially solvable satisfiability problems. Journal of Logic Programming,
10(1,2,3 & 4):69-90, January 1991.

[8] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker
for boolean programs. In SPIN, pages 113-130, 2000.

[9] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. Lecture Notes in Computer Science, 2057,
2001.

[10] Thomas Ball and Sriram K. Rajamani. Generating abstract explanations
of spurious counterexamples in C programs. Technical Report MSR-TR-
2002-09, Microsoft Research, Redmond, January 2002.

[11] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. Lecture Notes in Computer Science,
1579:193-207, 1999.

[12] Randal E. Bryant. Graph-based algorithms for Boolean function manipu-
lation. IEEFE Transactions on Computers, C-35(8):677-691, August 1986.

[13] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith.
Modular verification of software components in C. In International Con-
ference on Software Engineering (ICSE), To appear, 2003.

[14] E. Clarke, D. Long, and K. McMillan. Compositional model checking. In
Proceedings of the Fourth Annual Symposium on Logic in computer science,
pages 353-362. IEEE Press, 1989.

[15] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications.

ACM Transactions on Programming Languages and System (TOPLAS),
8(2):244-263, April 1986.

17

[16]

E. M. Clarke and O. Grumberg. Avoiding the state explosion problem
in temporal logic model checking algorithms. In Proc. of the 6th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pages 294-303, 1987.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and System
(TOPLAS), 16(5):1512-1542, September 1994.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

Satyaki Das and David L. Dill. Counter-example based predicate discovery
in predicate abstraction. In Fourth International Conference on Formal
Methods in Computer-Aided Design (FMCAD), 2002.

Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate
abstraction. In Computer Aided Verification, pages 160-171, 1999.

Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Co-
rina S. Pasareanu, Hongjun Zheng, and Willem Visser. Tool-supported pro-
gram abstraction for finite-state verification. In International Conference
on Software engineering, pages 177-187. IEEE Computer Society, 2001.

E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics, pages 995-1072,
1990.

C. Flanagan, S. Qadeer, and S. Seshia. A modular checker for multithreaded
programs. In Proceedings of Computer Aided Verification, 2002.

P. Godefroid. Using partial orders to improve automatic verification meth-
ods. In Proceedings of Computer Aided Verification, pages 321-340, 1990.

Klaus Havelund and Thomas Pressburger. Model checking JAVA programs
using JAVA pathfinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4):366-381, 2000.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In Symposium on Principles of Programming Languages,
pages 5870, 2002.

C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM (CACM), 21(8):666-677, August 1978.

J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Sym-
bolic model checking for sequential circuit verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401-
424, 1994.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic Model Checking: 10%° States and Beyond. In Proceedings of the
Fifth Annual IEEE Symposium on Logic in Computer Science, pages 1-33,
Washington, D.C., 1990. IEEE Computer Society Press.

18

[30]

[31]

[32]

[33]
[34]

J. Magee and J. Kramer. Concurrency: State Models & Java Programs.
Wiley, 2000.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer-Verlag, 1992.

K. L. McMillan. A technique of state space search based on unfolding.
Formal Methods in System Design: An International Journal, 6(1):45-65,
January 1995.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

Robin Milner. Communicating and Mobile Systems: the mw-Calculus. Cam-
bridge University Press, 1999.

Kedar Sharad Namjoshi. Ameliorating the State Space Explosion Problem.
PhD thesis, UT Austin, 1998.

George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Langauges
(POPL ’97), pages 106-119, Paris, January 1997.

D. Peled. All from one, one for all: On model checking using representa-
tives. In Proceedings of Computer Aided Verification, pages 409-423, 1993.

Carl Adam Petri. Fundamentals of a theory of asynchronous information
flow. In Proc. of IFIP Congress 62, pages 386-390, Amsterdam, 1963.
North Holland Publ. Comp.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in CESAR. In Symposium on Programming, pages
337-351, 1982.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS.
In O. Grumberg, editor, Computer Aided Verification, volume 1254, pages
72-83. Springer Verlag, 1997.

Sandeep K. Shukla. Uniform Approaches to the Verification of Finite State
Systems. PhD thesis, SUNY, Albany, 1997.

Sandeep K. Shukla, Harry B. Hunt III, and Daniel J. Rosenkrantz. HORN-
SAT, model checking, verification and games. Technical Report TR-95-8,
State University of New York, Albany, 1995.

L. Tan and R. Cleaveland. Evidence-based model checking. In Proceedings
of Computer Aided Verification, 2002.

A. Valmari. A stubborn attack on state explosion. In Proceedings of Com-
puter Aided Verification, pages 25—42, 1990.

19

