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1. Abstract 
Robotics systems in space must deal with a host of software challenges in addition to and amplified by the 

challenges of a hostile space environment and the remoteness in which they operate. Software automation 

has been used to good effect in managing some of these challenges to control single robotic systems, even 

multi-functional systems, in previous unmanned missions without the physical presence of human 

operators. However, these previous control software artifacts tend to be platform-specific, single-system-

focused and not really applicable to multi-agent teams of multi-functional, multi-generational robotic 

systems. In this paper, we discuss a software architecture based on the Multi-Agent Distributed Adaptive 

Resource Allocation1 (MADARA) and Group Autonomy for Mobile Systems2 (GAMS) open source 

middleware projects that is intended to be deployed in a multi-agent, multi-functional robotic system called 

the Keck Institute for Space Studies Multi-Planetary Smart Tile. We discuss our solution approaches to 

addressing scalability and quality-of-service in deployments of multi-agent systems, codifying group 

intelligence in hostile space environments, portability for future missions and systems, and assurance and 

verification of software controllers and algorithms. 

2. Introduction 
Autonomy is difficult within a single, multi-functional robotic system. Creating a distributed autonomous 

system of many multi-functional robotic systems is even more difficult, especially if the system is meant 

to survive and perform missions in space. One core reason operating in space is more difficult is because 

major failures and issues experienced while in space cannot be immediately repaired or addressed by a 

human technician due to the potential remoteness of the robotics system. Additionally, messaging can be 

more difficult, transmission times longer, and loss of packets can be a real problem in distributed systems, 

especially if the sent information is important. Distributed autonomous systems add layers of complications 

involving communication between robotic systems and the management and control of computation and 

messaging overhead between robotic agents. 

In this paper, we discuss the planning and prototype software artifacts for the distributed control node 

concept deployed in the Keck Institute’s Multi-planetary Smart Tile project, which aims to perform large-

scale power generation, power beaming, locomotion, and coordinated activities throughout the solar 
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system. Because the ultimate goal of the Multi-planetary Smart Tile project is to deploy thousands and even 

millions of distributed, autonomous power generators with various sensor and actuator payloads, the 

software challenges presented for such a system in space are daunting.  

The first challenge (C1) is with scale and quality-of-service requirements with a distributed autonomous 

network of at least thousands. The Smart Tile operates as a decentralized swarm, and especially chatty 

participants can cause bad emergent behaviors such as thrashing and starvation. Thrashing takes place when 

everyone tries to talk at once and consequently, all messages are garbled. Starvation takes place when one 

or more participants talk so much that more polite network participants never get a chance to communicate, 

instead deferring to the high traffic participants. Both of these situations would be unacceptable in a 

distributed control node (the concept of autonomous agents collaborating together and controlling 

themselves and each other for some mission-focused objective), such as we propose in the Smart Tile 

project. 

The second challenge (C2), after communication is possible at this type of scale, is with expressing, 

pursuing and monitoring group intelligence. Group intelligence amongst robotic or software agents comes 

down to the pursuit of two high-level goals: control and timing. Control is a pervasive need that must be 

enforced at not only the robotic agent or node level but also at the group level. If a robot performs micro-

tasks perfectly but it crashes into other robots and damages itself and others, the control of the system is 

still flawed. Consequently, control is important. 

Timing is also important in group intelligence but can also be more relaxed to give better control (these are 

often related). In group intelligence, there is a spectrum of group-wise timing that flows along a gradient 

from synchronous models of computation (SMoC) to asynchronous models of computation (AMoC). 

SMoC can be best thought of as barriers amongst a group that prevent individual agents from proceeding 

until the group is at a synchronization point. Asynchronous models of computation occur when robotic 

agents are free to pursue their own individual objectives or missions at any time. The Smart Tile project 

has needs that fall along the gradient between these two extremes, and in this paper we’ll describe how 

trending toward SMoC is generally better for our implementation of system assurance in space. 

The third challenge is with portability (C3). The Smart Tile project, if successful, will lay groundwork for 

a long term mission in space. Over time, the Smart Tile will increase capabilities, have different vendors, 

and need to interoperate with other space systems. Without a portable infrastructure, and especially an open 

infrastructure, NASA or other space agencies would be tied to a single, possibly proprietary system that is 

not as extensible, more expensive, and detrimental toward community involvement. 

The fourth challenge (C4) is with assurance, namely in the formal verification, if possible, or validation of 

the system. Before investing billions of dollars in a space project, the project really needs to be verified as 

operationally feasible, safe, effective and secure. Security is probably the hardest thing to ever truly verify 

and not really the topic of this paper. However, the verification and validation of operational properties 

such as feasibility, safety and effectiveness in the target space environment is something we have made 

progress on via methods like Software Model Checking and other fields in formal methods like Statistical 

Model Checking. 

In this paper, we will present a software infrastructure roadmap and technologies for addressing these four 

core challenges in the large scale Multi-planetary Smart Tile project. In the context of the first challenge, 

we will discuss contributions of the Multi-Agent Distributed Adaptive Resource Allocation (MADARA) 

project for providing quality-of-service for agent communication in the context of a FDMA/CDMA 

protocol for multiplexing high numbers of chatty agents. For the second challenge, we will discuss the 

contributions of the authors to distributed symbiotic relationships and multi-agent management and 



prosecution with the Group Autonomy for Mobile Systems (GAMS) project. For the third challenge, we 

will talk about the extensibility options for algorithms, platforms and quality-of-service features of the two 

middlewares and how they fit into the community outreach aspect of the Smart Tile. For the fourth 

challenge, we will outline research and results into the verification of the Smart Tile group intelligence 

using Software Model Checking via the Distributed Adaptive Real-Time (DART) project and via Statistical 

Model Checking techniques from the Statistical Model Checking (SMC) for Swarms project at Carnegie 

Mellon University. 

3. Related Work 
Software architectures tend to refer to high level structures of software systems and also to the process of 

creating and documenting such structures. The concept of software architectures has been around for a long 

time and can generally be divided into two main categories in modern computing: service-oriented 

architectures and middleware.  

Service-oriented architectures are often RESTful, a concept popularized by services and websites on the 

internet. RESTful architectures are generally scalable, given appropriate cluster hardware, have well 

supported standards, and integrate well with the TCP protocols used on the internet because they are 

stateless and expect reliable communication. RESTful service-oriented architectures have been used in 

satellite-based systems before [2]. Unfortunately, RESTful services can be difficult to use in space because 

of the blocking semantics of the underlying TCP protocols that are frequently used, as these tend to break 

once communication is lost to earth, and also because satellites/space systems tend to have low powered 

CPUs instead of the high powered CPUs in clusters that can launch and run many threads—an important 

part of RESTful architectures that is essential to scalability. We expect disconnections and communication 

failures to happen frequently with the later phases of the Multi-planetary Smart Tile, so RESTful services 

do not appear to be an appropriate software architecture for our multi-agent system that may operate in very 

remote parts of the solar system. 

Middleware is a programming technique that provides software layers between an operating system and a 

developer application that facilitates rapid development of systems. Middleware is very common in 

networked and distributed application development paradigms and tools, including CORBA, DDS [12], 

ROS [13], etc. Some of these middlewares have even been used in space systems [11]. However, 

middleware usage in satellites is limited, and most space system software is monolithic, specialized to the 

hardware, and brittle. Our approach includes a portable middleware that should be appropriate for most 

space systems, including the Multi-planetary Smart Tile. 

4. Solution Approach 

4.1 The Smart Tile’s Phase 1 Hardware 
The Smart Tile is being developed in multiple mission phases, with the first phase being targeted at simple 

low-earth orbit (LEO) deployments of basic functionalities. Later phases are intended to be more robust 

and expensive and include energy beaming technologies, localization equipment, and advanced electro-

magnetic antennas for missions to the Moon and Mars. The first phase, which is expected to be deployed 

in LEO in 2017, needs only communication between six tiles over short-range Wifi radios in space and a 

long range radio that supports communication with ground crew. The main hardware components of interest 

to the software architecture in the Phase 1 mission are listed in Table 1. 



 

Table 1. Smart Tile Phase 1 Hardware Components 

ID Part Function 

1 Iridium 9630N SBD Modem Long-Range Communication 

2 Raspberry Pi 3 Computation and Short-Range 

Communication 

3 Sandisk 16GB microSD Industrial Long-Term Storage 

4 5V 160mA Polycrystalline Solar Cell PV Power Generation 

5 3.7v 500mAh Lithium Ion Polymer Battery Battery 

6 TI 16bit Ultra-low-power Microcontroller Sensor Controller 

 

Unlike later mission phases, the Phase 1 Smart Tile has no locomotion mechanism after being deployed. 

The Phase 1 Smart Tile instead communicates between other Smart Tiles in LEO orbit and also updates a 

ground station through the Iridium satellite network.  

Each of the parts in the  

Table 1 listing creates issues with scale, timing, and assurance (e.g., the Sensor Controller is not really 

appropriate for managing network connections from many agents due to memory and processing power 

constraints, which is why we have included a dedicated higher-powered computer, the Raspberry Pi 3, that 

will be hardened for space). To complicate the situation further, these hardware components are 

intermediaries, and none of these are likely to be present in the later mission phases of the Smart Tile 

concept. Consequently, software portability is important in order to support arbitrary future hardware 

configurations. 

4.2 Software Architecture Overview 
We have developed two core middleware projects to support distributed systems at scale. The first 

middleware is called the Multi-Agent Distributed Adaptive Resource Allocation (MADARA) project [7] 

and provides autonomous systems with a distributed knowledge base, network transports for updating 

knowledge, portable application threads, and scalable reasoning services. The second middleware is called 

the Group Autonomy for Mobile Systems (GAMS) project [1, 5] and provides autonomous systems with 

interfaces for single agent and multi-agent algorithms, hardware actuators and sensors, and full integration 

with the MADARA project for knowledge, threading, and reasoning. The integration of these two 

middlewares is shown in Figure 1. 



 

Figure 1. GAMS and MADARA Middleware Integration 

The GAMS project is built directly atop MADARA, so it inherits or uses all of its features. For the purposes 

of programming the Smart Tile, developers create an application that manages a Monitor, Analyze, Plan, 

and Execute with Knowledge (MAPE-K) controller. The controller is instantiated with a Smart Tile 

platform appropriate for the hardware installed on the Smart Tile. For example, on the Phase 1 Smart Tile, 

a platform is provided to the developer that can query the battery level available in the Lithion Ion Polymer 

Battery or can disable or enable the Iridium 9630N Modem. 

The developer also creates or uses a single agent or multi-agent algorithm. Algorithms contain analyze, 

plan, and execute methods (components of the MAPE-K loop) that are evaluated by the MAPE-K controller 

at appropriate times. The controller is extensible, but the default behavior provides consistency and quality-

of-service mechanisms that are important for assurance techniques that will be discussed later in this paper. 

Developers can start concurrent threads within inherent consistency and quality-of-service properties that 

are bound to either the algorithm or the hardware platform’s instantiation. 

In addition to the MAPE-K control loop, which essentially executes a predictable finite state machine within 

a distributed system, developers can also program in a reactive model using MADARA events. MADARA 

events are user code callbacks that occur during I/O operations on the agent (in this case, the application 

running on the Smart Tile). These user code callbacks events can be on-receive, on-send, and on-rebroadcast 

operations. 

Because we are using the Raspberry Pi 3 as our core computer, we have many options for operating systems 

(OSes), including real-time kernels such as rtlinux with CONFIG_PREEMPT_RT options compiled in. As 

of the writing of this paper, the final OS for the Phase 1 Smart Tile has not been decided, though rtlinux is 

our recommended candidate and is supported by MADARA and GAMS. 

4.3 Mapping Software Architecture Features to Challenges 
MADARA and GAMS were built to provide scalability and quality-of-service (QoS) to group intelligence 

(Challenge C1). MADARA provides scalable, feature-rich knowledge, threading and networking services 

to autonomy developers. GAMS provides interfaces and models for fine-grained control over single agent 

and multi-agent algorithms that interact with a hardware platform, in this case the hardware of the Multi-

Planetary Smart Tile. 



In terms of scalability, MADARA and GAMS have programming primitives and interfaces that allow for 

gigahertz processing rates on the Raspberry Pi 3 being used in the Phase 1 Smart Tile. MADARA uses 

UDP protocols to provide the networking infrastructure necessary to execute and monitor group 

intelligence. Not only does the usage of UDP increase scalability of group interactions, but unlike TCP and 

reliable, ordered history networking protocols required by other middlewares like the Robot Operating 

System (ROS) 1.0 and 2.0 [13], these UDP-based protocols are also designed for lossy networks and 

frequently dropped packets between agents within the group intelligence. This is a core feature that meets 

the need for control and consistent timing of the networked Smart Tile system in a hostile space 

environment (Challenge C2). 

MADARA is built on ACE, which is a well-supported middleware for networking that has been ported to 

most operating systems (OS) and processor architectures since the 1990s, including modern OSes like 

Android and MacOS. Consequently, the software architecture deployed on the Phase 1 Smart Tile is 

expected to be portable to any future platform that has a C++ compiler, effectively addressing Challenge 

C3.  

The MADARA and GAMS middlewares also provide consistency and QoS features that make assurance 

and formal verification possible (Challenge C4), even in distributed systems in difficult networking 

environments like the Smart Tile in space. The key features that enable these assurance qualities are in the 

networking and threading layers of MADARA. 

Networking in MADARA is kept consistent and predictable by a system of Lamport clocks enforced on 

each knowledge record and in the aggregation of knowledge record updates. For verification techniques, 

these clocks provide predictable guarantees about when and what updates will be applied to the knowledge 

base, even in the presence of dropped packets. Threads created in MADARA have timing epochs enforced 

for not only the finite-state-machine-like execution in the GAMS MAPE-K controller, but also in network 

read threads and other threads started by algorithms and platforms. Additionally, QoS features like 

bandwidth filtering provide assurance against overusing network bandwidth in transports like the one over 

the Iridium 9630N SBD Modem in the Phase 1 Smart Tile. 

4.4 Building Applications for the Smart Tile 
The primary method of programming the Smart Tile is to create a GAMS algorithm which interacts with a 

Smart Tile platform and a MADARA knowledge base. GAMS algorithms extend the 

gams::algorithms::BaseAlgorithm class and implement three methods: analyze, plan, and execute. 

Algorithms are compiled into native binary formats on the Smart Tile before it is deployed and a custom 

factory method is implemented and registered with the MAPE-K controller to allow for remotely starting 

the algorithm or for including the algorithm execution as part of a preprogrammed algorithm sequence. 

Smart Tile applications communicate with each other by modifying records in the provided MADARA 

knowledge base. These modifications are aggregated together into update messages that are sent to other 

Smart Tiles in the network. 

The underlying network protocol is UDP and consequently unreliable in delivery. If synchronization of 

knowledge is important, the algorithm updates or remodifies important knowledge so that it is resent to the 

other Smart Tiles in the network. For true reliability, acknowledgements should be sent by receivers and 

checked on the sender side of client applications. 

Each Smart Tile populates its knowledge base with information about status (e.g., algorithm status, the 

orientation of the tile, etc.), and algorithms react to the statuses of other Smart Tiles in the network by 

looking for information in predefined variables in the knowledge base. The Smart Tiles each have a unique 



identifier for its status variables. By default, this unique identifier is a prefix in the knowledge base that 

starts with agent.id, where id is a number or unique string that identifies the agent. The Smart Tile identified 

as agent.11 would store its location in the agent.11.location variable and can store its battery level in the 

agent.11.battery variable. 

Location can be a Cartesian grid, GPS position, etc., and GAMS features a pose system that allows for 

translations between arbitrary reference frames (e.g., a virtual Cartesian overlay from a GPS spherical grid). 

Multi-functional device information would also be populated into the agent prefix in the knowledge base, 

so the information on actuators and sensors can be shared as needed or relevant to other Smart Tiles 

participating in a group mission. 

Algorithms look at such variables in the knowledge base and can respond according to the objectives of the 

algorithm. For multi-functional systems, such as later phase Smart Tiles, status information for functional 

actuators and sensors can be populated within the agent prefix in the knowledge base to inform internal and 

external processes on the state of the individual robotics system or even the collaboration of synergetic 

Smart Tiles that are using each other’s actuators and sensors for common tasks and algorithms. 

4.5 Verifying Applications for the Smart Tile 
Verifying correct behavior in systems of distributed autonomous agents is extremely challenging.  Due to 

these challenges, Statistical Model Checking (SMC) [10, 14] has emerged as a key technique for 

quantitative analysis of stochastic systems. Given a stochastic system ℳ (such as a collection of Smart 

Tiles performing some task) depending on random input 𝑥, and a predicate Φ (e.g., that the system behaves 

“properly”), the primary goal of SMC is to estimate the probability 𝑃[ℳ ⊨ Φ] that Φ is satisfied in ℳ 

within some specified level of confidence (e.g., relative error). SMC, which is based on Monte-Carlo 

methods, has some major advantages over methods such as probabilistic model checking. It can be applied 

to larger and more complex systems, and to the actual system software rather than an abstract model of that 

software. Moreover, it can analyze a system as a “black box” observing only its inputs and outputs. 

While estimating the probability that a predicate holds is important, it is also important to understand the 

factors that contribute to that estimate. In our prior work [8] we refer to this as input attribution. An input 

attribution is a human-understandable quantitative model explaining the relationship between the random 

inputs and the specified predicate Φ (e.g., a mathematical expression of the input variables that predicts 

whether Φ will be satisfied). Input attribution is of invaluable use in helping the designer to better 

understand the sources of risk in a mission. Input attribution can essentially map environmental issues or 

algorithmic issues to mission failure, assuming the Smart Tile is modeled properly in Monte-Carlo 

simulations. 

We have also investigated a more exhaustive, state-space-exploration process called Software Model 

Checking to verify distributed systems built with the MADARA and GAMS middlewares [3, 4]. Software 

Model Checking is the algorithmic analysis of programs to prove properties of their execution and is based 

on decades of work in logic and theorem proving. Our version of the Software Model Checking approach 

is called Distributed Adaptive Real Time3 (DART) [9]. 

DART provides a language for distributed systems called DMPL that creates abstract descriptions of 

individual finite state machines and their interactions in a distributed system. A user encodes the distributed 

system using the DMPL language and this system model is generated into C++ code that links to the 

MADARA and GAMS middlewares. 
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This generated code is edited by the application developer with functionality and compiled using a formal 

verifying compiler. If successfully compiled, the result is executable on real systems or in simulations and 

is guaranteed to satisfy the properties verified by the formal verifying compiler. The executed code enforces 

a synchronous model of computation between the participating nodes or agents to ensure correct behavior. 

Because it is a synchronous computation, each node must maintain its mission state until each agent is ready 

to move to the next state in its finite state machine.  

Though using such a model of computation is powerful for assurance of safety and functionality, it can also 

be problematic in space systems where communication is not guaranteed. To get around these limitations, 

care must be taken to create a DMPL model that is not based on full collaboration between all participants 

but instead only synchronizes collaboration amongst local cliques that are in communication with each 

other. However, the holy grail of the DART idea is to be able to apply DART formal verifying compilation 

techniques to asynchronous models of computation, which is not yet a solved problem. 

5. Performance and Scalability 
Before deployment in LEO, the software architecture is being tested on similar hardware in laboratories on 

earth for scalability and throughput. In addition to real-world deployments tests with Platypus LLC Lutra 

boats in formations between five and twenty boats, we have been performing scalability tests in clusters of 

ARM processors that we expect to use on the Multi-planetary Smart Tile. Unfortunately, we were unable 

to acquire a cluster of Rapberry Pi 3s before this paper deadline. Instead, we report scalability tests of a 

similar candidate computer unit, the ODROID XU4. The ODROID XU4 features a Samsung Exynos5422 

Cortex-A15 2Ghz processor and 2 GB of LPDDR3 933MHz 32 bit RAM. We used a cluster of 20 ODROID 

XU4s connected via 100 MB cat5. 

Table 2. Per Agent Send and Receive Rates for 1KB packets of Knowledge in 20 ODROID XU4s 

Per Agent Operation Min Hz Max Hz Avg Hz 

Publish rate 500.00 517.30 507.46 

Receive rate 432.00 490.00 468.12 

Total Receive Rate 8,820.00 9,082.00 8,921.38 

 

Table 2 shows the observed publication rate for large aggregated knowledge packets (1 KB of knowledge 

in each packet) within each of the 20 ODROID XU4s. The GAMS controller was single threaded and the 

MADARA UDP multicast transport was configured to only use one receive thread. The software agents on 

each ODROID were set to bursting publication rates (essentially trying to send packets as fast as possible) 

over the Ethernet backbone. This can cause extreme thrashing within an operating system and Ethernet 

driver, but the MADARA transports handled the traffic quite well. 

The Phase 1 Smart Tile deployment is expected to only be six tiles, roughly one third this deployment, and 

the publish rates are expected to be much lower—between one and five hertz. So, we are handling orders 

of magnitude more hertz than Phase 1 requires of the Raspberry Pi 3. The average hertz processing power 

of each agent with only 1 read thread allocated appears to be 1486x what is needed for 1hz send rates in a 

six tile deployment and 297x what is needed for a 5hz send rate per agent. 1 KB packets are also way larger 

than those we have planned for any phase of the Smart Tile project. Our testing has shown that packets are 

between 150 and 250 bytes, depending on the implemented GAMS algorithm and what it needs to update. 



However, 140 bytes of this is the standard MADARA header, which has a lot of QoS-related settings. The 

MADARA standard reduced header removes much of the QoS-related information and results in a 30 byte 

header. If necessary to reduce network and operational overhead, we can remove all of this with a custom 

header and transport to reduce this to a maximum of 150 bytes with no real change to the knowledge 

marshelling and demarshelling process. 

These results show the raw throughput power available in the MADARA and GAMS middlewares for 

processing knowledge updates when communication is available in space. Because the MADARA 

middleware is asynchronous and focuses on robustness in the presence of dropped packets, algorithms can 

be designed to scale to even thousands of communicating tiles, assuming communication bandwidth is 

available and tiles are within communication range of each other.  

6. Conclusion 
In this paper, we have discussed the software architecture being developed for the Keck Institute Multi-

Planetary Smart Tile project. We presented four challenges to creating software for a multi-agent system in 

space, and we outlined our solution approach for scalability, quality-of-service, portability and verification. 

We are in the process of building prototypes of the Phase 1 Smart Tile, which is expected to deploy into 

low earth orbit in 2017, and the software architecture described in this paper should be part of that 

deliverable. Future work for the software architecture includes human interaction interfaces between ground 

and the multi-agent system in space as well as collaboration enhancements, such as consensus (e.g., voting 

and auctions) and machine learning primitives, for the autonomous Smart Tiles expected in Phase 2 and 

Phase 3 deployments to places farther from Earth with more autonomy and locomotion in the Smart Tiles. 
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