
Formal Verification of Real-Time Embedded Software for Multicore Platforms

Sagar Chaki Arie Gurfinkel
Carnegie Mellon Software Engineering Institute

4500 Fifth Avenue, Pittsburgh, PA, USA
{chaki,arie}@sei.cmu.edu

Abstract—Real-time embedded software (RTES) plays an
increasingly critical role in all aspects of our lives. Ensuring
that RTES behave in a predictable, safe and secure manner is
an open challenge. The emergence of multicore hardware has
introduced an additional level of complexity to this arena. In
this paper, we take the position that formal verification is a very
promising approach to find concurrency-related problems in
multicore RTES. We argue that multicore RTES present unique
domain-specific restrictions (and new challenge problems) that
can be leveraged (and targeted) by formal verification to yield
solutions that are precise, scalable, automated, and applicable
to source code. We also believe that this effort will increase
synergy between formal verification and real-time scheduling.

Keywords-formal verification; multicore; schedulability

I. I NTRODUCTION

Real-time embedded software (RTES) permeate our
technology-driven existence, controlling a wide variety of
systems ranging from nuclear power plants and energy grids
to cars and cell phones. Ensuring that RTES operate cor-
rectly is therefore of paramount important to the preservation
of our modern way of life.

Despite a wide body of research and development effort,
ensuring the safe and secure operation of RTES remains an
open challenge. Instances of RTES failure, causing varying
degrees of damage and destruction, continue with unfail-
ing regularity. The technological and economic compulsion
for migrating to multicore platforms further exacerbates
concurrency-related issues for RTES. Clearly, the status quo
is unsatisfactory, and new insights and techniques are needed
in order to advance the state-of-the art in solving this crucial
problem.

In this paper, we argue for a sustained effort in applying
formal verification in a precise and targeted manner to
find errors in RTES deployed on multicore hardware. In
particular, we focus on concurrency-related bugs, such as
race conditions and deadlocks, that are notorious to detect
and eliminate via traditional validation methods like testing.
We argue that multicore RTES present unique domain-
specific restrictions and novel challenge problems. Further,
formal verification that leverages these restrictions, and
targets these challenge problems, will yield precise, scalable,
and automated solutions that are applicable to source code.
Finally, this effort will strengthen the interplay betweenreal-
time scheduling and formal verification.

We structure our position in the following steps: (i)
background, (ii) appropriateness of formal verification; (iii)
existing approaches; (iv) targeted formal verification; and (v)
conclusion.

II. BACKGROUND

Ensuring the correct behavior of programs is a founda-
tional challenge in the computational sciences. One answer
to this challenge is formal verification. The main focus of
formal verification is ensuring the “functional” correctness
of programs – e.g., that a program properly sorts a list of
numbers, does not deadlock, interacts with another program
via a specific sequence of actions, etc.

Research in formal verification spans several decades,
and has made tremendous progress in terms of the degree
of automation and applicability to realistic programs. For
example, model checking [1] is a fully automated approach
to verifying temporal logic specifications over finite Kripke
structure models. More recently, the SLAM project [2] has
pioneered the application of abstraction, model checking,
and refinement techniques to enable automated verification
of C programs. In addition, there have been several instances
of applying abstract interpretation [3] to the static analysis
of industrial software. We believe that formal software
verification – by which we mean the gamut of formal
techniques for analyzing software statically – is uniquely
suited and sufficiently mature for reasoning about multicore
RTES.

III. A PPROPRIATENESS OFFORMAL VERIFICATION

The road to practical adoption of formal verification has
been long and hard. In theory, techniques like model check-
ing and abstract interpretation are “push-button”. In practice,
however, they are often implemented in tools that must be
used by an expert in order to yield useful results. This make
them expensive, and less desirable than cheaper alternatives
like testing. We believe, however, that several factors render
formal verification to be the superior alternative in the
context of finding concurrency-related bugs in RTES:

1) Cost of failure. RTES are often deployed in safety-
critical situations where the cost of failure is very high
or catastrophic. A typical example is a nuclear power
plant, a medical device, or an airplane where a failure
could lead to loss of human lives. Other situations,



where failures cause high economic damages, are cell
phone towers and electric grids. High cost of failures
justify the non-trivial up-front cost of applying formal
verification.

2) Non-determinism. Concurrency-related bugs are ex-
tremely difficult to unearth via conventional code
review and testing. There are known cases where bugs
have remained uncovered despite years of testing. The
main reason behind this is the large number of execu-
tion paths that a concurrent program is able to exercise
due to non-deterministic choices between different
thread interleavings. Even the best testing efforts cover
only a small fraction of a program’s statespace. For-
mal verification is exhaustive, and covers all possible
program executions and thread interleavings.

3) Multicore Platforms. The increased concurrency (and
indeed the emergence of real-concurrency where mul-
tiple threads are able to execute simultaneously) in
multicore platforms amplifies the non-determinism of
software, and the relative advantage of formal veri-
fication over non-exhaustive methods. The migration
to multicore platforms is driven by technological and
economic incentives that are unlikely to be reversed.

4) Certification. Finally, software verification is an im-
portant aid in certification. For example, the DO-178C
standard explicitly requires the application of formal
verification. Other standards, such as the ECSS-E-ST-
40C [4], suggest formal verification when alternatives
(such as testing) are arguably inadequate. Based on
the points above, we believe that such an argument is
indeed plausible in the case of multicore RTES.

IV. EXISTING APPROACHES

It is worth recalling that our goal is to develop analysis
tools that target concurrency-related issues and are precise,
scalable, automated, and applicable to source code. We
believe that existing formal verification tools (based on static
analysis, software model checking, or a combination of the
two) fall short on one or more of these accounts.

There is a large body of work on formal verification
of models spanning several decades. Of special relevance
to us is the verification of timed automata [5] and hybrid
automata [6], timed process calculi – such as RTSL [7],
ACSR [8] and PARS [9] – and timed Petri nets [10].
They represent foundational ideas and results that guides the
verification of multicore RTES. However the focus of this
paper is the analysis and verification of source code, which
is not only complementary to that of models, but brings in
its own set of challenges as well.

The problems in analyzing source code have been the
main focus of commercial static static analysis tools (such
as Coverity, Klocwork, Grammatech and Fortify). These
tools are targeted toward finding sequential problems (such
asNULL pointer dereferences and buffer overflows) over a

large corpus of code. They are automated and scalable, but
challenged by a lack of precision (i.e., many false warnings).
A main reason behind their imprecision is that they strive for
generality in terms of the programs they are able to handle.
This means that they are only able to assume – and thus
leverage – a limited set of domain-specific restrictions.

In the context of sequential software, there has been
several success stories of applying formal verification to
develop analysis that is precise, scalable, automated, and
applicable to source code. Two notable examples are the
SLAM [2] and the ASTREE [11] projects. We believe that
the success of both projects stems in large part on their
focus on specific problems, and their use of domain-specific
restrictions, which enabled them to develop and refine very
specific solutions.

For example, the SLAM project focuses on ensuring that
Windows device drivers interact with the kernel only in pre-
scribed ways. These properties are expressible as finite state
machines and verifiable over Boolean abstractions of the
source code. These restrictions enable SLAM to effectively
use predicate abstraction and control-flow reachability over
Boolean programs as the underlying verification engine.

The ASTREE project focuses on detecting numeric errors
and overflows in avionics software. The restriction to specific
programs and properties enables the researchers to develop
special-purpose abstract domains, such as ellipsoid [11],that
are very effective for computing the invariants needed to
prove (or disprove) the target properties.

In the same spirit, we believe that novel approaches that
target specific concurrency-related problems, and leverage
domain-specific restrictions, must be developed for multi-
core RTES.

V. TARGETED FORMAL VERIFICATION

The development of targeted formal verification tools for
multicore RTES is aided by unique restrictions afforded by
this domain:

1) RTES have deterministic scheduling, which restricts
the amount of concurrency and possible interleaving
between threads. Leveraging this restriction provides
a way to ameliorate the statespace explosion problem,
a major obstacle to scaling formal verification.

2) The scheduling in RTES is governed by a precise
priority-based mechanism. In the special case of fixed
priority scheduling, thread-interleaving is even more
restricted. For every threadT , the set of other threads
that might preemptT is statically known. In more spe-
cific cases, e.g., for RMA-scheduled [12] RTES, even
the number of times a thread may preempt another
is bounded and known statically. These restrictions
offer further opportunities for improving scalability
and automation.

3) RTES involve restricted use of complex programming
constructs. In many cases, language features like dy-



namic memory allocation and recursion are disallowed
or severely restricted. While these restrictions are
driven primarily to make the runtime behavior of the
system more predictable, they also enable the auto-
mated extraction of precise models for the purposes
of formal verification.

4) Multicore RTES also open up new challenge problems
for formal verification. One source of problems is
the emergence of real concurrency. In a multicore
platform, two threads are able to run simultaneously
on different cores, and thus access shared resources
(like memory and cache) leading to problems like
race conditions, deadlocks, and bus overload. Tech-
niques for ensuring mutual exclusion, such as the
priority ceiling protocol, break down in a multicore
environment. Another source of problems is the added
dimension of cores in terms of resource allocation.
Allocating threads to cores (statically or dynamically)
so as to optimize any desired utility measure is a new
challenge.

We believe that these restrictions and challenge problems
will aid in the development of targeted and effective formal
verification for multicore RTES. At the same time, we
believe that this endeavor will further strengthen the synergy
between formal verification and real-time scheduling.

VI. CONCLUSION

Ensuring the predictability, safety, and security of RTES
remains a fundamental and open challenge. The emergence
of multicore hardware only increases the complexity of the
problem. However, multicore RTES present unique domain-
specific restrictions and new challenge problems. We argue
that these restrictions and challenge problems aid the poten-
tial of formal verification to lead to precise, scalable, and
automated techniques for finding concurrency-related issues
in source code. Additionally, we believe that research in
this direction effort will increase synergy between formal
verification and real-time scheduling.

ACKNOWLEDGMENT

Several people have participated in discussions that led
to the ideas and arguments in this paper. In particular, we
would like to thank Russell Kegley and Ben Watson from
Lockheed Martin, USA, and Mark Klein from the SEI.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled,Model Checking.
Cambridge, MA: MIT Press, 2000.

[2] T. Ball and S. K. Rajamani, “Automatically Validating Tem-
poral Safety Properties of Interfaces,” inProceedings of the
8th International SPIN Workshop on Model Checking of
Software (SPIN ’01), ser. Lecture Notes in Computer Science,
M. B. Dwyer, Ed., vol. 2057. Toronto, Canada, May 19–
20, 2001. New York, NY: Springer-Verlag, May 2001, pp.
103–122.

[3] P. Cousot and R. Cousot, “Abstract Interpretation: A unified
Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints,” inProceedings of
the 4th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’77). Los Angeles:
Association for Computing Machinery, January 1977, pp.
238–252.

[4] D. Lesens, “Using Static Analysis in Space: Why Doing so?”
in Proceedings of the 17th International Static Analysis Sym-
posium (SAS ’10), ser. Lecture Notes in Computer Science,
R. Cousot and M. Martel, Eds., vol. 6337. Perpignan, France,
September 14–16, 2010. New York, NY: Springer-Verlag,
September 2010, pp. 51–70.

[5] R. Alur and D. L. Dill, “A Theory of Timed Automata,”
Theoretical Computer Science (TCS), vol. 126, no. 2, pp. 183–
235, April 1994.

[6] T. A. Henzinger, “The Theory of Hybrid Automata,” in
Proceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science (LICS ’96). New Brunswick, NJ, July 27–
30, 1996. Los Alamitos, CA: IEEE Computer Society, July
1996, pp. 278–292.

[7] A. N. Fredette and R. Cleaveland, “RTSL: a language for real-
time schedulability analysis,” inProceedings of the Real-Time
Systems Symposium (RTSS ’93). Raleigh-Durham, NC, USA:
IEEE Computer Society, December 1993, pp. 274–283.

[8] P. Brémond-Gŕegoire, I. Lee, and R. Gerber, “ACSR: An
Algebra of Communicating Shared Resources with Dense
Time and Priorities,” inProceedings of the 4th International
Conference on Concurrency Theory (CONCUR ’93), ser.
Lecture Notes in Computer Science, E. Best, Ed., vol. 715.
Hildesheim, Germany, August 23–26, 1993. New York, NY:
Springer-Verlag, August 1993, pp. 417–431.

[9] M. R. Mousavi, M. A. Reniers, T. Basten, and M. R. V.
Chaudron, “PARS: A Process Algebra with Resources and
Schedulers,” inProceedings of the 1st International Workshop
on Formal Modeling and Analysis of Timed Systems (FOR-
MATS ’03), ser. Lecture Notes in Computer Science, K. G.
Larsen and P. Niebert, Eds., vol. 2791. Marseille, France,
September 6–7. 2003.: Springer-Verlag, September 2003, pp.
134–150.

[10] A. Cerone and A. Maggiolo-Schettini, “Time-Based Expres-
sivity of Time Petri Nets for System Specification,”Theoret-
ical Computer Science (TCS), vol. 216, no. 1-2, pp. 1–53,
December 1999.

[11] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival, “A Static Analyzer
for Large Safety-Critical Software,” inProceedings of the
ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation (PLDI ’03). San Diego, CA,
June 9–11, 2003. New York, NY: Association for Computing
Machinery, June 2003, pp. 196–207.

[12] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,”Jour-
nal of the ACM (JACM), vol. 20, no. 1, pp. 46–61, January
1973.


