
Integrating Publish/Subscribe into a Mobile Teamwork Support Platform

S. Chaki3 P. Fenkam1 H. Gall1 S. Jha2 E. Kirda1 H. Veith1

1 Technical University Vienna 2 University of Wisconsin 3 Carnegie Mellon University

Information Systems Institute Computer Sciences Department Department of Computer Science

A-1040 Vienna, Austria Madison, WI 53706 Pittsburgh PA, 15213-3891

[fenkam,gall,kirda]@infosys.tuwien.ac.at jha@cs.wisc.edu chaki@cs.cmu.edu

veith@dbai.tuwien.ac.at

Abstract

Software support for distributed and mobile collabora-
tion is increasingly becoming a technological key issue in
large and distributed enterprises. As employees are trav-
eling or working in remote and changing locations they
should be able to attend to business tasks regardless of their
physical location, while using different computing devices.
A requirement analysis involving case studies for two global
enterprises resulted in the definition of the MOTION archi-
tecture to support distributed mobile teamwork.

In this paper we argue that publish-subscribe (P/S) is a
suitable paradigm to effectively support mobile teamwork.
Based on the requirements and the design principles of the
MOTION architecture, we contrast the application-specific
requirements for P/S components with the capabilities of
existing P/S middleware. On the example of the P/S system
SPEAR, we demonstrate how P/S components can be inte-
grated into a system that supports mobile teamwork. We
present a distributed matching algorithm which combines
the high performance of the SPEAR middleware with the
expressive power of XQL subscriptions. Our results are
substantiated by experimental results that demonstrate the
effectiveness of our integration methodology.

1. Introduction

Large and global organizations are increasingly faced
with the problem of effectively supporting and fostering
collaboration between their employees and partners. This
problem is exacerbated by factors such as mobility of peo-
ple and distributedness of information. For example, em-
ployees often visit departments inside or outside their or-
ganization, but still need to collaborate on different arte-
facts, e.g., documents and code. It is widely recognized that
supporting nomadic workers is a key business requirement

for large enterprises [21]. Hence, there is a growing need
for a comprehensive software infrastructure which enables
the employees to work together by locating information and
sharing it with their collaborators.

In the European IST project MOTION (MObile
Teamwork Infrastructure for Organizations Networks) a
subgroup of the current authors contributed to the design
and implementation of a platform for mobile teamwork sup-
port. The design of the MOTION infrastructure is based on
the requirements elicited from two case study enterprises in
the MOTION consortium. The platform for distributed and
mobile collaboration is called Teamwork Services (TWS),
and includes capabilities such as locating distributed busi-
ness documents through peer-to-peer searches, advanced
subscription and notification, community building, and mo-
bile information sharing and access.

Publish/subscribe (P/S) is increasingly accepted as one
of the most prevalent paradigms that efficiently support the
construction of large scale and complex distributed software
systems in general, and loosely coupled ones in particular
[7, 22]. In the P/S style, components interact by subscribing
to and publishing messages. Mechanisms to support the P/S
style are found in commercial toolkits (e.g, Softbench [8],
ToolTalk [23], TIB/Rendezvous [25]), communication stan-
dards (e.g., Corba [5]), integration frameworks (e.g., Jav-
aBeans [11]), and programming environments. As the re-
quirements to P/S systems are growing both with respect
to performance and subscription semantics, a subgroup of
the current authors have developed the prototype P/S sys-
tem SPEAR [3] which allows for high expressive power in
the subscription language while achieving experimentally
verified high scalability. A brief background on SPEAR is
provided in Section 3.

A closer look at P/S makes clear that the P/S style is
suitable for communication between nomadic users: Using
a P/S mechanism, a user declares interest in certain kinds
of messages in terms of a subscription, and will receive no-
tifications when events matching the subscription actually

1

occur. In the context of MOTION, subscriptions may refer
to events such as “a shared document has changed”, “a criti-
cal piece of information has become available”, or “process
participant X is currently online and available for a meet-
ing”. The P/S middleware is the connector between the pub-
lishers and the subscribers. The communication between
the publishers and subscribers is completely asynchronous.
In particular, (i) a publisher does not need to be informed
about the presence of the subscribers before sending a mes-
sage, and (ii) it is always possible to plug-in a component
in a system whether it is running or not. These two argu-
ments make the P/S paradigm an intriguing candidate for
mobile computing applications. The conventional concept
of remote calls (RPC/RMI) is not any more adequate; for
example, they require that all parties involved in a commu-
nication session need to be present before the communica-
tion can take place. It is therefore not possible to account
for disconnectedness (at least, not in a straightforward man-
ner) which however is inherent to mobile computing. We
clearly see that the P/S style has a big potential to be used
in collaborative settings such as MOTION.

In this paper, we investigate the integration of P/S sys-
tems into collaborative frameworks in a systematic manner,
and report on our experience with integrating the P/S sys-
tem SPEAR into the MOTION framework.

In Section 2, we discuss the MOTION infrastructure for
supporting mobile teamwork. Using our experience from
two case studies, we first distill the specific requirements for
P/S systems in the context of mobile teamworks in Section
2 and 3. The requirements for the P/S system include the
postulate that the language to express subscriptions be rich
enough so that participants of a mobile team can construct
subscriptions easily. A natural choice for the description
language is the XML query language XQL. Due to perfor-
mance and scalability requirements, however, existing P/S
systems use less expressive languages for subscription. Be-
ing among the most expressive well-scalable P/S systems
available, SPEAR uses the full expressive power of Boolean
formulas as the core of its subscription language.

To bridge the semantic gap between these systems, we
propose a distributed three-tier architecture in Sections 4
and 5. First, the language used by the users is translated
into an intermediate language, which is designed as to be
isomorphic to a fragment of XQL. The intermediate lan-
guage is then mapped to the concrete language of the P/S
system being integrated. Using our three-tier architecture,
we have integrated the SPEAR P/S system into the MOTION
architecture, and performed first practical experiments. The
three-tier architecture enables us to integrate alternative P/S
systems into the MOTION infrastructure easily.

The crucial step in our approach is the translation from
XML/XQL to the intermediate language. This step is
approximative to the effect that the constraints expressed

TWS API

Team Work Services
Business Specific Services

Presentation Layer

Communication Middleware

Distributed
Search

Publish/
Subscribe

Artifact
Management

Peer−to−Peer File Sharing

TWS
Layer Access

Control

User
Management Management

Community
Repository Messaging

DUMAS

Event based System

Figure 1. The MOTION Architecture

by the users’ subscriptions may be weakened, and thus a
small number of unwished events – which we call negative
residue events – may be forwarded to the subscribers. To
assure an overall exact matching procedure, the subscribers
are equipped with a simple matching software which filters
out negative residue events. Our experiments in Section 6
demonstrate that the error introduced by the approximation
is indeed very small, and thus the workload incurred by our
distributed matching strategy is negligible. In conclusion
the combination of MOTION and SPEAR satisfies our re-
quirements, and shows good performance in practice.

2. Services for supporting mobile teamwork

MOTION was developed to support mobile teamwork in
two partner organizations. The main goals were (i) to sup-
port one of the partner organizations in locating technical
documents and expertise in its widely distributed sites, and
(ii) to support the other organization in organizing review
meetings between mobile and nomadic users distributed
around the globe.

The MOTION system typically consists of desktop com-
puters, notebooks and PDAs all of which are called peers.
Usually, every peer has a local repository where users can
store shared documents (called artefacts in MOTION). In
order to enable searches by other users, XML Meta-data
(called profiles in MOTION) about each artefact is also
stored. Some clients such as WAP-enabled mobile phones
and Web browsers are thin clients that do not host a reposi-
tory or service, but access them remotely.

The MOTION system has a three-layered architecture
shown in Figure 1. The bottom layer, the communication
middleware, foresees basic communication services such
as publish-subscribe mechanisms, peer-to-peer file sharing
and distributed searches. Previously, we have used the Peer-
Ware [17] system as the communication middleware infras-
tructure which we have currently replaced by SPEAR as re-
ported in this paper.

The middle layer in the architecture, the Teamwork Ser-

2

vices (TWS) layer, is built using the primitives provided
by the communication middleware. This layer is respon-
sible for the integration of the main components of the sys-
tem (e.g., access control, user and community management,
repository). TWS provides an Application Programming
Interface (API) to build services, such as storing and retriev-
ing artefacts from the local and remote repositories, creating
and managing virtual communities, and sending and receiv-
ing messages from other users. The presentation layer, the
top layer of the architecture, provides the user interface to
various MOTION services and is built using the TWS API.
More details on the architecture developed by the MOTION
consortium can be found in [12].

2.1. Publish-Subscribe in MOTION

The publish-subscribe paradigm has been identified as an
architectural style that facilitates mobility and high decou-
pling of components [6, 26]. The publish-subscribe com-
ponent of the TWS is to provide a uniform and consistent
view of events to the application layer. A P/S system en-
ables components to subscribe and receive notification of
relevant events. Components can react to events by specify-
ing callback methods that are invoked by the system when-
ever an event matching a subscription occurs.

We selected to use the XML query language XQL [20]
as the language to express subscriptions at the presenta-
tion layer. In general, XML query languages give the busi-
ness specific services the capability to query complex XML
events and data. In particular, we chose XQL because it
was stable at the inception of the project. Two classes of
subscriptions exist in the MOTION system: system and user
subscriptions. User subscriptions are initiated by users. No-
tification to the users are sent using various means, such as
special motion messages and e-mail. System subscriptions
generate events that inform components of system-specific
activities, such as creation of a new MOTION user.

Based on our experience from the case studies, we have
distilled the requirements for a P/S system in the context of
mobile teamwork into the following list:

1. Efficient matching mechanism. Published events are
matched with subscriptions by a P/S system. Since the
number of subscriptions will be high in a mobile team-
work setting, such a matching has to scale to a large
number of subscriptions.

2. Removing subscriptions. If users are able create sub-
scriptions themselves, they may accumulate many sub-
scriptions. However, some of these subscriptions will
become obsolete over time. Since all subscriptions
need to be matched against messages, these obsolete
subscriptions will adversely effect the efficiency of the

matching algorithm. Hence, there is a need to specify
expiration times with subscriptions.

3. Authorization for P/S In collaborative applications,
access restrictions and encryption mechanisms are
needed to protect shared information. For example, it
may not be desirable to allow every employee to sub-
scribe to a specific event, such as an impending merger
with another company.

4. Expressive subscription language The subscription
languages provided by most existing P/S systems are
often too simple to express application-level subscrip-
tions. Subscription languages for P/S systems need to
be designed that enable application developers to build
more flexible and complex applications. A previous
empirical attempt at using the Khronika system iden-
tified a lack of expressive subscription languages as a
problematic major issue [13].

3. The SPEAR P-S Middleware

In this section we provide a short background on the P/S
system SPEAR, and discuss how Spear satisfies the require-
ments described in Section 2.1. The SPEAR middleware im-
plements the BDD [2] based matching algorithm presented
in [3]. We will give a brief overview of the SPEAR archi-
tecture. The libraries and documentation as well as various
APIs can be found at the SPEAR website.1 The implemen-
tation of the broker in SPEAR is multi-threaded; there are
four components of the broker that execute in parallel and
communicate using thread-safe queues.

• The frontend is responsible for accepting client con-
nections and requests.

• The subscription updater periodically updates the set
of subscriptions based on client requests.

• The publication matcher matches publications
against current subscriptions and generates notifica-
tions.

• The notifier delivers these notifications to the appro-
priate clients. To increase the degree of concurrency
of the broker, this component is further composed of a
main notifier and a set of worker notifiers.

Let us consider how well SPEAR meets the requirements
described in the previous section. As demonstrated before,
the BDD-based filtering algorithm used in SPEAR is very
efficient [3] (this addresses requirement 1). For example,
SPEAR only takes 15.57 seconds to match 1000 publica-
tions with 100,000 subscriptions (see [3, Section 8]). The

1http : //www.cs.cmu.edu/∼chaki/spear

3

BDD representation of subscriptions heavily exploits the
commonality between subscriptions; such commonalities
are typical for subscriptions in our context. By associating
expiration times with subscriptions SPEAR meets require-
ment 2. Moreover, the BDD representation of subscriptions
lends itself to deletes in an elegant manner (see [3]) for de-
tails).

Currently, SPEAR is not equipped to address requirement
3, i.e., authorization. We are in the process of designing an
authorization mechanism for SPEAR.

For performance reasons, P/S systems tend to have weak
expressive power, i.e., only a limited number of properties
can be formulated as subscriptions. Teamwork services ori-
ented subscriptions, however, are more complex than well-
scalable P/S systems are able to support. Thus, we need to
expect a semantic gap between the subscription languages
at the level of the TWS and the P/S middleware. We have
chosen to work with SPEAR because SPEAR combines a
well scalable P/S system with a relatively powerful sub-
scription language. Nevertheless, requirement 4 is a criti-
cal issue which we will need to consider in the following
sections.

4. Translation Between P/S Systems

We will now consider the translation between XQL and
the SPEAR subscription language. As mentioned above,
there is a semantic gap between these formalisms: A SPEAR

event essentially is a list of pairs (attribute,value) where an
attribute obtains at most one value per event. XML docu-
ments however, allow for repeated occurrences of the same
element, cf. Listing 1. Consequently, the XML query lan-
guage XQL supports existential and universal quantifica-
tion. This is neither the case for SPEAR, nor for other well-
scaling P/S systems. Since this particular problem is likely
to occur in similar forms in other frameworks, we will con-
sider semantic gaps in P/S systems in a systematic manner.

Let L denote a set of events, and Q a set of queries. A
P/S system for L and Q is described by a total matching
function m : L×Q → {true, false}. Thus, a P/S system is
given by a triple P = (L,Q,m). Let Pa = (La,Qa,ma) and
Pb = (Lb,Qb,mb) be two P/S systems. A translation from
Pa to Pb is described by two total functions γL : La → Lb,
γQ : Qa → Qb. The translation is exact if

ma(e,q) = true ⇐⇒ mb(γL(e),γQ(q)) = true.

The translation is efficient, if γL and γQ are fast to compute,
and don’t increase the size of their arguments by more than
a constant factor.

The main problem in many practical cases is that this
theoretically appealing simple framework does not apply
directly, because no well-behaved translation exists. In par-

ticular this holds true in the case of translating XML/XQL
to SPEAR.

We will therefore suggest to use a distributed match-
ing algorithm where the translation approximates a well-
behaved translation in the following way:

ma(e,q) = true =⇒ mb(γL(e),γQ(q)) = true.

The effect of such an approximative translation is that the
peers will receive more events than they subscribed for. We
will therefore need an additional matching algorithm on the
individual peers which filters out the events actually sub-
scribed for. This approach has two important consequences:

• It is necessary that the approximative translation is a
good approximation, in the sense that there is a low
ratio of negative residue events which are not excluded
by the principal message broker.

• If this ratio indeed is good, then the workload for both
the peer and the network are tolerable. Thus, the qual-
ity of the presented solution depends directly on the
quality of the approximative translation.

5. Distributed Three-Tier Architecture

Distributed Architecture. Following the arguments of
Section 4, we propose a distributed architecture that ad-
dresses the expressive gap between the top and middle tier.
P/S systems are typically deployed in distributed environ-
ments. In such environments, there are subscribers, publish-
ers, and the P/S middleware including the P/S dispatcher.
The tasks of the P/S middleware include storing subscrip-
tions, matching subscriptions against incoming events, and
distributing notifications to interested subscribers, while the
subscriber typically plays a passive role, subscribing for as
well as receiving events.

In the previous section we discussed the principal ex-
pressive gap which arises when the required subscription
language is more expressive than the languages which can
be efficiently handled by the middleware. To address this
expressive gap we give more responsibility to the sub-
scribers. Instead of simply sending the subscription query
to the P/S dispatcher, each subscriber also locally stores
this subscription. In this new architecture, the subscription
proxy stores any subscription in the local repository before
sending it to the remote dispatcher. Whenever such a sub-
scriber receives a notification from a dispatcher, it extracts
the corresponding XQL query from the local repository and
performs the matching. The matching performed by the
subscriber is done by an exact matching algorithm; this lo-
cal matching however, does not have to be highly efficient,
as the rate of incoming events is low, see also Section 6.

4

Proxy
Notification

L
oc

al
 R

ep
os

ito
ry

Communication

Application Layer

Proxy
Subscription

subscriptionnotification

Figure 2. An Intelligent Event Based Client

Figure 2 depicts the architecture of such a subscribing
peer. In contrast to this, most P/S systems such as Siena [4]
and Elvin [24] have subscribers which only consist of a
communication component.

Three-tier Translation. We will now describe our trans-
lation from XQL to SPEAR. We will construct this transla-
tion using an intermediate representation. We have chosen
this approach to achieve greater flexibility, and facilitate fu-
ture experiments with alternative P/S systems. In our soft-
ware, this approach is reflected by a three-tiered architec-
ture, where the top tier is the P/S interface on the level of
XML/XQL, the intermediate layer is an abstract P/S system
which we describe below, and the bottom layer is the P/S
middleware, i.e., SPEAR in our case. Due to space restric-
tions, we will abstract from formal and syntactic details of
the translation and the subscription languages, and focus on
the principal ideas, supported by examples.

Top Tier. We use XML as the event language visible to
the user. An example of an XML element is provided in
Listing 1. Recall that XML elements are composed of other
elements (called child nodes), values, and associated at-
tributes.

�

�

�

�

1 <User>
2 <Sex>’female’</Sex>
3 <Address> <Zip>’1050’</Zip>
4 <City>’Wien’</City></Address >
5 <Address> <Zip>’5473’</Zip>
6 <City>’Milano’</City></Address >
7 </User>

Listing 1: An Example of XML element

XML elements can be queried using languages such as
XSL, XQL [20], XPath, XQuery [1]. We chose XQL (the
XML Query language) as our subscription language at the
top tier because it was the most mature language at the time
the MOTION project started. However, our work can easily
be extended to other query languages. XQL provides capa-
bilities for identifying classes of nodes, boolean logic (and,
or, equivalence, quantifiers), comparison of literals and vec-
tors, casting of literals, filters, indexing into collections of
nodes, methods for advanced manipulation of collections,
and subscripts. XQL operators are divided into two classes:
default operators and user-defined operators. Examples of
default operators are comparison operators (gt,lt,
...) and boolean operators. The user can define additional
operators, such as operators on strings.

Due to space restrictions, we cannot give a thorough in-
troduction to XQL; Listing 2 contains a simple example of
an XQL query. In XQL, one describes a subclass of nodes
using notation similar to the one used to specify directo-
ries in file systems. Listing 2, line 1 refers to role elements
contained in user elements. Similarly, line 2 returns user
nodes which have some role but whose address has a zip
code greater than 1040. We can further refine the query by
stating that the user be a female (line 3-4), or a female man-
ager, s.t. the zip codes of all her addresses are greater than
1040 (line 5-6). Note that the query now requires quanti-
fiers.

�

�

�

�

1 ./User/Role
2 ./User?[./Address/Zip gt 1040]/Role
3 ./User?[./Address/Zip gt 1040 and
4 Sex=’female’]/Role
5 ./User?[(all ./Address/Zip gt 1040) and
6 Sex=’female’][any ./Role=’manager’]

Listing 2: Examples of XQL Queries

As mentioned above, events are XML elements, and the
subscriptions are expressed by XQL queries which evaluate
to true or false. In our implementation we have used the
XQL engine developed by the GMD [9]. Calling this spe-
cific matching function xqlmatch, we obtain a P/S system
(XML,XQL,xqlmatch) at the top tier.

The Middle Tier. The language at the middle tier is de-
signed as an intermediate level between XML and attribute-
based formalisms such as SPEAR. The intermediate event
and subscription languages are called IEL and ISL (inter-
mediate event/subscription language) respectively. XML
elements are translated into IEL by collecting information
at analogous XML paths in sets. Consider the transforma-
tion from Listing 1 into Listing 3. Here, both ZIPs are col-
lected into one set, and so are both city names. Note

5

�

�

�

�

1 {User |->{},
2 User/Sex |->{’female’},
3 User/Address/Zip |->{1050,5473},
4 User/Address/City |->{’Milano’,’Vienna’}
5 User/Serialized |->{’ptrtrtb545hr74’}}

Listing 3: An IEL Element

however that we lose the information that 1040 is a ZIP in
Vienna. This is exactly where our translation becomes ap-
proximative. Approximation cannot be avoided, since one
XML element may contain an arbitrary number of subele-
ments (e.g. addresses) with the same name, but an attribute-
based language cannot express this. IEL is intermediate in
the sense that it is an attribute-based language such as the
SPEAR event language SEL, but allows to associate an at-
tribute with a set of values.

The intermediate subscription language ISL is a re-
stricted subset of XQL which is similar in expressive power
to the subscription language used by SPEAR. ISL is the
fragment of XQL which does not contain quantifiers, and
where all paths in the query are explicitly stated, i.e., there
are no filters in the queries. Note however that ISL inher-
its from XQL the capability to define new operators which
are not necessarily definable in SPEAR, as explained be-
low. Predefined operators are comparison operators (such
as less than and greater) and boolean operators. The
abstract P/S system at the middle tier is referred to as
(IEL, ISL,islmatch).

When translating XQL queries to approximate ISL
queries, special care has to be taken for the quantifiers. We
transform any universally quantified XQL subquery into a
quantifier-free subquery which holds true if either the quan-
tified attribute does not exist at all, or one of its occur-
rences satisfies the subquery. For instance, the XQL query
all x lt 5 is translated to ((not x) or (x
lt 5)), and any x eq 8 is translated to x eq
8. Due to space restrictions, we defer a formal definition
to the full version of the paper; recall however that we only
have to make sure that the translation is an approximation
which lets through more events than the original XQL sub-
scription; the exact matching is taken care of by the sub-
scribing peer, and the quality of the translation described is
reflected by the ratio of negative residues in the experimen-
tal results.

The Bottom Tier. Our bottom tier consists of the P/S
system SPEAR, given by (SEL,SSL,spearmatch).
The subscription language SSL allows to express
Boolean combinations of properties of attributes, e.g.
ZIP gt 1004 and city eq “Vienna′′. Details about
the event language SEL and SSL can be found in [3].

We first show how to translate IEL to SEL. Essentially,

Operator IEL expression SSL expression
contains x $contains$ ’v’ x $contains$ ’v’
starts with x $startsw$ ’v’ x $contains$ ’#v’
equals x eq ’v’ x$ contains$ ’#v#’
ends with x$endsw$ ’v’ x $contains$ ’v#’
defines x x $contains$ ’#’

Figure 3. Mapping operators on strings.

Operator IEL expression SSL expression
< x lt a xmin lt a
> x gt a xmax gt a
≤ x le a xmin le a
≥ x ge a xmax ge a
= x eq a x $contains$ ’#a#’
defines x x $contains$ ’#’

Figure 4. Mapping numeric operators.

elements of SEL can be seen as maps from attribute names
to values. On the other hand, IEL elements map attribute
names to sets of values. We therefore encode sets of values
in SEL by concatenating possible attribute values into one
string. A sentinel (in our case #) is inserted between val-
ues of the set. The SEL element corresponding to the IEL
element shown in Listing 3 is shown in Listing 4.

�

�

�

�

1 { User |-> ’##’,
2 User/Sex |-> ’#female#’,
3 User/Address/Zip |-> ’#1050##5473#’,
4 User/Address/Zipmin |-> 1050,
5 User/Address/Zipmax |-> 5473,
6 User/Address/City |-> ’#Milano##Wien#’
7 User/Serialized |->’#ptrtrtb545hr74#’}

Listing 4: A SEL element.

Numeric values have to be treated in a special manner.
For an IEL expression such as x |->{1,5,2,7}, the trans-
lation algorithm also generates entries for the minimum and
the maximum value in the set. Hence, x |->{1,5,2,7}
is transformed to {x |->#1##5##2##7#, xmin |-> 1,
xmax |->7}.

We will now describe how to translate ISL to SSL. Ta-
ble 3 shows how to map operators on strings and Table 4
describes the transformation of operators on numeric val-
ues. Recall that the sentinel separating the different values
is ’#’.

In the translation from (IEL, ISL,islmatch) to
(SEL,SSL,spearmatch) one of the main difficulties is
caused by the user defined additional operators of ISL
which were inherited from XQL. Here we again make
an approximative translation: Since the new operators

6

Total Matched Subs. Res. - Res. + Res.
20,000 1100 15.3% 3.6% 11.8%
15,000 850 12.2% 3.2% 10.2%
10,000 520 12% 3.1% 8.9

5,000 200 6% 2.7% 3.3%

Figure 5. Residue percentages.

cannot be expressed in SPEAR directly, we replace their
occurences by true, if they occur under a positive number
of negations, and by false, if they occur under a negative
number of negations. The effect of this construction is
that the SPEAR subscription will be less constrained than
the original subscription, as required in Section 4. Note
however, that this strategy is only successful if the new
operator does not occur too often; otherwise, it is a better
strategy to extend the middleware as to handle the operator
explicitly. This is foreseen in the SPEAR API, but COTS
middleware may not support such an extension.

6. Experimental Results

Experiments demonstrating the general efficiency of
SPEAR were provided in [3]. In this section we experi-
mentally evaluate our distributed matching solution. Recall
that in a certain sense, the load of the matching algorithm
is partially distributed to the subscribers. However, we will
experimentally demonstrate that the additional load on the
subscriber is negligible. This is a very important issue be-
cause subscribers might be devices with limited computing
power such as PDAs.

In the remainder of the paper, any event forwarded to
the paper will be called a residue. Positive residues (resp.
negative residues) are events that (resp. do not) satisfy the
subscriber subscription.

For our experiment, subscriptions were generated based
on the XML profiles (user, community, and artefact profiles)
available in the MOTION prototype. Publications were ran-
domly chosen among the artefact profiles. Table 5 shows
the results of our experiment. The first column is the total
number of subscriptions, the second column is the number
of subscriptions matched against a fixed set of publications
(1000 in our experiments) by SPEAR, the third column is
the number of residues obtained, while the fourth and fifth
columns give the number of positive and negative residues.
All percentages are given relative to the number of matched
subscriptions (second column).

One of the most important metrics is the ratio between
the number of negative and positive residues. On average,
the number of positive residues was three times the number
of negative residues. This clearly demonstrates that the net-
work traffic overhead caused by sending negative residues

to the subscribers can be neglected. In our case, on average
only 3.15% of the matched events were negative residues.

Suppose that the 1000 events/publications were created
in a system with 1000 peers within one minute. Considering
the experimental setting for the case of 20000 subscriptions,
this means that each subscriber has 20 subscriptions, which
is a realistic assumption. In such an environment, on av-
erage each peer receives 66 notifications per hour, of which
only 2 to 3 (i.e., 3.16%) have to be discarded per hour. Thus,
the workload for the peers/clients is indeed negligible, and
we expect the system to scale well to higher numbers of
peers.

To evaluate the real-life performance in an industrial set-
ting, MOTION is currently being deployed by two large or-
ganizations. We continue to collect statistics on the perfor-
mance of MOTION and have observed that our architecture
indeed scales as the number of subscriptions and publica-
tions increase.

7. Related work

There are three general areas of related work: user
awareness in collaborative environments, P/S middleware
and mapping of XML-based languages to languages sup-
ported by existing P/S systems

User awareness has been identified as a key issue for
collaborative tools. Various solutions exist [13, 16, 18, 19]
but most of them do not explicitly tackle the mobility issue.
Furthermore, they have not been designed with the goal of
scaling to a large organization with thousands of employ-
ees. We believe that the use of the P/S architectural style is
the key to addressing mobility and scalability.

Even though it is widely believed that the P/S paradigm
is well suited for mobile computing, not all of the existing
implementations meet our requirements. The event and sub-
scription languages have to be expressive so that the users
can write subscriptions easily. However, if the languages
are too expressive, then the efficiency of the matching al-
gorithm is adversely affected. Therefore, it is very impor-
tant to find the right balance between expressiveness and
efficiency. We consider systems at the two extremes. For
instance, the subscription language of Elvin [24] is very ex-
pressive and allows all expressions that the C programming
language allows. However, not much is known about the
efficiency of the matching algorithm in Elvin. Given the ex-
pressiveness of the subscription language used in Elvin, one
needs to assume that designing an efficient matching algo-
rithm will be a challenge. Siena [4] uses a restricted set of
XML, called SXML, as its language for expressing events.
However, SXML is very restrictive. For instance, although
events published by applications might have child nodes
with the same name, only one of them is used for matching.
Moreover, the fragment of XPath supported by the SXML

7

query language neither allows filters nor quantifiers. There-
fore, the languages used in Siena are not very expressive,
but admit efficient matching procedures. We believe that
SPEAR provides the right balance between expressiveness
and efficiency. Experimental results bolster this claim.

We also proposed a distributed three-tier architecture for
integrating pub-sub systems, and suggested approximative
matching algorithms for an intermediate matching step. We
believe that both of these are novel contributions.

8. Conclusion and Future Work

Based on a requirement analysis for publish-subscribe
middleware within a system supporting mobile teamwork,
we presented a three-tier architecture which enables easy
integration of publish-subscribe systems into the MOTION
infrastructure. To address the semantic gap between the ex-
pressive power of well-scalable publish-subscribe systems
and the requirements of mobile teamwork, we presented
a novel distributed two-level matching algorithm. Exper-
imental results demonstrate clearly that the presented ap-
proach is feasible and effective for 1000 peers, and can be
expected to scale up for large numbers of peers. We are
currently investigating security issues of publish-subscribe
systems in the context of mobile teamwork; this is the main
requirement not yet addressed in the current paper.

References

[1] S. Boag, D. Chamberlin, M. Fernadez, D. Florescu, J. Ro-
bie, J. Simeon, and M. Stefanescu. XQuery 1.0: An
XML Query Language (XQL). Technical report, World
Wide Web Consortium, April 2002. Available from
http://www.w3.org/TR/xquery.

[2] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transaction on Computers, 35(8):677–
691, 1986.

[3] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Ef-
ficient Filtering in Publish/Subscribe Systems using Binary
Decision Diagrams. In Proceedings of the 21st International
Software Engineering Conference (ICSE), Toronto, Canada,
May 2001.

[4] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Trans-
actions on Computer Systems, 3(19):332–383, August 2001.

[5] The Common Object Request Broker: Architecture and
specification. OMG Document Number 91.12.1, December
1991. Revision 1.1 (Draft 10).

[6] G. Cugola and E. D. Nitto. Using a Publish/Subscribe Mid-
dleware to Support Mobile Computing. In Proceedings
of the Workshop on Middleware for Mobile Computing, in
association with IFIP/ACM Middleware 2001 Conference,
Heidelberg, Germany, November 2001.

[7] D. Garlan, G. Kaiser, and D. Notkin. Using tool abstraction
to compose systems. IEEE Computer, 25(6), June 1992.

[8] C. Gerety. HP Softbench: A new generation of soft-
ware development tools. Technical Report SESD-89-25,
Hewlett-Packard Software Engineering Systems Division,
Fort Collins, Colorado, November 1989.

[9] GMD. XQL IPSI, http://xml.darmstadt.gmd.de/xql/, 2002.
[10] C. B. Jones. Systematic software development using VDM.

Prentice-Hall International, 1990. 2nd edition.
[11] H. Jubin. Javabeans by example. Upper Saddle River: Pren-

tice Hall, 1998.
[12] E. Kirda, P. Fenkam, H. Gall, and G. Reif. A service

architecture for mobile teamwork. In Proceedings of the
14th International Conference on Software Engineering and
Knowledge Engineering (SEKE), July 2002.

[13] L. Lövstrand. Being selectively aware with the khronika
system. In Proceedings of the 6th European Conference
on Computer Supported Cooperative Work-ECSCW’91,
September 1991.

[14] S. Microsystems. Java message service, version 1.0.2.
http://www.javasoft.com, November 1999.

[15] J. Morris. A theoretical basis for stepwise refinement and the
programming calculus. Science of Computer Programming,
1987. 2nd edition.

[16] T. Nomura, K. Hayashi, T. Hazama, and S. Gudmundson.
Interlocus: Workspace configuration mechanisms for activ-
ity awareness. In Proceedings of the 1998 ACM Conference
on Computer Supported Cooperative Work, Seattle, pages
19–28, November 1998.

[17] G. P. Picco and G. Cugola. PeerWare: Core Middleware
Support for Peer-To-Peer and Mobile Systems. Technical
report, Dipartimento di Electronica e Informazione, Politec-
nico di Milano, 2001.

[18] W. Prinz. Nessie: An awareness environment for col-
laborative settings. In Proceedings of the 6th European
Conference on Computer Supported Cooperative Work-
ECSCW’99, pages 391–410, September 1999.

[19] K. O. Sandor and A. Schmer. Supporting social aware-
ness @ work, design and experience. In Proceedings of the
1996 ACM Conference on Computer Supported Cooperative
Work, Boston, 1996.

[20] D. Schach, J. Lapp, and J. Robie. XML Query
Language(XQL). Technical report, World Wide
Web Consortium, September 1998. Available from
http://www.w3.org/TandS/QL/QL98/pp/qxql.html.

[21] J. Schiller. Mobile Communications. Addison-Wesley,
Reading, Mass. and London, 2000.

[22] K. Sullivan and D. Notkin. Reconciling environment inte-
gration and component independence. ACM Transactions
on Software Engineering and Methodology, 1(3), July 1992.

[23] SunSoft. Tooltalk 1.1.1 Users’s Guide, November 1993.
[24] P. Sutton, R. Arkins, and B. Segall. Supporting

disconnectedness-transparent information delivery for mo-
bile and invisible computing. In Proceedings of 2001 IEEE
International symposium on Cluster Computing and the
Grid (CCGrid’01), May 2001.

[25] TIBCO Software Inc. TIB/Rendezvous TX Concepts Re-
lease 1.1. Technical report, TIBCO Software Inc.,Palo Alto,
CA, November 2002. http://www.tibco.com.

[26] S. Zachariadis, C. Mascolo, and W. Emmerich. Exploiting
Logical Mobility in Mobile Computing Middleware, July
2002.

8

