Abstractions for Model Checking of Event Timings

Jatindra K. Deka, S. Chaki, Pallab Dasgupta and P.P. Chakrabarti

Abstract— Verification of timed temporal properties of a
circuit is a computationally complex problem both in terms
of space and time. In this paper we study different abstrac-
tions of timed systems and the temporal logics which are
preserved under these abstractions. In particular we show
that while known timed logics such as RTCTL and TCTL
are preserved by bisimulation equivalence, the timings of
events (signal changes) are preserved in a more compact
abstraction. Experimental results show that this abstrac-
tion requires significantly less space and is competitive in
terms of time required for verification.

I. INTRODUCTION

Temporal logic model-checking [6] is one of the most pop-
ular and well studied paradigms for formal verification of
hardware and other concurrent systems (see [7] for a sur-
vey). One of the main challenges in using model checking
techniques effectively is to contain the size of the state-
space which is often huge in practice. Some of the most sig-
nificant approaches in this direction include symbolic model
checking [7], [10] and automata theoretic model checking [3].

An interesting approach towards containing the state ex-
plosion problem is to abstract a minimal transition system
which preserves properties specified in a given logic. It has
been shown that abstractions derived using the bisimula-
tion and stuttering equivalence relations preserve untimed
logics such as CTL, LTL and CTL*. There are known
polytime algorithms for determining the abstract transi-
tion system having the minimum number of states [9], [11].

Often (and in particular when we analyze the timings of
edge triggered circuits), we are interested in the timings
of signal changes (such as the posedge or negedge of sig-
nals). Since the timings of signal changes (which we call
events) are discrete in nature, it is an interesting objec-
tive to investigate whether abstractions which preserve the
timings of events are more compact than timing preserving
abstractions in general.

In this paper, we show that while bisimulation equiva-
lence is timing preserving, stuttering equivalence is not. We
then introduce an abstraction called timed stuttering equiv-
alence which has fewer states than that obtained by bisimu-
lation equivalence, and preserves the timings of events. We
show that a delay-based partitioning of stuttering equiva-
lent abstractions require less space than bisimulation ab-
stractions, when the transition relation is stored in the form
of BDDs. The verification time is roughly the same for
both, indicating that the timed stuttering equivalent ab-
straction does not have much of an overhead in verification
time.

II. DEFINITIONS AND PRELIMINARIES

This section presents preliminary notations and defini-
tions used throughout this paper.

In this study, we consider synchronous transition sys-
tems only. The unit of time will be called a cycle. Timing

The authors are with the Dept. of Computer Science & Engg,
Indian Institute of Technology Kharagpur, India 721302.

properties are expressed in terms of the number of cycles.
For example, the RTCTL formula, E[trueUygq] is true
in a state, s, iff there exists a path starting from s in the
transition system where q is true between the 4** and 8"
cycle. Thus, we consider only discrete time models. Such a
model is quite natural for verification of sequential circuits,
where timing is expressed in terms of the number of clock
cycles.

Definition 1: [Untimed Model:]

An untimed model is a triple, M = (S, N, L), where S is a
set of states, N C S x S is a transition relation and L is a
labeling function mapping each state into a set of atomic
propositions that are true in that state. O

A path 7 is an infinite sequence of states sq, s1, S2, - - -,
such that N(s;, s;41) is true for every i.

We define a model for a timed systems as follows.

Definition 2: [Timed Model:]

A timed model is a triple, M = (S, N, L), where S is a set of
states, N C S x N x S is a timed transition relation where
N is the set of positive integers and L is a labeling function
mapping each state into a set of atomic propositions that
are true in that state. O

In a timed model, we have an integer delay associated
with each state transition. A wniform timed model is a
timed model where each transition has unit delay. A se-
quential circuit is typically modeled by a uniform timed
model where the unit delay is the clock delay.

The logic CTL (Computation Tree Logic!) is used to
specify properties involving qualitative constraints. In
CTL, the basic path operator is until — for example the
path formula pUgq (p until q) specifies that p holds in each
state of the path until we reach a state where ¢ is true,
but does not specify any constraints on how early or how
late we much reach the state where ¢ is true. The timed
logic, RTCTL, extends CTL with the bounded until opera-
tor which has the form: U,), where [a,b] defines the time
interval in which the property must be true. We say that
fUla,b) 9 is true in some path if g holds in some future state
s on the path, where the total delay to reach s is within
the interval [a,b] and f is true in all states preceding s in
the path.

III. ABSTRACTIONS FOR UNTIMED SYSTEMS

In this section, we present the definitions of equivalence
relations on the states of untimed transition systems which
are known to preserve some of the well known temporal
logics.

Definition 3: [Bisimulation Equivalence:]

Consider two untimed models M = (S,N,L) and M' =
(S',N', L") with the same set of atomic propositions. A
binary relation R C S x S’ is called a bisimulation relation
if for any s € S and s’ € S', R(s,s') implies L(s) = L'(s")

IDue to lack of space, we refer the reader to [6] for the syntax and
semantics of CTL

and

(@) (Vre S N(s,r)=I" €S :N'(s',r") AR(r,7"))
(i) (Vr' e S",N'(s',r')=3r € S: N(s,r) A R(r,r"))

A bisimulation equivalence is the maximum bisimulation
relation in the subset inclusion preorder. O
The bisimulation equivalence can be computed in time
quadratic in the sum of the sizes of the transition relations
using a BDD-based algorithm [2]. More time efficient al-
gorithms are also known [9], [11], but they do not use a
compact BDD based representation. To obtain the bisim-
ulation equivalent abstraction of a model, M, we first de-
termine the bisimulation equivalence of M with M. Once
this bisimulation equivalence is computed, the bisimula-
tion equivalent abstraction of M can be obtained by simply
combining states which are bisimulation related.
Definition 4: [Stuttering Equivalence:]

Consider two untimed models M = (S, N,L) and M' =
(S',N', L") with the same set of atomic propositions. A
binary relation R C S x S’ is called a stuttering relation
if for any s € S and s’ € S', R(s,s') implies L(s) = L'(s")
and
(i) (Yr,N(s,r) =

3sg, .-, 85(n > 0): s; =s' and R(r,s)) and

Vi, 0 <i<n, N'(sj,si,,) and R(s, s;))
(ii) (Vr',N'(s',7") =

350, ..., 8m(m > 0): s = s and R(sp,,r') and

Vi, 0 <i < m, N(si,8i+1) and R(s;,s"))
A stuttering equivalence is the maximum stuttering rela-
tion in the subset inclusion preorder. O

A B C

Fig. 1.

Bisimulation and Stuttering Equivalence

FEzxample 1: We illustrate the bisimulation and stuttering equiv-
alent abstractions with the help of an example. Consider the uniform
timed model shown in part A of Figure 1. The bisimulation abstrac-
tion of this model is presented in part B of Figure 1. The stuttering
abstraction is shown is part C of Figure 1. O

Intuitively, stuttering equivalence does not distinguish
between two paths that differ only in the number of idle
cycles (that is, cycles which are equivalent in terms of the
set of atomic propositions). It has been shown that stutter-
ing equivalence preserves the truth of CTL* formulas that
do not involve the next time operator X. Polynomial time

algorithms are known for determining stuttering equiva-
lence. The stuttering equivalent abstraction is obtained by
merging states which belong to the stuttering equivalence
of model M with respect to itself.

IV. ABSTRACTION FOR PRESERVING EVENT TIMES

In bisimulation equivalence we may have sequences of
states having identical values of the signals (that is, iden-
tical set of labels). It is possible to replace these sequences
by lump delays. We define timed stuttering equivalence on
the basis of this notion.

Definition 5: [Timed Stuttering Equivalence: |
Consider two timed models M = (S,N,L) and M' =
(S',N', L") with the same set of atomic propositions. A bi-
nary relation R C Sx S’ is called a timed stuttering relation
if for any s € S and s’ € S', R(s,s') implies L(s) = L'(s")
and
(i) (Vr,N(s,t,1) =

3sp, ..., 8k (n > 0): sy = s' and R(r,s!) and
Vi,0 <i < mn, N'(s, d;,8;,,) and R(s, s})
and 3 g, 0 =)
(i) (vr',N'(s',t', ") =
50, ---,8m(m > 0): s = s and R(sp,r') and
VZJO <i<m, N(S’i76i73i+l) and R(Sia SI)
and 3 i 6 = 1)
A timed stuttering equivalence is the maximum stuttering
relation in the subset inclusion preorder. O

Fig. 2. Timed Stuttering Equivalence

Example 2: Fig 1 shows the bisimulation and stuttering abstrac-
tions of a timed model. The timed stuttering abstraction of the same
model is shown in Figure 2. O

Given a uniform timed model, we can compute it’s timed
stuttering equivalent abstraction as follows. We first com-
pute the bisimulation equivalent abstraction of the model.
Let @ C S denote the set of states in the bisimulation
equivalent abstraction, M = (S, N, L), which have only one
parent state and one child state. Let s € Q, N(p, 1, s), and
N (s, d,c), where p and ¢ are respectively the unique parent
state and the unique child state of s. If L(p) # L(s), we
simply remove s from Q. If L(p) = L(s), then we remove
s from S (and @)) and replace the transitions (p, 7, s) and
(s, 9, ¢) by the transition (p, 7+ d,c). We continue this pro-
cess until @ is empty. It is easy to see that the total time
complexity of finding the abstraction is polynomial in the
number of states of the original model.

We call the states in the timed stuttering equivalent ab-
straction as event states. The states which have been re-
placed by lump delays are called non-event states. For
example, Fig 2 shows only the event states of the uniform
timed model of Fig 1 B. The remaining states in Fig 1 B are
non-event states. It should be noted that by definition of
timed stuttering equivalence, the atomic propositions true
at a non-event state is the same as that of its preceding
event state. The lump delays on a transition account for

the number of non-event states compacted into that tran-
sition.

V. TIMED LOGICS PRESERVED UNDER ABSTRACTION

In this section, we illustrate that the untimed bisimula-
tion equivalent abstraction of a uniform timed model pre-
serves the truth of RTCTL properties, where as stutter-
ing equivalent abstractions (both timed and untimed) fail
to preserve RTCTL properties. We also describe a timed
logic, ETCTL, and show that timed stuttering equivalent
abstractions preserve ETCTL properties.

Theorem 1: The untimed bisimulation equivalent ab-

straction of a uniform timed model preserves the truth of
RTCTL properties.
Proof: It has been shown that bisimulation equivalence preserves
CTL (including the X operator)[4]. RTCTL differs from CTL only
in the bounded-until operator. The bounded-until operator can be
expressed recursively in terms of the X operator[5]. For example, the
formula E[fUl, 19] can be expressed in the form:

FANEXE[fUlq—1,5-119] ifa>0and b>0
gV(f NEXE[fUpp-119] ifa=0andb>0
g ifa=0and b=0

E[fUla,p)9] =

Other bounded-until properties can be similarly expressed in terms of
the X operator, and hence the bisimulation equivalence of a uniform
timed model preserves RT'CTL properties. O

It has been shown[4] that properties specified with the
X operator are not always preserved under stuttering
equivalence. For uniform timed models we can write
formulas of the form EXf and AXf as E[trueU q)f]
and A[truelUy, 1) f] respectively. Thus, untimed stuttering
equivalence does not preserve RTCTL. In timed stuttering
equivalence, we retain the timing information in terms of
lump delays. Since the number of bits required to store
a delay value is logarithmic in the magnitude of the delay
value, the saving is significant. However, RTCTL proper-
ties are not preserved in general, unless we break down the

lump delays.

Example 3: Consider the simple timed model shown in Fig 3.
Suppose we wish to verify whether there ezists a computation in
which the atomic proposition q remains true until at some time
t < 9 the property f holds. This can be represented in TCTL as
t.E[qU((t < 9) A f)], and in RTCTL (that is, CTL with the bounded-
until operator) as Elq Upo,01 f1-

q

#4 #2

9 4 sl/C> p #1

0 O
) #3

q

Fig. 3. A simple timed model

Suppose f is a boolean formula with atomic propositions only.
Then if ¢ holds in the event state so but f does not, then it suffices
to verify whether E[qUpg 41f] holds in state s1. In fact, the set of
non-event states between the states so and s; becomes transparent
when f does not involve timed properties.

Now, let us consider the case when f is a property which checks
whether there ezxists a state exactly at a delay of 7 time units where
p holds. In RTCTL, we represent this as E[true Uy) p]. Clearly
Also E[qU[g 4 f] does not hold in state s1.
However, it is easy to see that E[qUg g1f] still holds in s, since f is

f does not hold in sg.

true in two non-event states between sg and s1. O
Example 3 illustrates the fact that though all non-event
states between two successive events are equivalent in terms

of the untimed properties true in them, they differ in terms
of the timed properties. This leads to the creation of equiv-
alence subsequences (in terms of properties) between non-
event states and, as in other models of timed structures [1],
the number of equivalence classes grows exponentially with
the number of overlapping (interleaved) timing constraints.

In a previous work [8], we addressed this problem and
showed that this problem does not arise when we reason
about the timings of events or signal changes. In that work
we proposed a logic called ETCTL which is a real-time
temporal logic for reasoning about the timings of events.
The formal syntax of ETCTL is as follows. B denotes the
set of boolean formulas over the set of atomic propositions
q € P. Z denotes the set of trigger formulas. S denotes
the set of ETCTL formulas.

e B = false|true|q|~q|B A B|BV B|-B

o Z = posedge(B)|negedge(B)|Z N Z|ZV Z

¢« S=B|SASISVS|IE(S U S)|AS U S)|-S|Z|

ZNE(S U[a,b] S)|Z NA(S U[aJ,] S)

The formal semantics is presented in [8]. Intuitively, the
formulas posedge(B) and negedge(B) represent the posi-
tive edge and the negative edge of the signal defined by the
boolean formula B. These formulas (called trigger formu-
las) can be true only in event states (along certain paths).
Since we constrain all bounded-until formulas to appear in
conjunction with trigger formulas, we effectively verify all
timings with respect to event states only. This guarantees
(and is formally proved in [8]) that ETCTL formulas sat-
isfy the following property. We illustrate this fact through
an example.

Definition 6: [Interval Independent Property:]
A temporal property is said to be “interval independent” if
the truth of the property is identical in all non-event states

between any two event states in a timed abstraction. O

Ezample /: Figure 4 shows the timed model for a transmitter of
digital data. The transmitter requires 16 cycles for its internal set-
up, and then waits for 128 cycles to acquire the transmission medium
before transmitting the data. The details of internal set-up and ac-
quiring the transmission medium has been abstracted away in the
form of lump delays of 16 and 128 respectively.

[ready=0, tuning=0, send 0] [send 0]

16 #2 #2
 #128

[ready=1] [tumng 1, send=1]

Fig. 4. Transmitter example

Suppose we are interested in verifying the following RTCTL prop-
erty which says that whenever the transmitter is in a ready state, it
sends data exactly after 128 cycles:

AG(ready — E[true Ul12g,128] send))

Now consider the sequence of 128 non-event states between the states
s1 and s2. In order to verify the given property, we need to evaluate
the truth of the subformula E[true Ul;sg,125) send] in each of these
states. It is easy to see that this sub-formula holds in every alternate
pair of non-event states in this sequence. Thus with respect to the
truth of this formula, the sequence of states between s; and sz gets
partitioned into 64 sub-sequences (each having 2 states). The number
of sub-sequences (in this case, 64 = 28~1/2) can be exponential in
the number of bits required to store the delay value of the edge (in
this case, 8 bits). The effective number of states required for labeling
during model checking is more than 64.

Delay TSA BA 2TSA Delay TSA BA 2TSA
BDD Time BDD Time BDD Time BDD Time BDD Time | BDD Time
Nodes | (ms) | Nodes | (ms) | Nodes | (ms) Nodes | (ms) | Nodes | (ms) | Nodes | (ms)
0-0 44246 7.06 106941 | 28.99 | 60326 | 11.03 0-1 42461 7.69 42461 7.90 42461 7.75
0-1 44157 7.24 106941 | 28.95 | 60326 | 11.36 0-2 40940 | 15.81 60997 10.25 | 40940 | 15.91
0-2 44157 7.52 111967 | 29.15 | 60326 | 11.59 0-3 40014 | 14.73 74610 13.17 | 48881 | 14.35
0-3 44157 7.81 117894 | 29.41 | 60326 | 12.01 0-4 40894 | 13.66 88539 16.69 | 48414 | 14.88
0-4 44157 8.25 123320 | 29.57 | 61189 12.54 0-5 41573 12.61 | 102481 | 19.91 | 53013 14.78
0-5 44157 8.72 128132 | 29.78 | 61187 13.06 0-6 42207 11.27 | 114595 | 23.14 | 55171 14.69
0-6 44157 9.32 132370 | 30.04 | 61187 13.82 0-7 42773 11.28 | 127276 | 27.75 | 62641 17.12
0-7 44157 | 10.20 | 135951 | 30.27 | 61187 | 14.71 0-8 43689 | 10.80 | 136141 | 32.07 | 60588 | 17.17
0-8 44157 | 11.07 | 138651 | 30.42 | 61185 | 15.87 0-9 44435 | 11.72 | 149489 | 36.84 | 62151 | 15.90
0-9 44157 | 12.02 | 140903 | 30.55 | 61185 | 17.21 0-10 45674 | 10.34 | 160862 | 38.00 | 63504 | 16.03
0-10 44157 | 13.17 | 143372 | 30.68 | 61185 | 18.61 0-11 46382 9.70 168006 | 41.60 | 65528 | 16.33
0-11 44157 | 14.44 | 145490 | 30.77 | 61185 | 20.42 0-12 46800 9.98 176606 | 46.30 | 65997 | 16.68
0-12 44157 15.78 | 147515 | 30.92 | 61185 | 22.37 0-13 47814 9.74 185252 | 51.14 | 69215 17.58
0-13 44157 | 17.23 | 149306 | 31.17 | 61185 | 24.58 0-14 48429 9.78 190375 | 54.07 | 71902 | 17.16
0-14 44157 | 19.03 | 150897 | 31.27 | 61185 | 26.99 0-15 48903 9.49 198674 | 55.24 | 75188 | 19.57
0-15 44157 | 20.67 | 152320 | 31.51 | 61185 | 29.95 0-16 49266 | 10.84 | 203128 | 66.21 | 74724 | 17.77
0-16 44157 | 22.66 | 153687 | 31.87 | 61185 | 33.04 0-17 50298 9.32 208644 | 62.43 | 75224 | 18.18
0-17 44157 | 24.65 | 154978 | 31.75 | 61185 | 36.85 0-18 50429 8.98 212624 | 64.67 | 73591 | 17.25
0-18 44157 | 27.14 | 156189 | 31.79 | 61185 | 40.28 0-19 51310 9.02 221808 | 69.77 | 75103 | 18.18
0-19 44157 | 29.47 | 157315 | 31.98 | 61185 | 44.16 0-20 51917 9.10 226367 | 73.73 | 75382 17.87
0-20 44157 | 31.93 | 158404 | 32.18 | 61185 | 48.61
TABLE II
TABLE I

RESULTS WITH DIFFERENT TIMING PROPERTIES

Suppose we are interested to verify whether the transmitter sends
data 128 cycles after it became ready. Note that we now want to
verify a timed property with respect to the event of the transmitter
becoming ready. We use the formula posedge(ready) to label states
where the signal ready changes from 0 to 1. The desired property is
now stated in ETCTL as:

AG(posedge(ready) — E[true Upag,128) send])

Since signal changes can take place only on event states,
posedge(ready) can be true only on event states. Consequently, we
require to verify the truth of the subformula E[true Ujyag 128] send]
only on event states. This saves us the effort of determining the truth
of the subformula on the exponential number of non-event states be-
tween event states. Thus unlike in the first case, the effective number

of states remains as 4. O

Theorem 2: The timed stuttering equivalent abstraction
of a timed model preserves ETCTL properties.
Proof: We abstract timed stuttering equivalence with respect to its
bisimulation equivalent abstraction. Bisimulation equivalent abstrac-
tion is done by ignoring the delays in the timed model. Stuttering
equivalence abstraction preserves CTL, and hence CTL subformulas
of ETCTL are preserved in the stuttering equivalent abstraction.

We consider a state which has unique parent and unique child in
bisimulation equivalent abstraction. If a state and its parent have the
same labeling, we remove that state from the original timed model
and update the delay accordingly. Since ETCTL formulas are interval
independent (as shown in [8]), the abstraction will preserve ETCTL
properties. O

VI. EXPERIMENTAL RESULTS

Table T and Table II show results computed on a 550
MHz Pentium-IIT with Linux. The tables present results
for timed stuttering abstraction (TSA), bisimulation ab-
straction (BA), and power-of-2 stuttering equivalent ab-
straction (2TSA). In 2TSA we break up long delays into
sum of powers of 2 (say, 13 is broken into 8 + 4 + 1).

For performing the experimentation we have chosen
the most generic ETCTL property ¢ = posedge(a) A
E(b Up,) c). Table I shows the peak BDD nodes and
the runtimes for verifying ¢ with the value of y tuned as
shown in the first column of Table I. The transition system
chosen randomly has delays distributed from 0 to 8. The

VARIATIONS IN TRANSITION DELAYS

timed stuttering equivalent abstraction has 5000 reachable
states (from the start state).

Table II presents results for verifying the property
posedge(a) A E(b Ujpg c) on different timed structures.
In Table II, the leftmost column indicates the range of de-
lay values distributed over the transition system. The peak
BDD nodes and the runtimes (in milliseconds) are shown
for TSA, BA, and 2TSA.

The results shown in Table I and Table II illustrate that
TSA requires significantly less space than BA. Table II fur-
ther shows that for transition systems having larger delay
ranges, verification on TSA requires less time than on BA.
Table I shows that for the same transition system and dif-
ferent timed properties, TSA and BA are competitive in
terms of time (and TSA is better in terms of space). 2TSA
represents an alternative which has performance roughly
between TSA and BA.

REFERENCES

[1] Alur, R., Timed Automata.
www.cis.upenn.edu/ alur/Nato97.ps.gz, 1998.

[2] Berezin, S., Campos, S., and Clarke, E.M., Compositional Rea-
soning in Model Checking. Proc. of COMPOS ’97 Workshop,
LNCS Vol 1536, 1998.

[3] Bernholtz, O., Vardi, M., and Wolper, P., An automata theoretic
approach to branching-time model checking. In CAV’94: 6th Int.
Conf. on Computer Aided Verification, LNCS Vol 818, 1994.

[4] Browne, M.C., Clarke, E.M., and Grumberg, O., Characterizing
finite Kripke structures in propositional temporal logic. Theo-
retical Computer Science, 59 (1-2), 1988.

[5] Campos, S., and Clarke, E.M., Real-time symbolic model check-
ing for discrete time models. In Theories and ezperiences for
real-time system development, AMAST series in comput. 1994.

[6] Clarke, E.M., Emerson, E.A., and Sistla, A.P., Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications. ACM Trans. on Program. Lang. € Systems, 8, 2,
244-263, 1986.

[7] Clarke, E.M., and Kurshan, R.P., Computer aided verification.
IEEE Spectrum, 33, 6, 61-67, 1996.

[8] Dasgupta, P., Deka, J. K., and Chakrabarti, P. P., Model Check-
ing on Timed Event Structure. IEEE Trans. on Computer Aided
Design, 19, 5, 601-611, 2000.

[9] Groote J.F., and Vaandrager, F.W., An efficient algorithm for

branching bisimulation and stuttering equivalence. In Proc. of

17th JCALP, Warwick, LNCS, Vol 443, 626-638, 1990.

McMillan, K.L., Symbolic Model Checking, Kluwer, 1993.

Paige, R., and Tarjan, R., Three efficient algorithms based on

partition refinement, SIAM Journal of Computing, 16(6), 1987.

Manuscript:

