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Abstract. Proof-Carrying Code (PCC) and Certifying Model Checking
(CMC) are established paradigms for certifying the run-time behavior of
programs. While PCC allows us to certify low-level binary code against
relatively simple (e.g., memory-safety) policies, CMC enables the certifi-
cation of a richer class of temporal logic policies, but is typically restricted
to high-level (e.g., source) descriptions. In this paper, we present an auto-
mated approach to generate certified software component binaries from
UML Statechart specifications. The proof certificates are constructed us-
ing information that is generated via CMC at the specification level and
transformed, along with the component, to the binary level. Our tech-
nique combines the strengths of PCC and CMC, and demonstrates that
formal certification technology is compatible with, and can indeed ex-
ploit, model-driven approaches to software development. We describe an
implementation of our approach that targets the Pin component tech-
nology, and present experimental results on a collection of benchmarks.

1 Introduction

Today, off-the-shelf programs are increasingly available as modules or compo-
nents that are attached to an existing infrastructure. Often, such plug-ins are
developed from high-level component specifications (such as UML Statecharts),
but distributed in executable machine code, or “binary” form. In this article
we present a framework for generating trustworthy “binaries” from component
specifications, and for proving that such binaries satisfy specific policies. A more
detailed exposition of this work is available as a technical report [1].

Our approach builds on two existing paradigms for software certifica-
tion: proof-carrying code and certifying model checking. Proof-Carrying Code
(PCC) [2] constructs a proof that machine code respects a desired policy, pack-
ages the proof with the code so that the validity of the proof and its relation to
the code can be independently verified before the code is deployed. In contrast,
Certifying Model Checking (CMC) [3] is an extension of model checking [4] for
generating “proof certificates” for finite state models against a rich class of tem-
poral logic policies. In recent years, CMC has been augmented with iterative
abstraction-refinement to enable the certification of C source code [5, 6].

PCC and CMC have complementary strengths and limitations. Specifically,
while PCC operates directly on binaries, its applications to date have been re-



stricted to relatively simple memory safety1 policies. The progress of PCC has
also been hindered by the need for manual intervention, e.g., to specify loop
invariants. In contrast, CMC is able to certify programs against a richer class of
temporal logic policies (which subsumes both safety and liveness), and is auto-
mated. However, CMC is only able to certify source code (for example “C”) or
other forms of specification languages.

Finally, while PCC and CMC both require a small trusted computing base–
usually consisting of a verification condition generator and a proof checker–they
both tend to generate prohibitively large proofs. This can pose serious practi-
cal obstacles in using PCC in resource constrained environments. Unfortunately,
embedded software (e.g., in medical devices) that might benefit from the high
confidence obtained with PCC are almost certainly going to be resource con-
strained. In this context, our approach has the following salient features:

1. Expanded Applicability: We generate certified binaries directly from
component specifications expressed in a subset of UML Statecharts. The
key technique involved is a process of translating “ranking functions”, along
with the component itself, from one language to the next. Thus, our ap-
proach bridges the two domains of model-driven software development and
formal software certification.

2. Rich Policies: As with CMC, we certify components against a rich class of
temporal logic policies that subsumes both safety and liveness. We use the
state/event-based temporal logic called SE-LTL [7] developed at the SEI.

3. Automation: As with CMC, we employ iterative refinement in combination
with predicate abstraction and model checking to generate appropriate in-
variants and ranking functions required for certificate and proof construction
in an automated manner.

4. Compact Proofs: We use state-of-the-art Boolean satisfiability (SAT) tech-
nology to generate extremely small proofs. Our results indicate that the use
of SAT yields proofs of manageable size for realistic examples.

2 Basic Concepts

In this section, we present the basic concepts of components, policies, ranking
functions, verification conditions, certificates, etc., that we use later.
Logical Foundation. We assume a denumerable set of variables Var , and a
set of expressions Expr constructed using Var and the standard C operators.
We view every expression as a formula in quantifier-free first order logic with
C interpretations for operators and truth values (0 is false and anything else is
true). Thus, we use the terms “expression” and “formula” synonymously and
apply concepts of validity, satisfiability, etc. to both expressions and formulas.
Component. We deal with several forms of a component—their Construction
and Composition Language (CCL) form, C implementation form, analysis form,

1 Informally, a safety policy stipulates a condition that must never occur, while a
liveness policy stipulates a condition that must eventually occur.



and their binary (assembly language) form. The syntax and semantics of CCL
have been presented elsewhere [8], and we use the PowerPC assembly language.
Hence, we only describe the other two (analysis and C implementation) forms.

In its analysis form, a component is simply a control flow graph (CFG) with
a specific entry node. Each node of the component is labeled with either an
assignment statement, a branch condition, or a procedure call. The outgoing
edges from a branch node are labeled with THEN and ELSE to indicate flow of
control. For any component C , we write Stmt(C ) to denote the set of nodes
of C since each node corresponds to a component statement. Figure 1 shows a
component on the left and its representation in C syntax on the right.

x = getc()

y = z + 1 y = fact(z)

z = x + y

ELSETHEN

if(x) x = getc();

if(x) y = z + 1;

else y = fact(z);

z = x + y;

Fig. 1. Component in Analysis (Left) and C (Right) Forms.

The C implementation is generated from CCL, and contains both the logical
behavior specified by Statecharts, and the infrastructure imposed by the Pin [9]
component model. However, we impose several strong restrictions on the C code
itself. For instance, we disallow recursion so that the entire component is inlined
into a single CFG. We also disallow internal concurrency. Variable scopes and
return statements are not considered. All variables are assumed to be of integral
type, and pointers and other complicated data types are disallowed.

While these are severe restrictions when viewed from the full generality of
ANSI-C, they are not so severe when viewed from the more restrictive vantage
of CCL specifications. In particular, a CCL specification for a component with
a single reaction (the CCL unit of concurrency) obeys the above restrictions
by definition. Even when a restriction is violated (e.g., CCL allows statically
declared fixed size arrays), simple transformations (e.g., representing each array
element by a separate variable) are possible. Since all C programs and binaries
we consider are obtained via some form of semantics-preserving translation of
CCL specifications, they obey our restrictions as well.

Policy. Policies are expressed in CCL specifications as SE-LTL formulas. Prior
to verification, however, the policy is transformed into an equivalent Büchi au-
tomaton. Thus, for the purpose of this paper, a policy ϕ is to be viewed simply
as a Büchi automaton. The theoretical details behind the connection between



SE-LTL and Büchi automata can be found elsewhere [7], and are not crucial to
grasp the main ideas presented here.
Ranking Function. Ranking functions are a technical device used to construct
proofs of liveness, which require a notion of progress toward some objective O .
The essential idea is to assign ranks—drawn from an ordered set R with no
infinite decreasing chains—to system states. Informally, the rank of a state is a
measure of its distance from O . Then, proving liveness boils down to proving
that with every transition, the rank of the current system state decreases appro-
priately, i.e., the system makes progress toward O . Since there are no infinite
decreasing chains in R, the system must eventually attain O . In our case, it
suffices to further restrict R to be a finite set of integers with the usual ordering.

Definition 1 (Ranking Function). Given a component C , a policy ϕ, and a

finite set of integral ranks R, a ranking function RF is a mapping from Expr to

R. The expressions in the domain of RF represent states of the composition of

C and ϕ, using additional variables to encode the “program counter” of C and

the states of ϕ. Given any ranking function RF, C and ϕ are known implicitly.

Definition 2 (Verification Condition). Given a ranking function RF, we

can effectively compute a formula called the verification condition of RF, and

denoted by VC (RF ), using an algorithm called VC-Gen.

Ranking functions, verification conditions, and software certification are re-
lated intimately, as expressed in Fact 1. Note that we write C |= ϕ to mean
component C respects policy ϕ, and that a formula is valid if it is true under all
possible variable assignments.

Fact 1 (Soundness) For any component C and policy ϕ, if there exists a rank-

ing function RF : Expr → R such that VC (RF ) is valid, then C |= ϕ.

We will not go into a detailed proof of Fact 1 since it requires careful for-
malization of the semantics of C and ϕ. In addition, proofs of theorems that
capture the same idea have been presented elsewhere [2, 6].

Definition 3 (Certificate). For any component C and policy ϕ, a certificate

for C |= ϕ is a pair (RF , Π) where RF : Expr → R is a ranking function over

some finite set of ranks R, and Π is a resolution proof of the validity of VC (RF ).

Indeed, if such a certificate (RF , Π) exists, then, by the soundness of resolu-
tion2, we know that VC (RF ) is valid, and hence, by Fact 1, C |= ϕ. This style
of certification, used in both PCC and CMC, has several tangible benefits:

– Any purported certificate (RF , Π) is validated by the following effective (i.e.,
automatable) procedure: (i) compute VC (RF ) using VC-Gen, and (ii) verify
that Π is a correct proof of VC (RF ) using a proof checker.

2 More details on resolution can be found in our technical report [1].



– Necula and Lee demonstrated that this effective procedure satisfies a fun-
damental soundness theorem: any program with a valid certificate satisfies
the policy for which the certificate is constructed [2]. This fact is not altered
even if the binary program, the proof certificate, or both, are tampered with.
A binary program may exhibit different behavior in its modified form than
in its original form. However, this new behavior will still be guaranteed to
satisfy the published policy if its proof certificate is validated.

– The policy, VC-Gen, and proof checking algorithms are public knowledge.
Their mechanism does not depend in any way on secret information. The
certificate can be validated independently and objectively. The soundness of
the entire certification process is predicated solely upon the soundness of the
underlying logical machinery (which is time tested), and the correctness of
the “trusted computing base” (TCB), as discussed later.

– The computational complexity of the certification process is shouldered by
the entity generating the certificate. In the case of software components, this
entity is usually the component supplier who has the “burden of proof”.

Overall, the existence of a valid certificate implies that C |= ϕ irrespective of
the process by which the certified component was created or transmitted. This
feature makes our certification approach extremely attractive when incorporat-
ing components derived from unknown and untrusted sources.

3 Framework for Generating Certified Binaries

Figure 2 depicts our infrastructure for certified component binary generation.
Key elements are numbered for each of reference and are correlated with the
steps of the procedure described in this section. The flow of artifacts involved
in generating a certified binary is indicated via arrows. Certified component
binaries are generated step-wise as follows:

Step 1. A component is specified in CCL [8]. CCL uses a subset of UML 2.0
Statecharts that excludes features that are not particularly useful given the Pin
component model as a target. The specification Spec contains a description of
the component as well as the desired SE-LTL policy ϕ that the component is to
be certified against.

Step 2. Spec is transformed (“interpreted” [10]) into a component C , that
can be processed by a model checker. C is comprised of a C program along
with finite state machine specifications for procedures invoked by the program.
This step was implemented by augmenting prior work [11] so that C contains
additional information relating its line numbers, variables and other data struc-
tures with those of Spec. This information is crucial for the subsequent reverse-
interpretation of ranking functions in Step 4.

Step 3. C is input to Copper, a state-of-the-art certifying software model
checker that interfaces with theorem provers (TP) and boolean satisfiability
solvers (SAT). The output of Copper is either a counterexample (CE) to the
desired policy ϕ, or a ranking function RF1 : Expr → R, over some set of ranks
R, such that VC (RF1 ) is valid.
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Fig. 2. Framework for Generating Certified Binaries.

Step 4. The certificate RF1 only certifies C (the result of the interpretation)
against the policy ϕ. It is reverse-interpreted into a certificate RF2 : Expr → R

such that VC (RF2 ) is valid. This process is enabled by the additional informa-
tion generated during interpretation to connect Spec with C in Step 2.

Step 5. Spec and RF2 are transformed into Pin/C component code that can
be compiled and deployed in the Pin runtime environment [9]. We augmented an
existing Pin/C code generator to also create a ranking function, using RF2 , and
embed it in the generated code. In essence, we transform the ranking function,
and the component, from CCL to the Pin/C formalism.

Step 6. The final step consists of three distinct sub-steps.

Step 6.1. The component with the embedded ranking function is compiled
from Pin/C to binary form. In our implementation we use GCC3 (targeting
the PowerPC instruction set) for this step. Let RF3 be the ranking function
embedded in the binary obtained as a result.

Step 6.2. We compute VC (RF3 ) using VC-Gen.

Step 6.3. We obtain a proof Π of VC (RF3 ) using a proof-generating theorem
prover. In our implementation we use a SAT-based theorem prover for this step.
In essence, we convert ¬VC (RF3 ) (i.e., the logical negation of VC (RF3 )) to
a Boolean formula φ. We then check if φ is unsatisfiable using ZChaff [12]. If
¬VC (RF3 ) is unsatisfiable, i.e., if VC (RF3 ) is valid, then the resolution proof
emitted by ZChaff serves as Π. The use of SAT enables us to obtain extremely
compact proofs [6] in practice. Finally, the certificate (RF , Π) along with the
binary is emitted as the end result—the certified binary for Spec.

3 http://gcc.gnu.org



Trusted Computing Base. It is instructive to discuss the artifacts that must
be trusted for our approach to be effective. In essence, the TCB is comprised
of: (1) VC-Gen, (2) the procedure for converting ¬VC (RF3 ) to φ, and (3) the
procedure for checking that Π refutes φ. All of these procedures are computa-
tionally inexpensive and can be implemented by small programs. Thus, they are
more trustworthy (and more verifiable) than the rest of the programs of Figure 2.
Note that the interpreter, the certifying model checker, the reverse-interpreter,
the code generator, the compiler, and the theorem prover are not in the TCB.
Each of these tools is quite complex, and their elimination from the TCB raises
considerably the degree of confidence of our certification method.

How the TCB is demarcated and how its size and complexity is reduced
is an important theoretical and practical concern for future applications of
PCC. There are several approaches to this concern. For example, “foundational”
PCC [13] aims to reduce the TCB to its bare minimum of logic foundations. We
adopt the more systems-oriented approach pioneered by Necula and Lee which
does not seek a pure foundation, but rather seeks to achieve a practical com-
promise [14]. Even this more “pragmatic” approach can achieve good results. In
our own implementation, the TCB is over fifteen times smaller in size (30 KB
vs. 450 KB) than the rest of the infrastructure.

4 Certifying Model Checking

The infrastructure for performing certifying model checking corresponds to steps
1-4 from Figure 2. We begin with component specifications expressed in CCL.
Overview of CCL. CCL is a simple composition language for describing com-
ponent behavior and how components are wired together into assemblies for
deployment. In CCL, a component is viewed as a collection of potentially con-
current units of computation called reactions, each of which describes how the
component responds to stimuli on its sink pins and under what circumstances it
initiates interactions on its source pins. Figure 3 shows a CCL specification for a
component comp with a single reaction R. The reaction R reacts to stimuli from
its environment on its incr sink pin by incrementing an internal counter (up
to a maximum and then reseting to a minimum) and informing its environment
of the new value on its value source pin. The semantics of the state machine
provided for each reaction is based on the UML 2.0 semantics of Statecharts.
Aside from the obvious syntactic differences, CCL differs from Statecharts in
two important ways:

1. CCL does not permit some concepts defined in UML Statecharts, most sig-
nificantly hierarchical states and concurrent sub-states (within a reaction).

2. CCL provides more specific semantics for elements of the UML standard
that are identified as semantic variation points (e.g., the queuing policy for
events queued for consumption by a state machine). These refined semantics
are based on the execution semantics of the Pin component technology, the
target of our code generator.



component comp () {

sink asynch incr ();

source asynch value (produce int v);

threaded react R (incr, value) {

int i = min;

start -> idle { }

idle -> incrementing {trigger ^incr;}

incrementing -> idle {trigger $value; action $incr();}

state incrementing {

if (i < max) i++;

else i = min;

^value(i);

}

} // end of react R

} // end of component comp

Fig. 3. CCL Specification for a Simple Component.

Interpreting CCL to C. CCL specifications are transformed into an equiv-
alent representation in C and FSP [15] for use with Copper, a software model
checker. This corresponds to Step 2 from Figure 2. In the interpreted form, each
state of the specification state machine is implemented in a correspondingly la-
beled program block; guards are represented by if statements; transitions are
completed using goto statements; and so on. The equivalence is straightforward,
particularly given CCL’s use of C syntax for actions. Two elements that are less
intuitive are the representation of events used for interaction (communication)
between components and annotations used to facilitate reverse interpretation
(expressing model checking results in terms of the original CCL specification
instead of the interpreted C program).

Communication between concurrent units (representations of interacting
components) in Copper is primarily handled using event semantics based on
FSP. Our interpretation uses events to model message-based interactions be-
tween components in the Pin component technology. In Pin, interactions occur
in synchronous or asynchronous modes, and the initiation and completion of
an interaction are differentiated syntactically by a P̂in for initiation on a pin
Pin, or a $Pin for completion on a pin Pin. These phenomena are mapped to
FSP-style events as part of the interpretation.

For example, initiation of an interaction over a source pin (̂ value) is repre-
sented by a begin value event. This event is denoted in the interpreted C pro-
gram using the COPPER HANDSHAKE () function. Representing a choice among
several events, however, is more difficult. Thus, when a component is willing to
engage in an interaction over any of several sink pins (i.e., pull the next mes-
sage from its queue and respond accordingly), this corresponds to a willingness
to synchronize over one of several FSP-style events. This concept is not as eas-
ily represented in C, and we use Copper’s ability to provide specifications of



functions. We insert a call to an fsp exernalChoice() function and provide a
specification of that function’s behavior as an FSP process that allows a choice
among a specific set of events and returns an integer indicating the event with
which the process synchronized.

The annotations used to simplify reverse interpretation are inserted via
CCL NODE(x) function calls. The parameter passed to each such call denotes the
node in the CCL abstract syntax tree (AST) of the CCL specification that cor-
responds to C statement that follows the annotation. These calls are known to
Copper, and are stripped from the program prior to verification. When used for
certifying model checking, however, Copper retains the parameter values and
includes them in the ranking functions emitted upon successful verification.

Ranking Function Generation by Copper. Copper uses iterative-predicate-
abstraction-refinement for verification. This paradigm has been presented in de-
tail elsewhere [16–18, 1] and we only present its relevant features here. The key
idea is that conservative models of the C program are constructed via predicate
abstraction, verified, and refined iteratively until either the verification succeeds,
or a real counterexample is found. Let M be the model verified successfully. Then
each state of M is of the form (l, V ) where l is a location in the C program, and
V is a valuation of the set of predicates used to construct M . Each valuation V

has a concretization γ(V ) ∈ Expr . Also, for any two distinct valuations V and
V ′, γ(V ) and γ(V ′) are logically disjoint.

We now describe the ranking function generated by Copper. The ranking
function is generated as a set of triples of the form ((l, I), s, r) where: (i) I is an
invariant, i.e., the concretization of a predicate valuation V such that (l, V ) is a
reachable state of M4, (ii) s is a state of the Büchi automaton corresponding to
the policy, and (iii) r is a rank. The procedure for constructing an appropriate
ranking function is presented elsewhere [6] and we do not describe it further.

Recall, from Definition 1, that a ranking function is a mapping from expres-
sions to ranks. Each triple ((l, I), s, r) emitted by Copper corresponds to an entry
in this mapping as follows. Let PC and SS be special variables representing the
program location (i.e., program counter) and the policy state respectively. Then,
the triple ((l, I), s, r) denotes a mapping in the ranking function from the expres-
sion I && (PC == l) && (SS = s) to the rank r. Note that, for any two triples
((l, I), s, r) and ((l′, I ′), s′, r′) emitted by Copper, either l 6= l′ or I and I ′ are
disjoint (since they are the concretizations of two distinct predicate valuations).
Hence, the ranking function emitted is always well-formed.

Figure 4 shows an excerpt from the ranking function generated for our ex-
ample CCL specification and a policy asserting that min <= i <= max is always
true (RF 1 from Figure 2). Each line denotes a triple ((l, I), s, r). The first field
is the CCL AST node number, corresponding to the location l. The second and
third fields (which, in the excerpt, are always 8 and 0) correspond to the policy
automaton state s and the rank r respectively. The last field is the invariant I.

4 Strictly speaking, an invariant at location l is the disjunction of the concretizations
of all predicate valuations V such that (l, V ) is a reachable state of M . We use a
slightly looser definition of invariant for simplicity.



104 : 8 : 0 [(-1 < P0::R__i ),(P0::R__i < 7 )]

106 : 8 : 0 [(P0::R__i < 7 ),(-2 < P0::R__i ),(P0::R__i != -1 )]

116 : 8 : 0 [(-1 < P0::R__i ),(P0::R__i < 7 )]

Fig. 4. Ranking Function in terms of Interpreted C Program.

The final step in certifying model checking is to relate the ranking func-
tion back to the original CCL specification. This is achieved via a process of
mapping elements from the interpreted C program back to CCL elements. For
example, variable names are “demangled” and replaced with references to AST
node numbers and predicates relating to variables that were introduced during
interpretation are stripped or remapped to the appropriate CCL concepts. At
the conclusion of certifying model checking, if a component is known to satisfy all
of its policies, we obtain evidence to that effect in the form of a ranking function
expressed in terms of nodes of the AST for the component’s CCL specification.

5 Certified Source Code Generation

The infrastructure for generating certified source code corresponds to Step 5
from Figure 2. We begin with a component specification expressed in CCL and
a ranking function expressed in terms of nodes of its AST. From previous work,
we have a code generator for CCL that generates C code targeted for deployment
in the Pin component technology (Pin/C). To support certified code generation,
we extended this code generator to embed invariants from the ranking function
in the generated Pin/C code. The key decision was choosing how to embed this
information to maintain a correlation between the location of these invariants in
the Pin/C code and the assembly code resulting from compilation.

The convention we chose (shown in Figure 5) encodes invariants using a pair
of function calls inserted in the Pin/C code prior to the location associated
with each invariant. The invariant itself is used as the argument to the second
function of the pair. When such code is compiled, pairs of recognizable assembly
call instructions appear in the assembly code and the instructions necessary to
represent the invariant appear between these calls.

We extended the Pin/C code generator to insert these pairs of calls at any
locations for which the ranking function provides invariants (a short excerpt
from the generated code is shown in Figure 6). The code generator also adds
an additional predicate to each invariant in the ranking function, an encoding
of the current state of the state machine. At the conclusion of certified source
code generation, we have C source code that includes the invariants necessary for
generating a proof that the binary form of this component satisfies the desired
policy. An important point to note is that the generated certified source code
contains at least one call to __begin__() and __inv__(...) inside every loop.
This is crucial for effective computation of the certified binary, as presented in
the next section, without having to supply loop invariants.



__begin__();

__inv__((n > =0) && (n < 10));

1: bl __begin__

2: li %r0,0

3: stw %r0,16(%r31)

4: lwz %r0,8(%r31)

5: cmpwi %cr7,%r0,0

6: blt %cr7,.L5

7: lwz %r0,8(%r31)

8: cmpwi %cr7,%r0,9

9: bgt %cr7,.L5

10: li %r0,1

11: stw %r0,16(%r31)

.L5:

12: lwz %r3,16(%r31)

13: crxor 6,6,6

14: bl __inv__

Fig. 5. Invariants in Pin/C Code (Left) and Assembly Code (Right).

else if (_THIS_->R_CURRENT_STATE == 1) {

__begin__();

__inv__(((__pcc_claim__ == 0 && __pcc_specstate__ == 8 &&

__pcc_rank__ == 0 && ((-2 < _THIS_->R_i ) &&

(_THIS_->R_i != -1 ) && (_THIS_->R_i < 7 )) &&

_THIS_->R_CURRENT_STATE == 1))); /* 52 */

if (pMessage->sinkPin == 0 /* ^incr */ ) {

...

Fig. 6. Excerpt from Generated Pin/C Code.

6 Certified Binary Generation

In this section we describe the process of obtaining the end-product of our ap-
proach, the certified binary code. To this end, we present the procedure for
constructing the two components of the certified binary—the binary itself, and
a certificate which is essentially the proof of a verification condition.

The certified binary is obtained by simply compiling this C source code with
any standard compiler. In our implementation, we used GCC targeted at the
PowerPC instruction set for this step of our procedure. The binary generated by
the compiler contains assembly instructions, peppered with calls to __begin__()

and __inv__(...). Let us refer to an assembly fragment starting with a call to
__begin__(), and extending up to the first following call to __inv__(...), as
a binary invariant. Note that in any binary invariant, the code between the calls
to __begin__() and __inv__(...) effectively compute and store the value of
the argument being passed to __inv__(...) in register r3.



To construct the certificate, we first construct the verification condition VC .
This is done one binary invariant at a time. Specifically, for each binary invariant
β, we compute the verification condition for β, denoted by VC (β). Let BI be the
set of all binary invariants in our binary. Then, the overall verification condition
VC is defined as follows: VC =

∧
β∈BI

VC (β).
The technique for computing VC (β) is based on computing weakest precondi-

tions, the semantics of the assembly instructions, and the policy that the binary
is being certified against. It is similar to the VC-Gen procedure used in PCC.
The main difference is that our procedure is parameterized by the policy, and is
thus general enough to be applied to any policy expressible in SE-LTL. In con-
trast, the VC-Gen procedure used in PCC has a “hard-wired” safety policy, viz.,
memory-safety. It is also noteworthy that our procedure does not require loop
invariants since every loop in the binary contains at least one binary invariant.

Once we have VC , the certificate is obtained by proving VC with a proof-
generating theorem prover. We leverage our previous work on using a theorem-
prover based on Boolean satisfiability (SAT) [6] to generate extremely compact
certificates as compared to existing non-SAT-based proof-generating theorem
provers. In addition, it enables us to be sound with respect to bit-level C seman-
tics, which is crucial when certifying safety-critical software.

Given a binary B and an associate certificate C, we validate B as follows.
We first compute the verification condition VC using the technique described
above. We then check that C is a correct proof of the validity of VC . Validation
succeeds if and only if C turns out to be indeed a proper proof of VC .

Note that once a certified binary has been validated successfully, the em-
bedded binary invariants are stripped off before the binary is actually deployed.
This is crucial for both correctness (since what we really certify is the binary
without the invariants) and performance. Finally, it is noteworthy that our choice
of mechanism for carrying invariants from C code to assembly code is sensitive
to compiler optimizations. Certain optimizations (e.g., code reordering across
the boundaries demarcated by calls to __begin__ and __inv__) may break this
correspondence. Fortunately, the fundamental soundness theorem still holds. In
the worst case, such a reordering might result in a failure in proof checking, but
will never validate a proof for a program that violates a policy.

7 Related Work

PCC was proposed by Necula and Lee [19, 2, 20] for certifying memory safety
policies on binaries. PCC works by hard-coding the desired safety policies within
the machine instruction semantics, while our approach works at the specification
level and encodes the policy as a separate automaton. Foundational PCC [13,
21] attempts to reduce the trusted computing base of PCC to include only the
foundations of mathematical logic. Bernard and Lee [22] propose a new temporal
logic to express PCC policies for machine code. Non-SAT-based techniques for
minimizing PCC proof sizes [23, 24] have also been proposed. Whalen et al. [25]
describe a technique for synthesizing certified code. They augment the AUTO-



BAYES synthesizer to add annotations based on “domain knowledge” to the
generated code. Their approach is not based on CMC, and generates certified
source code rather than binaries.

Certifying model checkers [3, 26] emit an independently checkable certificate
of correctness when a temporal logic formula is found to be satisfiable by a
finite state model. Namjoshi [27] has proposed a two-step technique for obtain-
ing proofs of Mu-Calculus policies on infinite state systems. In the first step, a
proof is obtained via certifying model checking. In the second step, the proof is
“lifted” through an abstraction. Namjoshi’s approach is still restricted to cer-
tifying source code while our work aims for low-level binaries. Iterative refine-
ment has been applied successfully by several software model checkers such as
SLAM [16], BLAST [17] and MAGIC [18]. While SLAM and MAGIC do not gen-
erate any proof certificates, BLAST implements a method [5] for lifting proofs
of correctness. However, BLAST’s certification is limited to source code and
purely safety properties. Assurance about the correctness of binaries can also be
achieved by proving the correctness of compilers (which is difficult and yet to be
widely adopted) or via translation validation [28] (which still assumes that the
source code is correct). In contrast, our approach requires no such correctness
assumptions.

In previous work, we developed an expressive linear temporal logic called
SE-LTL [7] that can be used to express both safety and liveness claims of
component-based software. In the work reported here, we modified SE-LTL to
express certifiable policies. Also previously, we developed an infrastructure to
generate compact certificates for C source code against SE-LTL claims in an
automated manner [29]. There, the model checker is used to generate invariants
and ranking functions that are required for certificate and proof construction.
Compact proofs were obtained via state-of-the-art Boolean satisfiability (SAT)
technology [6]. In the current work, we extend this framework to generate cer-
tified binaries from component specifications. Finally, we build on the PACC
infrastructure for analyzing specifications of software component assemblies and
generating deployable machine code for such assemblies.

8 Experimental Results

We implemented a prototype of our technology and experimented with two kinds
of examples. First, we created a simple CCL specification of a component that
manipulates an integer variable and the policy that the variable never becomes
negative. Our tool was able to successfully prove, and certify at the assembly code
level that the implementation of the component does indeed satisfy the desired
claim. The CCL file size was about 2.6 KB, while the generated Pin/C code was
about 20 KB. In contrast, the assembly code was about 110 KB while the proof
certificate size was just 7.7 KB. The entire process took about 5 minutes with
modest memory requirements.

To validate the translation of a certified C component to a certified binary
(Step 6 in Figure 2), we conducted additional experiments with Micro-C, a



lightweight operating system for embedded real-time applications. The OS source
code consists of about 6000 lines of C (97 KB) and uses a semaphore to ensure
mutually exclusive access to shared kernel data structures. Using out approach
we were able to certify that all kernel routines follow the proper locking order
when using the semaphore. The total certification time was about one minute,
and the certificate size was about 11 KB, or roughly 11% of the operating system
source code size.

We also experimented with the C implementation of the “tar” program in
the Plan 95 operating system. Specifically, we certified, using our approach,
that a particular buffer will never overflow when the program is executed. The
source code was manually annotated in order to generate the appropriate proof
certificates. While our experiments show that our approach is viable, we believe
that a more robust implementation and more realistic case studies are needed
in order to push our technique amongst a wider user base.

9 Conclusion

In this paper, we presented an automated approach for generating certified bina-
ries from software component specifications. Our technique is based on, and com-
bines the strengths of, two existing paradigms for formal software certification—
PCC and CMC. It also demonstrates that a model driven approach can be
combined effectively with formal certification methodologies. In addition, we de-
veloped and experimented with a prototypical implementation of our technique.
Our implementation, and our overall approach, does have limitations which we
like to classify into the following two broad categories:
Deferred Features. Some of the missing features from our implementation are
not difficult conceptually, but are best deferred until a target environment has
been selected. For example, we did not define the format of certified binaries—in
particular how the proof object is packaged with executable code.
Technical Limitations. CCL currently supports only a primitive assortment
of types, and, as a consequence, the implementation supports a limited range
of C language features (e.g., pointers, structs, and arithmetic types other than
int and float are not supported). We have also not implemented our own proof
checker or SAT formula generator, even though these are key elements of a TCB.
Instead, we rely on (in principle) untrusted publicly available implementations.
However, both of these are relatively simple to implement. Also, Copper is only
able to generate ranking functions that involve a finite and strictly ordered set
of ranks, and thus is able to certify a restricted set of programs. More general
ranking functions are generated by other tools such as Terminator5.

Nevertheless, we believe that our work marks a positive and important step
toward the development of rigorous, objective and automated software certifica-
tion practices, and the reconciliation of formal and model-driven approaches for
software development. Our experiment results are preliminary, but realistic and
encouraging, and therefore underline the need for further work in this direction.

5 http://research.microsoft.com/TERMINATOR/default.htm
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