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Abstract 
Distributed Adaptive Real-Time (DART) systems are 
interconnected and collaborating systems that continuously must 
satisfy guaranteed and highly critical requirements (e.g., collision 
avoidance), while at the same time adapt, smartly, to achieve best-
effort and low-critical application requirements (e.g., protection 
coverage) when operating in dynamic and uncertain 
environments. This short paper introduces our architecture and 
approach to engineering a DART system so that we achieve high 
assurance in its runtime behavior against a set of formally 
specified requirements. It describes our technique to: (i) ensure 
asymmetric timing protection between high- and low-critical 
threads on each node in the DART system, and (ii) verify that the 
self-adaptation within, and coordination between, the nodes and 
their interaction with the physical environment do not violate high 
and low criticality requirements. We present our ongoing research 
to integrate advances in model-based engineering with 
compositional analysis techniques to formally verify safety-
critical properties demanded in safety-conscious domains such as 
aviation and automotive; and introduce our DART model problem 
to demonstrate of our engineering approach. 

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems; D.2.2 [Software Engineering]: 
Design Tools and Techniques; D.2.4 [Software Engineering]: 
Software/Program Verification; D.2.11 [Software Engineering]: 
Software Architectures – Domain-specific architectures. 

General Terms 
Algorithms, Design, Reliability, Languages, Verification. 

Keywords 
Real-time, architecture, model-checking, self-adaptation. 

1. Introduction 
Testing and verification, be it statistical or formal, is a founding 
tenet of all engineering disciplines, including software. 
Regardless, NIST reported in 2002 that software errors cost the 
US economy nearly US$60 billion [1]. That isn’t because of 
failures in testing or verification alone, but is because of a 
systemic error or disconnect (then as it is now) in how software-
intensive systems are engineered (“from beginning to ‘failure’”). 
The failure is in the integration of all the sub-disciplines that need 

to be integrated at the time a system is conceived from inception 
to transition, and into the system’s execution in the physical 
world. It is here, in the physical world, where resiliency in the 
face of uncertainty needs to be handled adequately and safely—
something that cannot be exhaustively tested a priori. 

Disastrous failures in embedded systems which interact with the 
physical world (such as Therac-25, Swedish JAS 39 Gripen, 
Boeing V-22 Osprey, and Airbus A320-200) have demonstrated 
the consequences of not adequately verifying the correctness of 
the software. Embedded systems with critical runtime properties 
are becoming increasingly distributed, consisting of 
interconnected nodes (i.e., multi-agent) that collaboratively 
provide more capability. Furthermore, to achieve their goals even 
when operating autonomously in uncertain environments, they 
will have to be self-adaptive. However, coordination, adaptation, 
and uncertainty pose key challenges for assuring the safety and 
application-critical behavior of such Distributed Adaptive Real-
Time (DART) systems. These challenges are exemplified by: 

• Timeliness: performing the right function, and doing so at the 
right time; 

• Resource constraints: limits with respect to power, weight, 
bandwidth, connectivity, processing capacity; 

• Sensor rich: sensing the physical world with sensors that have 
varying fidelity and can fail; 

• Cyber-physical interactions: the physical world is continuous 
and the digital interface cannot account for everything; 

• Autonomous behavior: adapting smartly to events within an 
agent (e.g., failure), between agents (e.g., loss of a peer) and 
external (e.g., unexpected obstacle); 

• Computationally complex decisions: number of interacting 
agents and co-dependent decisions made in real-time without 
causing interference. 

We present our ongoing research to integrate compositional 
analysis techniques with model-based engineering to address 
these challenges, describe the DART architecture, and introduce 
our DART model problem, which serves as an end-to-end 
demonstration of our integrated engineering approach. The end 
goal is to enable engineering of high-assurance DART systems for 
safety-conscious systems. 

2. Related Work 
Since the 1980’s, research and development in the fields of 
Computer-aided Software Engineering (CASE), Model-based 
engineering (MBE), Model-driven engineering (MDE), Model-
centric software engineering (MCSE), and others have attempted 
to leverage and integrate techniques for requirements, 
environment specification, architecture definition, domain-
specific languages, design patterns, code-generation, analysis, 
test-generation, simulation, and emulation to support system 
development [2]. Further, Schmidt recognized the challenges to 
MBE (generalized to all such approaches) to include 
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synchronization between the models and source code, debugging 
at the model level, expression of the design intent, and quality of 
service properties and the certification of safety properties [2]. 

Wallnau’s work on predictability by construction [3] made two 
notable contributions with respect to these challenges. The first 
was treating quality attributes (non-functional requirements such 
as real-time performance and safety) as a new type of program 
property that is checkable at compile time. The second 
contribution was a component language demonstrating the 
capacity to (a) generate and evaluate an analytic model of a 
system suitable for quality attribute analysis; and (b) generate 
executable code for the system if its analytic model did not violate 
its quality attribute requirements as determined by quality-
attribute-specific analyses [4][5]. The intent for this work was to 
narrow the gap between design-time artifacts (architecture and 
design specifications, quality-attribute-specific analytic models) 
and the implementation, through automation and the enforcement 
of those specifications in the generated code. 

Feiler and Gluch’s work on the SAE Architecture Analysis & 
Design Language (AADL) is used to model both software and 
hardware for embedded, software-reliant systems [6]. It supports 
MBE analysis practices, encompassing software system design, 
integration, and assurance. Furthermore, AADL is extensible to 
additional analysis and specification techniques necessary for 
domain-specific application. 

3. DART System 
DART systems are interconnected and collaborating systems that 
continuously must satisfy guaranteed and highly critical 
requirements, while at the same time adapt, smartly, to achieve 
best-effort and low-critical application requirements when 
operating in dynamic and uncertain environments. 

In this section we describe the runtime architecture and model of 
computation (MOC) for a collection of agents (i.e., nodes) in a 
DART system, the role of self-adaption, and the model problem 
which serves as the context for verifying the critical properties of 
the demonstration application. 

3.1 Architecture and MOC 
The runtime architecture of a DART system used in our approach 
is shown in Figure 1. A DART system consists of a finite set of 
physically separate nodes communicating wirelessly. The 
software on each node consists of three layers – application, 
middleware, and real-time scheduler – running on an OS. 

At the top, the application consists of a set of high-critical threads 
(HCTs) and low-critical threads (LCTs). All threads are real-time 
and periodic, scheduled with fixed-priority Zero Slack Rate 
Monotonic (ZSRM) [9] scheduling. ZSRM scheduling ensures 
that HCTs (which implement guaranteed requirements) do not 
miss deadlines (by starving LCTs if needed) even under overload 
conditions. This asymmetric temporal protection between HCTs 
and LTCs is crucial for the valid use of software model checking 
(SMC) to ensure functional correctness of HCTs, since SMC 
assumes that HCTs never miss deadlines. 

The application threads (both within and across nodes) 
communicate via shared variables. The MADARA middleware, at 
the next software layer, provides the necessary distributed shared 
variable abstraction [10]. Values written to a shared variable by a 
node are propagated via network messages to the remaining 
copies of the variable at the other nodes. Lamport clocks are used 
by MADARA to ensure that reads and writes to shared variables 
occur in a sequentially consistent manner. Again, precise memory 
consistency is needed for the sound application of functional 
verification techniques. 

At the lowest level is the ZSRM scheduler which provides correct 
runtime enforcement of asymmetric temporal protection between 
HCTs and LCTs. It also schedules the special thread used by 
MADARA on each node to update values of shared variables 
received from other nodes. Finally, the ZSRM scheduler provides 
criticality-and-priority-inversion-preventing mutex mechanisms to 
“lock” the shared variables. 

Such locking is needed to implement our DART MOC which 
works as follows. At the beginning of each period, a thread locks 
all shared variables, reads their values, and releases the lock. It 
then computes new values of shared variables by executing the 
corresponding thread function. Finally, the thread locks the shared 
variables again, updates their values, and releases the lock. Thus, 
our MOC is designed such that each periodic execution of a 
thread is semantically equivalent to a transaction. This reduces the 
system statespace and improves tractability of verification. 

3.2 Self-Adaptation 
Adaptation is a key aspect of DART systems that is required to 
deal with different mission stages and environment conditions. 
For the kinds of missions that these systems will carry out, there 
are elements of the environment where they will operate that 
cannot be known before mission execution. For example, in the 
DART model problem (described in the next section), it is not 
possible to know beforehand what the threat level of the different 
areas the swarm will go through is going to be. Instead, these 
environment conditions are discovered as the mission progresses; 
and even then, knowledge about them is subject to uncertainty. 
Therefore, the system must self-adapt at run time as it is not 
possible to plan adaptations in advance. 

We argue that self-adaptation in DART systems has to be 
proactive for two reasons.  First, adaptations requiring 
coordination and/or physical actuation may take time (e.g., a 
formation change), so they have to be started proactively. Second, 
adaptation decisions taken at any point impact future outcomes 
(e.g., adaptation resulting in higher fuel consumption reduces 
range). Thus, adaptation decisions must take into account not only 
the immediate conditions, but also expected near future needs. 

Our approach to self-adaptation in DART is based on the explicit 
monitor-analyze-plan-execute (MAPE) control loop [7]. Although 
our end goal is to further decentralize the different steps of the 
loop, initially we are using the master/slave pattern for 
decentralized control, in which the analysis and planning steps are 
centralized, whereas the monitoring and execution steps are 
decentralized [13]. In particular, the knowledge that adaptation 
decisions are based on, and the communication of adaptations to 
be executed are captured by the MADARA middleware in the 
DART architecture. The analysis and planning steps implement 
the core of the proactive self-adaptation using an approach that 
deals with the latency of adaptations and with environment 
uncertainty [12]. 

Figure 1: DART Runtime Architecture 



3.3 Model Problem 
The model problem involves collaborating swarms of autonomous 
agents (i.e., UAVs) that require both guaranteed, and best-effort 
requirements. Figure 2 depicts two fleets of agent-based swarms, 
each having independent objectives but sharing the same goal 
(e.g., search and rescue). The swarm is made up of a number of 
agents. Agents within the swarm must collaborate to maintain 
separation so as not to collide with one another (a critical safety-
property) while maintaining a formation so as to best protect a 
leader (a best-effort property) during the time it takes to reach 
objectives along the swarm’s route. We consider the distributed 
algorithm to maintain physical separation the highly critical 
property to be guaranteed, and the protection property to be the 
low(er) criticality property we also want to satisfy. In all cases, 
the real-time high-critical deadlines cannot be missed. 

 

4. DART Software Engineering Approach 
The approach to engineering a DART system verifies that the 
safety-critical properties of the system are not violated, and are 
assured by objective evidence. Thus, the DART approach focuses 
on the artifacts that are produced during the construction process 
and the type of analyses conducted on those artifacts. 

From a tooling perspective, DART seeks an Integrated 
Development Environment (IDE) that supports the specification 
of safety-critical and quality-attribute requirements, architecture 
and code design elements, tests (both unit and integration), along 
with code generation, compilation, deployment and debugging. 
Further, it is necessary to be able to trace such specifications 
backwards and forward through all the transformations supported 
by the IDE. 

The DART software engineering approach is integrating: 

• Mixed-criticality analysis to verify the asymmetric timing 
protection and schedulability of threads with different criticality 
that share resources (e.g., CPU(s)) in a single node [9]; 

• Domain-specific language (DSL) and safety specification 
notation for distributed applications comprising multiple nodes 
[10] with higher-level architecture descriptions in AADL; 

• Model-driven verifying compilation system which generates 
C++ code if the safety properties specified for the application 
are verified successfully by a software model checker [10]; 

• Proactive, latency-aware self-adaptation mechanism as a means 
for assuring resiliency when dealing with planned mode 

changes and unexpected events from the physical environment 
during runtime [12]; 

• Statistical model checking for computing the bounded 
probability that best-effort properties of the system are within 
the application’s requirements despite the stochastic behavior of 
the environment [11]. 

A complete demonstration of an integrated approach to 
engineering a DART system is staged in two phases. The first 
phase is to use the analysis techniques listed above and 
incrementally improve upon them to address their respective 
limitations when applied to a DART system. The second phase 
will use the lessons from those improvements to drive 
requirements and improvements (or extension) to AADL (i.e., 
ALISA1, a plug-in currently under development for AADL’s IDE) 
so that safety-critical properties such as the ones verified during 
the first phase can be properly encoded and traced through 
AADL’s IDE during the end-to-end engineering of a complete 
DART system. 

Figure 3 shows the initial tool chain for Phase 1. The tools and 
techniques are founded on those discussed in [9] through [12]. 
System level specifications are encoded in our domain-specific 
language from [10]. Specification of application level 
requirements, and the environment come from subject matter 
experts. Initially, that is manually crafted into our DSL so that the 
necessary verification steps can be performed. In Phase 2, the plan 
is to encode and formalize that knowledge in AADL. 

Continuing in Figure 3, each verification tool takes its respective 
inputs from the specifications to perform the analysis (i.e., timing, 
functional, and probabilistic). If verification fails, a trace back to 
the specification(s) that formed the basis for a failed check is 
identified. Here, verification takes these three forms:  

• Mixed-criticality temporal protection mechanisms between 
runtime threads hold; passing these checks means that real-time 
deadlines for high-critical tasks are guaranteed to be met; 

• Guaranteed property: physical separation among multiple 
agents; passing these checks mean that the invariants for the 
collision avoidance algorithm used by the swarm hold; 

• Best-effort property: agents provide adequate physical 
protection to the leader in a probabilistic environment; passing 
these checks mean that over a given mission time, the 
probability of mission failure due to insufficient protection is 
below a specified threshold. 

                                                                 
1 ALISA supports the specification of goals, requirements, and 

claims; concepts of obstacles, hazards, vulnerabilities, 
challenges, and defeaters; and concepts of static analysis, 
verification activity, evidence, and counter evidence. 

Figure 2: Context for DART Model Problem 

Figure 3: Abstract Tool Chain for DART (Phase 1) 



Code is generated for the target hardware platform after passing 
the verification checks (see Figure 4). It includes all the functional 
code (allocated to one or more threads as identified from the 
specification), and interfaces to the underlying operating system 
scheduler and networking services. Additionally, monitoring code 
supporting each of the requirements is generated: 

• Guaranteed requirement: when the ASSERT() generated from 
the require() property could not be verified (due to 
scalability limits of the model checker). However, no 
monitoring code is generated if the property is verified; 

• Best-effort requirement: when the variables used to evaluate the 
expect() property specification that are also used by the self-
adaptation mechanism are passed to the adaptation manager’s 
monitoring interface. 

For properties that require analysis across variables spanning 
more than one node (e.g., the require (FORALL_NODE_PAIRS) 
node specification in Figure 4), it is impractical to share those 
variables across those nodes at runtime—for now, no monitoring 
code for the target platform is generated in those cases. In the case 
that a property is deemed intractable and node-spanning, this 
generates a warning that would need to be addressed by a human, 
requiring changes in requirements or design. 

The initial self-adaptation mechanism for the model problem deals 
mainly with the decision to change the formation of the swarm. 
Different formations provide tradeoffs between different qualities 
(e.g., protection vs. speed), which are desired for different stages 
of the mission. The adaptation mechanism must deal not only with 
planned mission events, but also with uncertain environment 
conditions (e.g., an unplanned forest fire that is on the current 
route must be avoided). 

5. DART Future Work 
Both phases are intended to build upon the properties that can be 
verified for the individual agent as well as the composed swarm of 
agents. In Phase 2 our work will be extended to properties that can 
be verified among the fleet of swarms. Further, we expect to: 

• Encode our DSL as AADL requirement specifications which are 
then mapped to generated specifications for both analytic 
models and code, and to support debugging and back tracing; 

• Use the architectural models that are already in our approach to 
do architecture-based self-adaption as in Rainbow [8];  

• Introduce additional adaptation tactics and machine learning for 
the adaption manager;  

• Support asynchronous multi-agent coordination in guaranteed 
behavior as it applies to unbounded checks; 

• Reduce the total number of samples needed for a given level of 
precision for statistical model checking. 

Finally, more research is needed to scale our approach to more 
numerous, interconnected critical systems. 
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Figure 4: Code Generation based on Specifications and 
Analysis 

@HERTZ(8)
@CRITICALITY(HIGH)
@WCET_NOMINAL(2.5)
@WCET_OVERLOAD(5.0)
@BARRIER_SYNC
...
void collision_avoid() {
// Operates on X & Y

}
...
require(FORALL_NODE_PAIR
(id1, id2,
x@id1 != x@id2 ||
y@id1 != y@id2));

require(InBounds(X,Y);
...
@AT_LEAST(0.8)
expect(COVER() >= 0.9)
else {

// Adapt
};

...
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