
High Assurance for Distributed Cyber Physical Systems
Scott A. Hissam, Sagar Chaki, Gabriel A. Moreno

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA

{shissam, chaki, gmoreno}@sei.cmu.edu

Abstract
Distributed Adaptive Real-Time (DART) systems are
interconnected and collaborating systems that continuously must
satisfy guaranteed and highly critical requirements (e.g., collision
avoidance), while at the same time adapt, smartly, to achieve best-
effort and low-critical application requirements (e.g., protection
coverage) when operating in dynamic and uncertain
environments. This short paper introduces our architecture and
approach to engineering a DART system so that we achieve high
assurance in its runtime behavior against a set of formally
specified requirements. It describes our technique to: (i) ensure
asymmetric timing protection between high- and low-critical
threads on each node in the DART system, and (ii) verify that the
self-adaptation within, and coordination between, the nodes and
their interaction with the physical environment do not violate high
and low criticality requirements. We present our ongoing research
to integrate advances in model-based engineering with
compositional analysis techniques to formally verify safety-
critical properties demanded in safety-conscious domains such as
aviation and automotive; and introduce our DART model problem
to demonstrate of our engineering approach.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems; D.2.2 [Software Engineering]:
Design Tools and Techniques; D.2.4 [Software Engineering]:
Software/Program Verification; D.2.11 [Software Engineering]:
Software Architectures – Domain-specific architectures.

General Terms
Algorithms, Design, Reliability, Languages, Verification.

Keywords
Real-time, architecture, model-checking, self-adaptation.

1. Introduction
Testing and verification, be it statistical or formal, is a founding
tenet of all engineering disciplines, including software.
Regardless, NIST reported in 2002 that software errors cost the
US economy nearly US$60 billion [1]. That isn’t because of
failures in testing or verification alone, but is because of a
systemic error or disconnect (then as it is now) in how software-
intensive systems are engineered (“from beginning to ‘failure’”).
The failure is in the integration of all the sub-disciplines that need

to be integrated at the time a system is conceived from inception
to transition, and into the system’s execution in the physical
world. It is here, in the physical world, where resiliency in the
face of uncertainty needs to be handled adequately and safely—
something that cannot be exhaustively tested a priori.

Disastrous failures in embedded systems which interact with the
physical world (such as Therac-25, Swedish JAS 39 Gripen,
Boeing V-22 Osprey, and Airbus A320-200) have demonstrated
the consequences of not adequately verifying the correctness of
the software. Embedded systems with critical runtime properties
are becoming increasingly distributed, consisting of
interconnected nodes (i.e., multi-agent) that collaboratively
provide more capability. Furthermore, to achieve their goals even
when operating autonomously in uncertain environments, they
will have to be self-adaptive. However, coordination, adaptation,
and uncertainty pose key challenges for assuring the safety and
application-critical behavior of such Distributed Adaptive Real-
Time (DART) systems. These challenges are exemplified by:

• Timeliness: performing the right function, and doing so at the
right time;

• Resource constraints: limits with respect to power, weight,
bandwidth, connectivity, processing capacity;

• Sensor rich: sensing the physical world with sensors that have
varying fidelity and can fail;

• Cyber-physical interactions: the physical world is continuous
and the digital interface cannot account for everything;

• Autonomous behavior: adapting smartly to events within an
agent (e.g., failure), between agents (e.g., loss of a peer) and
external (e.g., unexpected obstacle);

• Computationally complex decisions: number of interacting
agents and co-dependent decisions made in real-time without
causing interference.

We present our ongoing research to integrate compositional
analysis techniques with model-based engineering to address
these challenges, describe the DART architecture, and introduce
our DART model problem, which serves as an end-to-end
demonstration of our integrated engineering approach. The end
goal is to enable engineering of high-assurance DART systems for
safety-conscious systems.

2. Related Work
Since the 1980’s, research and development in the fields of
Computer-aided Software Engineering (CASE), Model-based
engineering (MBE), Model-driven engineering (MDE), Model-
centric software engineering (MCSE), and others have attempted
to leverage and integrate techniques for requirements,
environment specification, architecture definition, domain-
specific languages, design patterns, code-generation, analysis,
test-generation, simulation, and emulation to support system
development [2]. Further, Schmidt recognized the challenges to
MBE (generalized to all such approaches) to include

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ECSAW '15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
© 2015 ACM. ISBN 978-1-4503-3393-1/15/09…$15.00
DOI: http://dx.doi.org/10.1145/2797433.2797439

synchronization between the models and source code, debugging
at the model level, expression of the design intent, and quality of
service properties and the certification of safety properties [2].

Wallnau’s work on predictability by construction [3] made two
notable contributions with respect to these challenges. The first
was treating quality attributes (non-functional requirements such
as real-time performance and safety) as a new type of program
property that is checkable at compile time. The second
contribution was a component language demonstrating the
capacity to (a) generate and evaluate an analytic model of a
system suitable for quality attribute analysis; and (b) generate
executable code for the system if its analytic model did not violate
its quality attribute requirements as determined by quality-
attribute-specific analyses [4][5]. The intent for this work was to
narrow the gap between design-time artifacts (architecture and
design specifications, quality-attribute-specific analytic models)
and the implementation, through automation and the enforcement
of those specifications in the generated code.

Feiler and Gluch’s work on the SAE Architecture Analysis &
Design Language (AADL) is used to model both software and
hardware for embedded, software-reliant systems [6]. It supports
MBE analysis practices, encompassing software system design,
integration, and assurance. Furthermore, AADL is extensible to
additional analysis and specification techniques necessary for
domain-specific application.

3. DART System
DART systems are interconnected and collaborating systems that
continuously must satisfy guaranteed and highly critical
requirements, while at the same time adapt, smartly, to achieve
best-effort and low-critical application requirements when
operating in dynamic and uncertain environments.

In this section we describe the runtime architecture and model of
computation (MOC) for a collection of agents (i.e., nodes) in a
DART system, the role of self-adaption, and the model problem
which serves as the context for verifying the critical properties of
the demonstration application.

3.1 Architecture and MOC
The runtime architecture of a DART system used in our approach
is shown in Figure 1. A DART system consists of a finite set of
physically separate nodes communicating wirelessly. The
software on each node consists of three layers – application,
middleware, and real-time scheduler – running on an OS.

At the top, the application consists of a set of high-critical threads
(HCTs) and low-critical threads (LCTs). All threads are real-time
and periodic, scheduled with fixed-priority Zero Slack Rate
Monotonic (ZSRM) [9] scheduling. ZSRM scheduling ensures
that HCTs (which implement guaranteed requirements) do not
miss deadlines (by starving LCTs if needed) even under overload
conditions. This asymmetric temporal protection between HCTs
and LTCs is crucial for the valid use of software model checking
(SMC) to ensure functional correctness of HCTs, since SMC
assumes that HCTs never miss deadlines.

The application threads (both within and across nodes)
communicate via shared variables. The MADARA middleware, at
the next software layer, provides the necessary distributed shared
variable abstraction [10]. Values written to a shared variable by a
node are propagated via network messages to the remaining
copies of the variable at the other nodes. Lamport clocks are used
by MADARA to ensure that reads and writes to shared variables
occur in a sequentially consistent manner. Again, precise memory
consistency is needed for the sound application of functional
verification techniques.

At the lowest level is the ZSRM scheduler which provides correct
runtime enforcement of asymmetric temporal protection between
HCTs and LCTs. It also schedules the special thread used by
MADARA on each node to update values of shared variables
received from other nodes. Finally, the ZSRM scheduler provides
criticality-and-priority-inversion-preventing mutex mechanisms to
“lock” the shared variables.

Such locking is needed to implement our DART MOC which
works as follows. At the beginning of each period, a thread locks
all shared variables, reads their values, and releases the lock. It
then computes new values of shared variables by executing the
corresponding thread function. Finally, the thread locks the shared
variables again, updates their values, and releases the lock. Thus,
our MOC is designed such that each periodic execution of a
thread is semantically equivalent to a transaction. This reduces the
system statespace and improves tractability of verification.

3.2 Self-Adaptation
Adaptation is a key aspect of DART systems that is required to
deal with different mission stages and environment conditions.
For the kinds of missions that these systems will carry out, there
are elements of the environment where they will operate that
cannot be known before mission execution. For example, in the
DART model problem (described in the next section), it is not
possible to know beforehand what the threat level of the different
areas the swarm will go through is going to be. Instead, these
environment conditions are discovered as the mission progresses;
and even then, knowledge about them is subject to uncertainty.
Therefore, the system must self-adapt at run time as it is not
possible to plan adaptations in advance.

We argue that self-adaptation in DART systems has to be
proactive for two reasons. First, adaptations requiring
coordination and/or physical actuation may take time (e.g., a
formation change), so they have to be started proactively. Second,
adaptation decisions taken at any point impact future outcomes
(e.g., adaptation resulting in higher fuel consumption reduces
range). Thus, adaptation decisions must take into account not only
the immediate conditions, but also expected near future needs.

Our approach to self-adaptation in DART is based on the explicit
monitor-analyze-plan-execute (MAPE) control loop [7]. Although
our end goal is to further decentralize the different steps of the
loop, initially we are using the master/slave pattern for
decentralized control, in which the analysis and planning steps are
centralized, whereas the monitoring and execution steps are
decentralized [13]. In particular, the knowledge that adaptation
decisions are based on, and the communication of adaptations to
be executed are captured by the MADARA middleware in the
DART architecture. The analysis and planning steps implement
the core of the proactive self-adaptation using an approach that
deals with the latency of adaptations and with environment
uncertainty [12].

Figure 1: DART Runtime Architecture

3.3 Model Problem
The model problem involves collaborating swarms of autonomous
agents (i.e., UAVs) that require both guaranteed, and best-effort
requirements. Figure 2 depicts two fleets of agent-based swarms,
each having independent objectives but sharing the same goal
(e.g., search and rescue). The swarm is made up of a number of
agents. Agents within the swarm must collaborate to maintain
separation so as not to collide with one another (a critical safety-
property) while maintaining a formation so as to best protect a
leader (a best-effort property) during the time it takes to reach
objectives along the swarm’s route. We consider the distributed
algorithm to maintain physical separation the highly critical
property to be guaranteed, and the protection property to be the
low(er) criticality property we also want to satisfy. In all cases,
the real-time high-critical deadlines cannot be missed.

4. DART Software Engineering Approach
The approach to engineering a DART system verifies that the
safety-critical properties of the system are not violated, and are
assured by objective evidence. Thus, the DART approach focuses
on the artifacts that are produced during the construction process
and the type of analyses conducted on those artifacts.

From a tooling perspective, DART seeks an Integrated
Development Environment (IDE) that supports the specification
of safety-critical and quality-attribute requirements, architecture
and code design elements, tests (both unit and integration), along
with code generation, compilation, deployment and debugging.
Further, it is necessary to be able to trace such specifications
backwards and forward through all the transformations supported
by the IDE.

The DART software engineering approach is integrating:

• Mixed-criticality analysis to verify the asymmetric timing
protection and schedulability of threads with different criticality
that share resources (e.g., CPU(s)) in a single node [9];

• Domain-specific language (DSL) and safety specification
notation for distributed applications comprising multiple nodes
[10] with higher-level architecture descriptions in AADL;

• Model-driven verifying compilation system which generates
C++ code if the safety properties specified for the application
are verified successfully by a software model checker [10];

• Proactive, latency-aware self-adaptation mechanism as a means
for assuring resiliency when dealing with planned mode

changes and unexpected events from the physical environment
during runtime [12];

• Statistical model checking for computing the bounded
probability that best-effort properties of the system are within
the application’s requirements despite the stochastic behavior of
the environment [11].

A complete demonstration of an integrated approach to
engineering a DART system is staged in two phases. The first
phase is to use the analysis techniques listed above and
incrementally improve upon them to address their respective
limitations when applied to a DART system. The second phase
will use the lessons from those improvements to drive
requirements and improvements (or extension) to AADL (i.e.,
ALISA1, a plug-in currently under development for AADL’s IDE)
so that safety-critical properties such as the ones verified during
the first phase can be properly encoded and traced through
AADL’s IDE during the end-to-end engineering of a complete
DART system.

Figure 3 shows the initial tool chain for Phase 1. The tools and
techniques are founded on those discussed in [9] through [12].
System level specifications are encoded in our domain-specific
language from [10]. Specification of application level
requirements, and the environment come from subject matter
experts. Initially, that is manually crafted into our DSL so that the
necessary verification steps can be performed. In Phase 2, the plan
is to encode and formalize that knowledge in AADL.

Continuing in Figure 3, each verification tool takes its respective
inputs from the specifications to perform the analysis (i.e., timing,
functional, and probabilistic). If verification fails, a trace back to
the specification(s) that formed the basis for a failed check is
identified. Here, verification takes these three forms:

• Mixed-criticality temporal protection mechanisms between
runtime threads hold; passing these checks means that real-time
deadlines for high-critical tasks are guaranteed to be met;

• Guaranteed property: physical separation among multiple
agents; passing these checks mean that the invariants for the
collision avoidance algorithm used by the swarm hold;

• Best-effort property: agents provide adequate physical
protection to the leader in a probabilistic environment; passing
these checks mean that over a given mission time, the
probability of mission failure due to insufficient protection is
below a specified threshold.

1 ALISA supports the specification of goals, requirements, and

claims; concepts of obstacles, hazards, vulnerabilities,
challenges, and defeaters; and concepts of static analysis,
verification activity, evidence, and counter evidence.

Figure 2: Context for DART Model Problem

Figure 3: Abstract Tool Chain for DART (Phase 1)

Code is generated for the target hardware platform after passing
the verification checks (see Figure 4). It includes all the functional
code (allocated to one or more threads as identified from the
specification), and interfaces to the underlying operating system
scheduler and networking services. Additionally, monitoring code
supporting each of the requirements is generated:

• Guaranteed requirement: when the ASSERT() generated from
the require() property could not be verified (due to
scalability limits of the model checker). However, no
monitoring code is generated if the property is verified;

• Best-effort requirement: when the variables used to evaluate the
expect() property specification that are also used by the self-
adaptation mechanism are passed to the adaptation manager’s
monitoring interface.

For properties that require analysis across variables spanning
more than one node (e.g., the require (FORALL_NODE_PAIRS)
node specification in Figure 4), it is impractical to share those
variables across those nodes at runtime—for now, no monitoring
code for the target platform is generated in those cases. In the case
that a property is deemed intractable and node-spanning, this
generates a warning that would need to be addressed by a human,
requiring changes in requirements or design.

The initial self-adaptation mechanism for the model problem deals
mainly with the decision to change the formation of the swarm.
Different formations provide tradeoffs between different qualities
(e.g., protection vs. speed), which are desired for different stages
of the mission. The adaptation mechanism must deal not only with
planned mission events, but also with uncertain environment
conditions (e.g., an unplanned forest fire that is on the current
route must be avoided).

5. DART Future Work
Both phases are intended to build upon the properties that can be
verified for the individual agent as well as the composed swarm of
agents. In Phase 2 our work will be extended to properties that can
be verified among the fleet of swarms. Further, we expect to:

• Encode our DSL as AADL requirement specifications which are
then mapped to generated specifications for both analytic
models and code, and to support debugging and back tracing;

• Use the architectural models that are already in our approach to
do architecture-based self-adaption as in Rainbow [8];

• Introduce additional adaptation tactics and machine learning for
the adaption manager;

• Support asynchronous multi-agent coordination in guaranteed
behavior as it applies to unbounded checks;

• Reduce the total number of samples needed for a given level of
precision for statistical model checking.

Finally, more research is needed to scale our approach to more
numerous, interconnected critical systems.

6. Acknowledgments
This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and
development center. This material has been approved for public
release and unlimited distribution. DM-0002510

7. References
[1] Tassey, G., “The Economic Impacts of Inadequate

Infrastructure for Software Testing ”, Technical Report NIST
2002-10, National Institute of Standards and Technology,
May 2002.

[2] Schmidt, D.C., "Guest Editor's Introduction: Model-Driven
Engineering," IEEE Computer 39 (2), Feb. 2006.

[3] Wallnau, K.C., "Predictability by Construction: Working the
Architecture/Program Seam," Mälardalen University Press
Dissertations, No. 85, Sept, 2010.

[4] Moreno, G.A., Hansen, J., “Overview of the Lambda-star
Performance Reasoning Frameworks.” CMU/SEI-2008-TR-
020, Software Engineering Institute, Carnegie Mellon
University, Feb. 2008.

[5] Chaki, S., Ivers, J., Sharygina, N., Wallnau, K. “The Comfort
Reasoning Framework”. 17th International Conference on
Computer Aided Verification, Springer, LNCS, vol. 3576,
July 2005.

[6] Feiler, P.H., Gluch, D.P., “Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis &
Design Language,” Addison-Wesley Professional, 2012.

[7] Kephart, J.O., Chess, D.M., "The Vision of Autonomic
Computing." Computer 36.1 (2003): Jan. 2003.

[8] Garlan, D.; Schmerl, B.; Cheng, S-W. "Software
Architecture-based Self-adaptation." In Autonomic
computing and networking, Springer, 2009.

[9] de Niz, D.; Lakshmanan, K.; Rajkumar, R., "On the
Scheduling of Mixed-Criticality Real-Time Task Sets," Real-
Time Systems Symposium, 2009, RTSS 2009. 30th IEEE,
Dec. 2009.

[10] Chaki, S., Edmondson, J., “Model-Driven Verifying
Compilation of Synchronous Distributed Applications,”
Model-Driven Engineering Languages and Systems
(MODELS), Springer, LNCS, vol. 8767, Oct. 2014.

[11] Hansen, J.P., Wrage, L., Chaki, S., de Niz, D., Klein, M.,
“Semantic Importance Sampling for Statistical Model
Checking,” Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Springer, LNCS, Apr. 2015.

[12] Moreno, G.A., Camara, J., Garlan, D. & Schmerl, B.
“Proactive Self-Adaptation under Uncertainty: a Probabilistic
Model Checking Approach.” European Software Engineering
Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE) Sept. 2015 (to appear).

[13] Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola,
R., Prehofer, C., & Göschka, K. M. “On patterns for
decentralized control in self-adaptive systems.” In Software
Engineering for Self-Adaptive Systems II. Springer Berlin
Heidelberg, Jan 2013.

Figure 4: Code Generation based on Specifications and
Analysis

@HERTZ(8)
@CRITICALITY(HIGH)
@WCET_NOMINAL(2.5)
@WCET_OVERLOAD(5.0)
@BARRIER_SYNC
...
void collision_avoid() {
// Operates on X & Y

}
...
require(FORALL_NODE_PAIR
(id1, id2,
x@id1 != x@id2 ||
y@id1 != y@id2));

require(InBounds(X,Y);
...
@AT_LEAST(0.8)
expect(COVER() >= 0.9)
else {

// Adapt
};

...

Node Specification in a DSL Analysis & Verification

Z
S

R
M

 t
im

in
g

C
B

M
C

 m
o

d
el

V
R

E
P

 m
o

d
el

*

Target Code Gen.

read shared context
ASSUME (local constraints)

Do collision_avoid()
ASSERT (local changes)

Write shared context

log (COVER() variables)
Do collision_avoid()

Perform offline
statistical analysis
of logged data

*multiple repetitions

attr.period_msec = 125;
attr.Cmon_msec = 2.5;
attr.Cover_msec = 5.0;
attr.criticality = HIGH;
attr.zs_instant_nsec =

zsinst[“coll_avoid”];
zs_reserve(&attr);

int loc_X = ShrRead(X);
int loc_Y = ShrRead(Y);

// Do coll_avoid logic

if(!(InBounds(loc_X,
loc_Y))

// Handle Fault

AdaptManager(COVER());

ShrWrite(X).set(loc_X);
ShrWrite(Y).set(loc_Y);

T: <other>
Period: 4
C_nom: 2.0
C_over: 2.0
Crit: Low
Pri: High

T: coll_av
Period: 8
C_nom: 2.5
C_over: 5.0
Crit: High
Pri: Low

2.0 1.0

2.0 0.5

1.0

2.5

t=0 t=4 t=8

Schedule for C_nom

Schedule for C_over

C

C

Zero slack

