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The ability to reason about the correctness of programs is no longer a subject

of primarily academic interest. With each passing day the complexity of software

artifacts being produced and employed is increasing dramatically. There is hardly

any aspect of our day-to-day lives where software agents do not play an often silent

yet crucial role. The fact that many of such roles are safety-critical mandates that

these software artifacts be validated rigorously before deployment. So far, however,

this goal has largely eluded us.

In this article we will first layout the problem space which is of concern to my

thesis, viz., automated formal verification of concurrent programs. We will present

the core issues and problems, as well as the major paradigms and techniques that have

emerged in our search for effective solutions. We will highlight the important hurdles

that remain to be scaled. The later portion of this article presents an overview of the

major techniques proposed in my thesis to surmount these hurdles. The article ends

with a summary of the core contributions of my dissertation.

Software Complexity

Several factors hinder our ability to reason about non-trivial concurrent programs in

an automated manner. First, the sheer complexity of software. Binaries obtained

from hundreds of thousands of lines of source code are routinely executed. The

source code is written in languages ranging from C/C++/Java to ML/Ocaml.

These languages differ not only in their flavor (imperative, functional) but also in

their constructs (procedures, objects, pattern-matching, dynamic memory allocation,

garbage collection), semantics (loose, rigorous) and so on.

This sequential complexity is but one face of the coin. Matters are further
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exacerbated by what can be called parallel complexity. State of the art software

agents rarely operate in isolation. Usually they communicate and cooperate with

other agents while performing their tasks. With the advent of the Internet, and

the advance in networking technology, the scope of such communication could range

from multiple threads communicating via shared memory on the same computer to

servers and clients communicating via SSL channels across the Atlantic. Verifying

the correctness of such complex behavior is a daunting challenge.

Software Development

Another, much less visible yet important, factor is the development process employed

in the production of most software and the role played by validation and testing

methodologies in such processes. A typical instance of a software development cycle

consists of five phases - (i) requirement specification, (ii) design, (iii) design validation,

(iv) implementation and (v) implementation validation. The idea is that defects found

in the design (in phase iii) are used to improve the design and those found in the

implementation (in phase v) are used to improve the implementation. The cycle is

repeated until each stage concludes successfully.

Usually the design is described using a formal notation like UML. The dynamic

behavior is often described using Statecharts (or some variant of it). The design

validation is done by some exhaustive technique (like model checking). However,

what matters in the final tally is not so much the correctness of the design but

rather the correctness of the implementation. Nevertheless, in reality, verification of

the implementation is done much less rigorously. This makes it imperative that we

focus more on developing techniques that enable us to verify actual code that will be
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compiled and executed. A major fraction of such code has been written, continues to

be written and, in my opinion, will continue to be written in C.

Present day code validation falls in two broad categories - testing and formal

verification. The merits and demerits of testing [33] are well-known and thus it is

unnecessary to dwell on them in detail here. It suffices to mention that the necessity

of being certain about the correctness of a piece of code precludes exclusive reliance on

testing as the validation methodology, and forces us to adopt more formal approaches.

Software Verification

State of the art formal software verification is an extremely amorphous entity.

Originally, most approaches in this field could be categorized as belonging to either

of two schools of thought: theorem proving and model checking. In theorem proving

(or deductive verification [27]), one typically attempts to construct a formula φ (in

some suitable logic like higher-order predicate calculus) that represents both the

system to be verified and the correctness property to be established. The validity

of φ is then established using a theorem prover. As can be imagined, deductive

verification is extremely powerful and can be used to verify virtually any system

(including infinite state systems) and property. The flip-side is that it involves a lot

of manual effort. Furthermore it yields practically no diagnostic feedback that can be

used for debugging if φ is found to be invalid.
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Model Checking

Where theorem proving fails, model checking [17] shines. In this approach, the

system to be verified is represented by a finite state transition system M (often

a Kripke structure) and the property to be established is expressed as a temporal

logic [29] (usually CTL [12] with fairness or LTL [28]) formula φ. The model checking

problem is then to decide whether M is a model of φ. Not only can this process

be automated to a large degree, it also yields extremely useful diagnostic feedback

(often in the form of counterexamples) if M is found not to model φ. Owing to these

and other factors, the last couple of decades have witnessed the emergence of model

checking as the eminent formal verification technique. Various kinds of temporal logics

have been extensively studied [21] and efficient model checking algorithms have been

designed [14, 34]. The development of techniques like symbolic model checking [7],

bounded model checking [4, 5], compositional reasoning [13] and abstraction [15] have

enabled us to verify systems with enormous state spaces [8].

One of the original motivations behind the development of model checking was to

extract and verify synchronization skeletons of concurrent programs, a typical software

verification challenge. Somewhat ironically, the meteoric rise of model checking

to fame was largely propelled by its tremendous impact on the field of hardware

verification. I believe that a major factor behind this phenomenon is that model

checking can only be used if a finite model of the system is available. Also since real

system descriptions are often quite large, the models must be extracted automatically

or at least semi-automatically. While this process is often straightforward for

hardware, it is much more involved for software. Typically software systems have

infinite state spaces. Thus, extracting a finite model often involves a process of

abstraction as well.
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Predicate Abstraction

For a long time, the applicability of model checking to software was somewhat

handicapped by the absence of powerful automated model extraction techniques. This

scenario changed with the advent of predicate abstraction [22] (a related notion called

data type abstraction used by systems like Bandera [2, 20] can be viewed as a special

instance of predicate abstraction). Even though predicate abstraction was quickly

picked up for research in hardware verification as well [18, 19], its effect on code

verification was rather dramatic. It forms the backbone of two of the major code

verifiers in existence, slam [1, 35] and blast [6, 24].

Predicates abstraction is parameterized by a set of predicates involving the

variables of the concrete system description. It also involves non-trivial use of theorem

provers (in fact the its original use [22] was to create abstract state transition graphs

using the theorem prover PVS). Thus it has triggered a more subtle effect - it has

caused the boundary between model checking and theorem proving to become less

distinct.

Challenge 1 Predicate abstraction essentially works by aggregating system states

that are similar in terms of their data valuations. It is insensitive to the events that a

system can perform from a given state. Can we develop other notions of abstraction

that leverage the similarities between system states in terms of their dynamic (event-

based) behavior? Such abstractions would complement predicate abstraction and lead

to further reduction of state-space size.
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Abstraction Refinement

Even with progress in automated model extraction techniques, verifying large software

systems remains an extremely tedious task. A major obstacle is created by the

abstraction that happens during model extraction. Abstraction usually introduces

additional behavior that is absent in the concrete system. Suppose that the model

check fails and the model checker returns a counterexample CE. This does not

automatically indicate a bug in the system because it is entirely possible that CE

is an additional behavior introduced by abstraction (such a CE is often called a

spurious counterexample). Thus we need to verify whether CE is spurious, and if

so we need to refine our model so that it no longer allows CE as an admissible

behavior. This process is called abstraction refinement. Since the extracted models

and counterexamples generated are quite large, abstraction refinement must be

automated (or at least semi-automated) to be practically effective.

The above requirements lead naturally to the paradigm called counterexample

guided abstraction refinement (CEGAR). In this approach, the entire verification

process is captured by a three step abstract-verify-refine loop. The actual details of

each step depend on the kind of abstraction and refinement methods being used. The

steps are described below in the context of predicate abstraction, where Pred denotes

the set of predicates being used for the abstraction.

1. Step 1 : Model Creation. Extract a finite model from the code using

predicate abstraction with Pred and go to step 2.

2. Step 2 : Verification. Check whether the model satisfies the desired property.

If this is the case, the verification successfully terminates; otherwise, extract a

counterexample CE and go to step 3.
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3. Step 3 : Refinement. Check if CE is spurious. If not we have an actual bug

and the verification terminates unsuccessfully. Otherwise we improve Pred and

go to step 1. Let us refer to the improved Pred as Pred. Then Pred should be

such that CE and all previous spurious counterexamples will be eliminated if

the model is extracted using Pred.

Challenge 2 Software model checking has focused almost exclusively on the

verification of safety properties via some form of trace containment. It would be

desirable to extend its applicability to more general notions of conformance such as

simulation and richer class of specifications such as liveness.

Challenge 3 The complexity of predicate abstraction is exponential in the number

of predicates used. The naive abstraction refinement approach keeps on adding new

predicates on the basis of spurious counterexamples. Previously added predicates

are not removed even if they have been rendered redundant by predicated discovered

subsequently. Can we improve this situation?

Compositional Reasoning

CEGAR coupled with predicate abstraction has become an extremely popular

approach toward the automated verification of sequential software, especially C

programs [6] such as device drivers [35]. However, considerably less research has

been devoted to-wards the application of these techniques for verifying concurrent

programs.

Compositional reasoning has long been recognized as one of the most potent

solutions to the state-space explosion which plagues the analysis of concurrent
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systems. Compositionality appears explicitly in the theory of process algebras such

as CSP [26], CCS [31] and the π-Calculus [32]. A wide variety of process algebraic

formalisms have been developed with the intention of modeling concurrent systems

and it is therefore natural [3] to investigate whether process algebraic concepts are

useful in the verification domain as well.

One of the key concepts arising out of the process algebraic research is the need to

focus on communication [31] when reasoning about concurrent systems. For instance

CSP advocates the use of shared actions as the principal communication mechanism

between concurrent components of a system. Moreover, shared action communication

can model message-passing C programs such as client-server systems and web-services

in a very natural manner.

Challenge 4 The CEGAR paradigm has been used with considerable success on

sequential programs. Can we also use it to compositionally verify concurrent

programs? What, if any, are the restrictions that we might need to impose in order

to achieve this goal?

State/event based Analysis

A major difficulty in applying model checking for practical software verification

lies in the modeling and specification of meaningful properties. The most common

instantiations of model checking to date have focused on finite-state models and either

branching-time (CTL [12]) or linear-time (LTL [28]) temporal logics. To apply model

checking to software, it is necessary to specify (often complex) properties on the

finite-state abstracted models of computer programs. The difficulties in doing so are

even more pronounced when reasoning about modular software, such as concurrent or
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component-based sequential programs. Indeed, in modular programs, communication

among modules proceeds via actions (or events), which can represent function calls,

requests and acknowledgments, etc. Moreover, such communication is commonly

data-dependent. Software behavioral claims, therefore, are often specifications defined

over combinations of program actions and data valuations.

Existing modeling techniques usually represent finite-state machines as finite

annotated directed graphs, using either state-based or event-based formalisms. It

is well-known that the two frameworks are interchangeable. For instance, an

action can be encoded as a change in state variables, and likewise one can equip

a state with different actions to reflect different values of its internal variables.

However, converting from one representation to the other often leads to a significant

enlargement of the state space. Moreover, neither approach on its own is practical

when it comes to modular software, in which actions are often data-dependent:

considerable domain expertise is then required to annotate the program and to specify

proper claims.

Challenge 5 Can we develop a formalism for succinctly expressing and efficiently

verifying state/event-based properties of programs? In particular we should be able

to verify a state/event system directly without having to translate it to an equivalent

pure-state or pure-event version. Further, can we combine state/event-based analysis

with a compositional CEGAR scheme?

Deadlock Detection

Ensuring that standard software components are assembled in a way that guarantees

the delivery of reliable services is an important task for system designers. Certifying
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the absence of deadlock in a composite system is an example of a stringent requirement

that has to be satisfied before the system can be deployed in real life. This is especially

true for safety-critical systems, such as embedded systems or plant controllers, that

are expected to always service requests within a fixed time limit or be responsive to

external stimuli.

In addition, many formal analysis techniques, such as temporal logic model

checking [12, 17], assume that the systems being analyzed are deadlock-free. In order

for the results of such analysis to be valid, one usually needs to establish deadlock

freedom separately. Last but not least, in case a deadlock is detected, it is highly

desirable to be able to provide system designers and implementers with appropriate

diagnostic feedback.

However, despite significant efforts, validating the absence of deadlock in systems

of realistic complexity remains a major challenge. The problem is especially acute in

the context of concurrent programs that communicate via mechanisms with blocking

semantics, e.g., synchronous message-passing and semaphores. The primary obstacle

is the well-known state space explosion problem whereby the size of the state space

of a concurrent system increases exponentially with the number of components.

As mentioned before, two paradigms are usually recognized as being the most

effective against the state space explosion problem: abstraction and compositional

reasoning. Even though these two approaches have been widely studied in the

context of formal verification [15, 23, 25, 30], they find much less use in deadlock

detection. This is possibly a consequence of the fact that deadlock is inherently non-

compositional and its absence is not preserved by standard abstractions. Therefore, a

compositional CEGAR scheme for deadlock detection would be especially significant.

Challenge 6 In the light of the above discussion, can we develop a compositional
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CEGAR-based procedure for deadlock detection?

Summary

This dissertation presents a framework for verifying concurrent message-passing C

programs with specific emphasis on addressing the challenges enumerated earlier in

this article. Among other things, we addresses Challenge 5 by enabling both state-

based and action-based properties to be expressed, combined, and efficiently verified.

To this end we propose the use of labeled Kripke structures (LKSs) as the modeling

formalism. In essence, an LKS is a finite state machines in which states are labeled

with atomic propositions and transitions are labeled with events (or actions). In the

rest of this article we will refer to a concurrent message-passing C program as simply

a program.

Our state/event-based modeling methodology is described in two stages. We first

present a semantics of programs in terms of LKSs. We then develop a generalized form

of predicate abstraction to construct conservative LKS abstractions from programs

in an automated manner. We provide formal justification for our claim that the

extracted LKS models are indeed conservative abstractions of the concrete programs

from which they have been constructed.

Subsequently we address Challenge 2 and Challenge 4 by presenting a

compositional CEGAR procedure for verifying simulation conformance between a

program and an LKS specification. We define the notion of witness LKSs as

counterexamples to simulation conformance and present algorithms for efficiently

constructing such counterexamples upon the failure of a simulation check. We

next present algorithms for checking the validity of witness LKSs and refining the
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LKS models if the witness is found to be spurious. The entire CEGAR procedure

is compositional in the sense that the model construction, witness validation and

abstraction refinement are performed component-wise.

Moving on, we propose the use of predicate minimization as a solution to

Challenge 3. Our approach uses pseudo-Boolean constraints to minimize the number

of predicates used for predicate abstraction and thus eliminates redundant predicates

as new ones are discovered. We also present an action-guided abstraction refinement

scheme to address Challenge 1. This abstraction works by aggregating states based on

the events they can perform and complements predicate abstraction naturally. Both

these solutions are seamlessly integrated with the compositional CEGAR scheme

presented earlier.

We also present the logic SE-LTL, a state/event derivative of the standard linear

temporal logic LTL. We present efficient SE-LTL model checking algorithms to help

reason about state/event-based systems. We also present a compositional CEGAR

procedure [9, 10, 16] for the automated verification of concurrent C programs against

SE-LTL specifications. SE-LTL enriches our specification mechanism by allowing

state/event-based liveness properties and is thus relevant to both Challenge 2 and

Challenge 5.

Finally, we address Challenge 6 by presenting a compositional CEGAR scheme

to perform deadlock detection on concurrent message-passing programs [11]. In

summary, the demand for better formal techniques to verify concurrent and

distributed C programs is currently overwhelming. This dissertation identifies some

notable stumbling blocks in this endeavor and provides a road map to their solution.
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