
Automated Assume-Guarantee Reasoning for
Simulation Conformance ?

Sagar Chaki, Edmund Clarke, Nishant Sinha, Prasanna Thati

chaki@sei.cmu.edu {emc,nishants,thati}@cs.cmu.edu

Abstract. We address the issue of efficiently automating assume-guarantee rea-
soning for simulation conformance between finite state systems and specifica-
tions. We focus on a non-circular assume-guarantee proof rule, and show that
there is a weakest assumption that can be represented canonically by a determin-
istic tree automata (DTA). We then present an algorithm LT that learns this DTA
automatically in an incremental fashion, in time that is polynomial in the num-
ber of states in the equivalent minimal DTA. The algorithm assumes a teacher
that can answer membership and candidate queries pertaining to the language of
the unknown DTA. We show how the teacher can be implemented using a model
checker. We have implemented this framework in the COMFORT toolkit and we
report encouraging results (over an order of magnitude improvement in memory
consumption) on non-trivial benchmarks.

1 Introduction

Formal verification is an important tool in the hands of software practitioners for ascer-
taining correctness of safety critical software systems. However, scaling formal tech-
niques like model checking [11] to concurrent software of industrial complexity re-
mains an open challenge. The primary hurdle is the state-space explosion problem
whereby the number of reachable states of a concurrent system increases exponentially
with the number of components.

Two paradigms hold the key to alleviating state-space explosion – abstraction [10,
9] and compositional reasoning [23, 8]. Both of these techniques have been extensively
studied by the formal verification community and there have been significant break-
throughs from time to time. One of the most important advancements in the domain of
compositional analysis is the concept of assume-guarantee [23] (AG) reasoning. The
essential idea here is to model-check each component independently by making an as-
sumption about its environment, and then discharge the assumption on the collection of
the rest of the components. A variety of AG proof-rules are known, of which we will
concern ourselves with the following non-circular rule called AG-NC:

M1 ‖ MA 4 S M2 4 MA

M1 ‖ M2 4 S

? To appear in the proceedings of the 17th International Conference on Computer Aided Verifi-
cation (CAV), 2005. c©Springer, 2005 (http://www.springer.de/comp/lncs/index.html).

where M1 ‖ M2 is the concurrent system to be verified, S is the specification, and 4 an
appropriate notion of conformance between the system and the specification. AG-NC
is known to be sound and complete for a number of conformance notions, including
trace containment and simulation. The rule essentially states that if there is an assump-
tion MA that satisfies the two premises, then the system conforms to the specification.
However, the main drawback here from a practical point of view is that, in general, the
assumption MA has to be constructed manually. This requirement of manual effort has
been a major hindrance towards wider applicability of AG-style reasoning on realistic
systems.

An important development in this context is the recent use of automata-theoretic
learning algorithms by Cobleigh et al. [12] to automate AG reasoning for trace contain-
ment, when both the system and the specification are finite state machines. Briefly, the
idea is to automatically learn an assumption MA that can be used to discharge AG-NC.
The specific learning algorithm that is employed is Angluin’s L∗ [2], which learns finite
state machines up to trace equivalence. Empirical evidence [12] indeed suggests that,
often in practice, this learning based approach automatically constructs simple (small
in size) assumptions that can be used to discharge AG-NC.

In this article, we apply the learning paradigm to automate AG-reasoning for simu-
lation conformance between finite systems and specifications. We first show that there
is a weakest assumption MW for AG-NC such that M1 ‖ M2 4 S if and only if
M2 4 MW . Further, MW is regular in that the set of trees it can simulate can be
accepted by a tree automata. Although one can compute MW and use it to check if
M2 4 MW , doing so would be computationally as expensive as directly checking if
M1 ‖ M2 4 S. We therefore learn the weakest assumption in an incremental fashion,
and use the successive approximations that are learnt to try and discharge AG-NC. If at
any stage an approximation is successfully used, then we are done. Otherwise, we ex-
tract a counterexample from the premise of AG-NC that has failed, and use it to further
improve the current approximation.

To realize the above approach, we need an algorithm that learns the weakest as-
sumption up to simulation equivalence. As mentioned above the weakest assumption
corresponds to a regular tree language. We present an algorithm LT that learns the min-
imal deterministic tree automata (DTA) for this assumption in an incremental fashion.
Although a similar learning algorithm for tree languages has been proposed earlier [14],
LT was developed by us independently and has a much better worst-case complexity
than the previous algorithm. The algorithm LT may be of independent interest besides
the specific application we consider in this paper. It assumes that an unknown regular
tree language U is presented by a minimally adequate teacher (teacher for short) that
can answer membership queries about U , and that can also test conjectures about U and
provide counterexamples to wrong conjectures. The algorithm LT learns the minimal
DTA for U in time polynomial in the number of states in the minimal DTA.

We will show how the teacher can be efficiently implemented in a model checker,
i.e., how the membership and candidate queries can be answered without paying the
price of explicitly composing M1 and M2. Further, we show how while processing the
candidate queries, the teacher can try to discharge AG-NC with the proposed candidate.
We have empirical evidence supporting our claim that AG-NC can often be discharged

with a coarse approximation (candidate), well before the weakest assumption is learnt.
We have implemented the proposed framework in the COMFORT [7] toolkit and ex-
perimented with realistic examples. Specifically, we have experimented with a set of
benchmarks constructed from the OPENSSL source code and the SSL specification.
The experimental results indicate memory savings by over an order of magnitude com-
pared to a non-AG based approach.

Related Work. A number of applications of machine learning techniques to verifica-
tion problems have been proposed in the recent past. These include automatic synthesis
of interface specifications for application programs [1], automatically learning the set
of reachable states in regular model checking [20], black-box-testing [22] and its subse-
quent extension to adaptive model-checking [19] to learn an accurate finite state model
of an unknown system starting from an approximate one, and learning likely program
invariants based on observed values in sample executions [15].

The work we present in this paper closely parallels the approach proposed by
Cobleigh et al. [12], where they automate assume-guarantee reasoning for finite state
concurrent systems in a trace-containment setting. They show the existence of a weakest
environment assumption for an LTS and automatically learn successive approximations
to it using Angluin’s L∗ algorithm [2, 24]. Our contribution is to apply this general
paradigm to a branching time setting. Further, the LT algorithm that we present may be
of independent interest. LT may be viewed as a branching time analogue of L∗ where
the minimally adequate teacher must be capable of answering queries on trees and tree
automata (as opposed to traces and finite state machines in L∗). Finally, Rivest et al. [24]
proposed an improvement to Angluin’s L∗ that substantially improves its complexity;
our LT has the same spirit as this improved version of L∗.

Language identification in the limit paradigm was introduced by Gold [17]. This
forms the basis of active algorithms which learn in an online fashion by querying an
oracle (teacher); both L∗ and LT fall in this category. Gold also proposed another
paradigm, namely identification from given data, for learning from a fixed training sam-
ple set [18]. The training set consists of a set of positive and negative samples from the
unknown language and must be a characteristic [18] set of the language. Algorithms
have been proposed in this setting for learning word languages [21], tree languages [16,
4] and stochastic tree languages [5]. Unlike the algorithms in [16, 4] which learn tree
languages offline from a training set, LT learns actively by querying a teacher. An
anonymous reviewer pointed us to a recently proposed active algorithm for learning
tree languages [14], which is closely related to LT . However, LT has a better worst-
case complexity of O(n3) as compared to O(n5) of the previous algorithm. Finally,
we note that learning from derivation trees was investigated initially in the context of
context-free grammars [25] and forms the basis of several inference algorithms for tree
languages [16, 4, 14] including ours.

2 Preliminaries

Definition 1 (Labeled Transition System). A labeled transition system (LTS) is a 4-
tuple (S, Init,Σ, T) where (i) S is a finite set of states, (ii) Init ⊆ S is the set of initial

states, (iii) Σ is a finite alphabet, and (iv) T ⊆ S ×Σ ×S is the transition relation. We
write s

α
−→ s′ as a shorthand for (s, α, s′) ∈ T .

Definition 2 (Simulation). Let M1 = (S1, Init1, Σ1, T1) and M2 =
(S2, Init2, Σ2, T2) be LTSs such that Σ1 = Σ2 = Σ say. A relation R ⊆ S1 × S2 is
said to be a simulation relation if:

∀s1, s
′

1 ∈ S1 � ∀a ∈ Σ �∀s2 ∈ S2 �s1Rs2∧s1

a
−→ s′1 ⇒ ∃s′2 ∈ S2 � s2

a
−→ s′2∧s′1Rs′2

We say M1 is simulated by M2, and denote this by M1 4 M2, if there is a simulation
relation R such that ∀s1 ∈ I1 � ∃s2 ∈ I2 � s1Rs2. We say M1 and M2 are simulation
equivalent if M1 4 M2 and M2 4 M1.

Definition 3 (Tree). Let λ denote the empty tree and Σ be an alphabet. The set of trees
over Σ is defined by the grammar: T := λ | Σ • T | T + T . The set of all trees over
the alphabet Σ is denote by ΣT , and we let t range over it.

Definition 4 (Context). The set of contexts over an alphabet Σ can be defined by the
grammar: C := � | Σ • C | C + T | T + C. We let c range over the set of contexts.

A context is like a tree except that it has exactly one hole denoted by � at one of
its nodes. When we plug in a tree t in a context c, we essentially replace the single �

in c by t. The resulting tree is denoted by c[t]. A tree t can naturally be seen as an LTS.
Specifically, the states of the LTS are the nodes of t, the only initial state is the root node
of t, and there is a labeled transition from node t1 to t2 labeled with α if t1 = α • t2 or
t1 = α • t2 + t3 or t1 = t2 + α • t3.

Definition 5 (Tree Language of an LTS). An LTS M induces a tree language, which
is denoted by T (M) and is defined as: T (M) = {t | t 4 M}. In other words, the tree
language of an LTS contains all the trees that can be simulated by the LTS.

For example, the language of M (Figure 1(a)) contains the trees λ, α•λ, α•(λ+λ),
α•λ+β•λ, β•λ+β•λ and so on. The notion of tree languages of LTSs and simulation
between LTSs are fundamentally connected. Specifically, it follows from the definition
of simulation between LTSs that for any two LTSs M1 and M2, the following holds:

M1 4 M2 ⇐⇒ T (M1) ⊆ T (M2) (1)

Definition 6 (Tree Automaton). A (bottom-up) tree automaton (TA) is a 6-tuple A =
(S, Init , Σ, δ,⊗, F) where: (i) S is a set of states, (ii) Init ⊆ S is a set of initial
states, (iii) Σ is an alphabet, (iv) δ ⊆ S × Σ × S is a forward transition relation, (v)
⊗ ⊆ S × S × S is a cross transition relation, and (vi) F ⊆ S is a set of accepting
states.

Tree automata accept trees and can be viewed as two-dimensional extensions of
finite automata. Since trees can be extended either forward (via the • operator) and
across (via the + operator), a TA must have transitions defined when either of these two
kinds of extensions of its input tree are encountered. This is achieved via the forward
and cross transitions respectively. The automaton starts at each leaf of the input tree at

α β α β
���

���

������ ���

���
⊗ s1 s2 s3

s1 s1

s2 s2

s3 s3

(a) (b)

Fig. 1. (a-left) an LTS M with initial state s3; (a-right) forward transitions of a tree automaton A
accepting T (M); all states are initial; (b) table showing cross transition relation ⊗ of A. Note
that some table entries are absent since the relation ⊗ is not total.

some initial state, and then runs bottom-up in accordance with its forward and cross
transition relations. The forward transition is applied when a tree of the form α • T is
encountered. The cross transition is applied when a tree of the form T1 + T2 is found.
The tree is accepted if the run ends at the root of the tree in some accepting state of A.

Before we formally define the notions of runs and acceptance, we introduce a few
notational conventions. We may sometimes write s

α
−→ s′ or s′ ∈ δ(s, α) as a shorthand

for (s, α, s′) ∈ δ, and s1 ⊗ s2 −→ s as a shorthand for (s1, s2, s) ∈ ⊗. Similarly, for
sets of states S1, S2, we use the following shorthand notations:

δ(S1, α) = {s′ | ∃s ∈ S1 � s
α

−→ s′}

S1 ⊗ S2 = {s | ∃s1 ∈ S1 � ∃s2 ∈ S2 � (s1, s2, s) ∈ ⊗}

Definition 7 (Run/Acceptance). Let A = (S, Init , Σ, δ,⊗, F) be a TA. The run of A

is a function r : ΣT → 2S from trees to sets of states of A that satisfies the following
conditions: (i) r(λ) = Init , (ii) r(α•t) = δ(r(t), α), and (iii) r(t1+t2) = r(t1)⊗r(t2).
A tree T is accepted by A iff r(T) ∩ F 6= ∅. The set of trees accepted by A is known as
the language of A and is denoted by L(A).

A deterministic tree automaton (DTA) is one which has a single initial state and
where the forward and cross transition relations are functions δ : S × Σ → S and
⊗ : S × S → S respectively. If A = (S, Init , Σ, δ,⊗, F) is a DTA then Init refers
to the single initial state, and δ(s, α) and s1 ⊗ s2 refer to the unique state s′ such that
s

α
−→ s′ and s1 ⊗ s2 −→ s′ respectively. Note that if A is deterministic then for every

tree t the set r(t) is a singleton, i.e., the run of A on any tree t ends at a unique state of
A. Further, we recall [13] the following facts about tree-automata. The set of languages
recognized by TA (referred to as regular tree languages henceforth) is closed under
union, intersection and complementation. For every TA A there is a DTA A′ such that
L(A) = L(A′). Given any regular tree language L there is always a unique (up to
isomorphism) smallest DTA A such that L(A) = L.

The following lemma, which is easy to prove, asserts that for any LTS M , the set
T (M) is a regular tree language. Thus, using (1), the simulation problem between LTSs
can also be viewed as the language containment problem between tree automata.

Lemma 1. For any LTS M there is a TA A such that L(A) = T (M).

For example, for the LTS M and TA A as shown in Figure 1, we have L(A) =
T (M). We now provide the standard notion of parallel composition between LTSs,
where components synchronize on shared actions and proceed asynchronously on local
actions.

Definition 8 (Parallel Composition of LTSs). Given LTSs M1 = (S1, Init1, Σ1, T1)
and M2 = (S2, Init2, Σ2, T2), their parallel composition M1 ‖ M2 is an LTS M =
(S, Init,Σ, T) where S = S1 × S2, Init = Init1 × Init2, Σ = Σ1 ∪ Σ2, and the
transition relation T is defined as follows: ((s1, s2), α, (s′1, s

′
2)) ∈ T iff for i ∈ {1, 2}

the following holds:

(α ∈ Σi) ∧ (si, α, s′i) ∈ Ti

∨
(α 6∈ Σi) ∧ (si = s′i)

Working with different alphabets for each component would needlessly complicate
the exposition in Section 4. For this reason, without loss of generality, we make the
simplifying assumption that Σ1 = Σ2. This is justified because we can construct LTSs
M ′

1 and M ′
2, each with the same alphabet Σ = Σ1∪Σ2 such that M ′

1 ‖ M ′
2 is simulation

equivalent (in fact bisimilar) to M1 ‖ M2. Specifically, M′
1 = (S1, Init1, Σ, T ′

1) and
M ′

2 = (S2, Init2, Σ, T ′
2) where

T ′
1 = T1 ∪ {(s, α, s) | s ∈ S1 and α ∈ Σ2 \ Σ1}

T ′
2 = T2 ∪ {(s, α, s) | s ∈ S2 and α ∈ Σ1 \ Σ2}

Finally, the reader can check that if M1 and M2 are LTSs with the same alphabet then
T (M1 ‖ M2) = T (M1) ∩ T (M2).

3 Learning Minimal DTA

We now present the algorithm LT that learns the minimal DTA for an unknown regular
language U . It is assumed that the alphabet Σ of U is fixed, and that the language U is
presented by a minimally adequate teacher that answers two kinds of queries:

1. Membership. Given a tree t, is t an element of U , i.e., t ∈ U?
2. Candidate. Given a DTA A does A accept U , i.e., L(A) = U? If L(A) = U the

teacher returns TRUE, else it returns FALSE along with a counterexample tree CE

that is in the symmetric difference of L(A) and U .

We will use the following notation. Given any sets of trees S1, S2 and an alphabet Σ

we denote by Σ •S1 the set of trees Σ •S1 = {α• t | α ∈ Σ∧ t ∈ S1}, and by S1 +S2

the set S1 +S2 = {t1 + t2 | t1 ∈ S1∧ t2 ∈ S2}, and by Ŝ the set S∪(Σ •S)∪(S+S).

Observation Table : The algorithm LT maintains an observation table τ = (S, E ,R)
where (i) S is a set of trees such that λ ∈ S, (ii) E is a set of contexts such that � ∈ E ,
and (iii) R is a function from Ŝ × E to {0, 1} that is defined as follows: R(t, c) = 1 if
c[t] ∈ U and 0 otherwise. Note that given S and E we can compute R using membership
queries. The information in the table is eventually used to construct a candidate DTA
Aτ . Intuitively, the elements of S will serve as states of Aτ , and the contexts in E

�

λ 1 (s0)

α • λ 1
β • λ 1

λ + λ 1

δ α β

s0 s0 s0

⊗ s0

s0 s0

(a) (b) (c)

Fig. 2. (a) A well-formed and closed observation table τ ; (b) forward transition relation of the
candidate A1

τ constructed from τ ; (c) cross transition relation of A1

τ .

will play the role of experiments that distinguish the states in S. Henceforth, the term
experiment will essentially mean a context. The function R and the elements in Ŝ \ S
will be used to construct the forward and cross transitions between the states.

For any tree t ∈ Ŝ, we denote by Row(t) the function from the set of experiments
E to {0, 1} defined as: ∀c ∈ E � Row(t)(c) = R(t, c).

Definition 9 (Well-formed). An observation table (S, E ,R) is said to be well-formed
if: ∀t, t′ ∈ S � t 6= t′ ⇒ Row(t) 6= Row(t′). From the definition of Row(t) above, this
boils down to: ∀t, t′ ∈ S � t 6= t′ ⇒ ∃c ∈ E � R(t, c) 6= R(t′, c).

In other words, any two different row entries of a well-formed observation table must be
distinguishable by at least one experiment in E . The following crucial lemma imposes
an upper-bound on the size of any well-formed observation table corresponding to a
given regular tree language U .

Lemma 2. Let (S, E ,R) be any well-formed observation table for a regular tree lan-
guage U . Then |S| ≤ n, where n is the number of states of the smallest DTA which
accepts U . In other words, the number of rows in any well-formed observation table for
U cannot exceed the number of states in the smallest DTA that accepts U .

Proof. The proof is by contradiction. Let A be the smallest DTA accepting U and let
(S, E ,R) be a well-formed observation table such that |S| > n. Then there are two
distinct trees t1 and t2 in S such that the runs of A on both t1 and t2 end on the same
state of A. Then for any context c, the runs of A on c[t1] and c[t2] both end on the same
state. But on the other hand, since the observation table is well-formed, there exists an
experiment c ∈ E such that R(t1, c) 6= R(t2, c), which implies that the runs of A on
c[t1] and c[t2] end on different states of A. Contradiction. ut

Definition 10 (Closed). An observation table (S, E ,R) is said to be closed if

∀t ∈ Ŝ \ S � ∃t′ ∈ S � Row(t′) = Row(t)

Note that, given any well-formed observation table (S, E ,R), one can always con-
struct a well-formed and closed observation table (S ′, E ,R′) such that S ⊆ S ′. Specif-
ically, we repeatedly try to find an element t in Ŝ \ S such that ∀t′ ∈ S � Row(t′) 6=
Row(t). If no such t can be found then the table is already closed and we stop. Oth-
erwise, we add t to S and repeat the process. Note that, the table always stays well-
formed. Then by Lemma 2, the size of S cannot exceed the number of states of the
smallest DTA that accepts U . Hence this process always terminates.

Figure 2a shows a well-formed and closed table with S = {λ}, E = {�},
Σ = {α, β}, and for the regular tree language defined by the TA in Figure 1. Note
that Row(t) = Row(λ) for every t ∈ {α • λ, β • λ, λ + λ}, and hence the table is
closed.
Conjecture Construction: From a well-formed and closed observation table τ =
(S, E ,R), the learner constructs a candidate DTA Aτ = (S, Init , Σ, δ,⊗, F) where
(i) S = S, (ii) Init = λ, (iii) F = {t ∈ S | R(t,�) = 1}, (iv) δ(t, α) := t′ such that
Row(t′) = Row(α • t), and (v) t1 ⊗ t2 := t′ such that Row(t′) = Row(t1 + t2). Note
that in (iv) and (v) above there is guaranteed to be a unique such t′ since τ is closed and
well-formed, hence Aτ is well-defined.

Consider again the closed table in Figure 2a. The learner extracts a conjecture Aτ

from it with a single state s0, which is both initial and final. Figures 2b and 2c show the
forward and cross transitions of Aτ .
The Learning Algorithm: The algorithm LT is iterative and always maintains a well-
formed observation table τ = (S, E ,R). Initially, S = {λ} and E = {�}. In each
iteration, LT proceeds as follows:

1. Make τ closed as described previously.
2. Construct a conjecture DTA Aτ from τ , and make a candidate query with Aτ . If

Aτ is a correct conjecture, then LT terminates with Aτ as the answer. Otherwise,
let CE be the counterexample returned by the teacher.

3. Extract a context c from CE , add it to E , and proceed with the next iteration from
step 1. The newly added c is such that when we make τ closed in the next iteration,
the size of S is guaranteed to increase.

Extracting an Experiment From CE: Let r be the run function of the failed candidate
Aτ . For any tree t, let τ(t) = r(t), i.e., τ(t) is the state at which the run of Aτ on t

ends. Note that since states of Aτ are elements in S, τ(t) is itself a tree. The unknown
language U induces a natural equivalence relation ≈ on the set of trees as follows:
t1 ≈ t2 iff t1 ∈ U ⇐⇒ t2 ∈ U .

The procedure ExpGen for extracting a new experiment from the counterexample
is iterative. It maintains a context c and a tree t that satisfy the following condition:
(INV) c[t] 6≈ c[τ(t)]. Initially c = � and t = CE . Note that this satisfies INV be-
cause CE ∈ U ⇐⇒ CE 6∈ L(Aτ). In each iteration, ExpGen either generates an
appropriate experiment or updates c and t such that INV is maintained and the size of t

strictly decreases. Note that t cannot become λ since at that point INV can no longer be
maintained; this is because if t = λ then τ(t) = λ and therefore c[t] ≈ c[τ(t)], which
would contradict INV. Hence, ExpGen must terminate at some stage by generating an
appropriate experiment. Now, there are two possible cases:

Case 1: (t = α • t′) Let c′ = c[α • �]. We consider two sub-cases. Suppose that
c[τ(t)] ≈ c′[τ(t′)]. From INV we know that c[t] 6≈ c[τ(t)]. Hence c′[τ(t′)] 6≈ c[t] ≈
c′[t′]. Hence, ExpGen proceeds to the next iteration with c = c′ and t = t′. Note that
INV is preserved and the size of t strictly decreases.

Otherwise, suppose that c[τ(t)] 6≈ c′[τ(t′)]. In this case, ExpGen terminates by
adding the experiment c to E . Note that Aτ has the transition τ(t′)

α
−→ τ(t), i.e.,

� α • �

λ 1 1 (s0)
α • λ 1 0 (s1)

α • α • λ 0 0 (s2)

β • λ 1 0
β • α • λ 0 0

α • α • α • λ 0 0
β • α • α • λ 0 0

λ + λ 1 1
λ + α • λ 1 0

α • λ + α • λ 1 0
λ + α • α • λ 0 0

α • λ + α • α • λ 0 0
α • α • λ + α • α • λ 0 0

δ α β

s0 s1 s1

s1 s2 s2

s2 s2 s2

⊗ s0 s1 s2

s0 s0 s1 s2

s1 s1 s1 s2

s2 s2 s2 s2

(a) (b) (c)

Fig. 3. (a) observation table τ and (b) transitions for the second conjecture A2

τ .

Row(τ(t)) = Row(α • τ(t′)). But now, since c[τ(t)] 6≈ c′[τ(t′)] ≈ c[α • τ(t′)], the
experiment c is guaranteed to distinguish between τ(t) and α•τ(t′). Therefore, the size
of S is guaranteed to increase when we attempt to close τ in the next iteration.

Case 2: (t = t1 + t2) There are two sub-cases. Suppose that c[τ(t)] 6≈ c[τ(t1)+τ(t2)].
In this case, ExpGen terminates by adding the experiment c to E . The experiment c is
guaranteed to distinguish between τ(t) and τ(t1)+ τ(t2) and therefore strictly increase
the size of S when we attempt to close τ in the next iteration.

Otherwise, suppose that c[τ(t)] ≈ c[τ(t1) + τ(t2)]. We again consider two sub-
cases. Suppose that c[τ(t1) + τ(t2)] 6≈ c[τ(t1) + t2]. In this case, ExpGen proceeds to
the next iteration with c = c[τ(t1) + �] and t = t2. Note that INV is preserved and the
size of t strictly decreases.

Otherwise, we have c[τ(t1)+t2] ≈ c[τ(t1)+τ(t2)] ≈ c[τ(t)], and by INV we know
that c[τ(t)] 6≈ c[t] ≈ c[t1+t2]. Hence, it must be the case that c[τ(t1)+t2] 6≈ c[t1+t2].
In this case, ExpGen proceeds to the next iteration with c = c[�+ t2] and t = t1. Note
that, once again INV is preserved and the size of t strictly decreases. This completes
the argument for all cases.

Example 1. We show how LT learns the minimal DTA corresponding to the language
U of TA A of Figure 1. LT starts with an observation table τ with S = {λ} and
E = {�}. The table is then made closed by asking membership queries, first for λ and
then for its (forward and cross) extensions {α • λ, β • λ, λ + λ}. The resulting closed
table τ1 is shown in Figure 2a. LT then extracts a candidate A1

τ from τ1, which is shown
in Figure 2b.

When the conjecture A1
τ is presented to the teacher, it checks if L(A1

τ) = U . In
our case, it detects otherwise and returns a counterexample CE from the symmetric
difference of L(A1

τ) and U . For the purpose of illustration, let us assume CE to be
α • β • λ. Note that CE ∈ L(A1

τ) \ U . The algorithm ExpGen extracts the context
α•� from CE and adds it to the set of experiments E . LT now asks membership queries
corresponding to the new experiment and checks if the new table τ is closed. It finds
that Row(α • λ) 6= Row(t) for all t ∈ S, and hence it moves α • λ from Ŝ \ S to S in

order to make τ closed. Again, membership queries for all possible forward and cross
extensions of α • λ are asked. This process is repeated till τ becomes closed. Figure 3a
shows the final closed τ . As an optimization, we omit rows for the trees t1+t2 whenever
there is already a row for t2 + t1; we know that the rows for both these trees will have
the same markings. The corresponding conjecture A2

τ contains three states s0, s1 and
s2 and its forward and cross transitions are shown in Figure 3b and Figure 3c. s0 is the
initial state and both s0 and s1 are final states. The candidate query with A2

τ returns
TRUE since L(A2

τ) = U , and LT terminates with A2
τ as the output.

Correctness and Complexity:

Theorem 1. Algorithm LT terminates and outputs the minimal DTA that accepts the
unknown regular language U .

Proof. Termination is guaranteed by the facts that each iteration of LT terminates, and
in each iteration |S| must strictly increase, and, by Lemma 2, |S| cannot exceed the
number of states of the smallest DTA that accepts U . Further, since LT terminates only
after a correct conjecture, if the DTA Aτ is its output then L(Aτ) = U . Finally, since
the number of states in Aτ equals |S|, by Lemma 2 it also follows that Aτ is the minimal
DTA for U . ut

To keep the space consumption of LT within polynomial bounds, the trees and
contexts in Ŝ and E are kept in a DAG form, where common subtrees between different
elements in Ŝ and E are shared. Without this optimization, the space consumption can
be exponential in the worst case. The other point to note is that the time taken by LT

depends on the counterexamples returned by the teacher; this is because the teacher can
return counterexamples of any size in response to a failed candidate query.

To analyze the complexity of LT , we make the following standard assumption:
every query to the teacher, whether a membership query or a candidate query, takes unit
time and space. Further, since the alphabet Σ of the unknown language U is fixed, we
assume that the size of Σ is a constant. Then the following theorem summarizes the
complexity of LT .

Theorem 2. The algorithm LT takes O(mn + n3) time and space where n is the num-
ber of states in the minimal DTA for the unknown language U and m is the size of the
largest counterexample returned by the teacher.

Proof. By Lemma 2, we have |S| ≤ n. Then the number of rows in the table, which
is |Ŝ| = |S ∪ (Σ • S) ∪ (S + S)|, is of O(n2). Further, recall that every time a new
experiment is added to E , |S| increases by one. Hence the number of table columns
|E| ≤ n, and the number of table entries |Ŝ||E| is of O(n3).

The trees and contexts in Ŝ and E are kept in a DAG form, where common subtrees
between different elements in Ŝ and E are shared in order to keep the space consumption
within polynomial bounds. Specifically, recall that whenever a tree t is moved fromŜ\S
to S, all trees of the form α • t for each α ∈ Σ and t + t′ for each t′ ∈ S (which are
O(|S|) in number) are to be added to Ŝ. Adding the tree α • t to Ŝ only needs constant
space since t is already in Ŝ and hence is shared in the DAG representation. Similarly

adding a tree of form t + t′ takes only constant space, since both t and t′ are already in
Ŝ. Thus, each time S is expanded, a total of O(|S|) space is required to add all the new
trees to Ŝ. Since at most n trees can be added S in all, it follows that the total space
consumed by elements in Ŝ is O(n2).

Now, we compute the total space consumed by the contexts in E . Note that the
teacher can return counterexamples of arbitrary size in response to a wrong conjecture.
Suppose m is the size of the largest counterexample. Observe that an experiment is
extracted from CE (procedure ExpGen) essentially by replacing some of the subtrees
of CE with trees in S, and exactly one subtree of CE with �. But, since in the DAG
form, common subtrees are shared between trees and contexts in S and E , none of
the above replacements consume any extra space. Hence, the size of the experiment
extracted from CE is utmost the size of CE. Since there are at most n contexts in E , the
total space consumed by contexts in E is O(mn). Putting together all observations so
far, we get that the total space consumed by LT is O(mn + n3).

Now, we compute the time consumed by LT . It takes O(n3) membership queries to
fill in the O(n3) table entries. Since each query is assumed to take O(1) time, this takes
a total of O(n3) time. The time taken to extract an experiment from a counterexample
CE is linear on the size of CE. This is because procedure ExpGen involves making a
constant number of membership queries for each node of CE (branch conditions in lines
3, 6, and 8) as CE is processed in a top down fashion. Thus, the time taken to extract an
experiment from CE is at most O(m). Since there can be at most n wrong conjectures,
the total time spent on processing counterexamples is O(mn). Putting these observa-
tions together we conclude that LT takes O(mn+n3) time. We thus have the following
theorem.

4 Automating Assume-Guarantee for Simulation

For M1,M2 and MS , suppose we are to check if M1 ‖ M2 4 MS . Recall from
Section 2 that M1 ‖ M2 4 MS if and only if T (M1 ‖ M2) ⊆ T (MS), and
T (M1 ‖ M2) = T (M1) ∩ T (M2). Therefore, the verification problem is equivalent

to checking if T (M1) ∩ T (M2) ⊆ T (MS). Now, define Tmax = T (M1) ∩ T (MS).
Then

T (M1) ∩ T (M2) ⊆ T (MS) ⇐⇒ T (M2) ⊆ Tmax

Thus, Tmax represents the maximal environment under which M1 satisfies MS , and

M1 ‖ M2 4 MS ⇔ T (M2) ⊆ Tmax

Checking T (M2) ⊆ Tmax is as expensive as directly checking M1 ‖ M2 4 MS since
it involves both M1 and M2. In the following, we show how the LT algorithm can be
used for a more efficient solution.

Since regular tree languages are closed under intersection and complementation,
Tmax is a regular tree language. We therefore use the LT algorithm to learn the canon-
ical DTA for Tmax in an incremental fashion. The key idea is that when a candidate
query is made by LT , the teacher checks if the AG-NC proof rule can be discharged
by using the proposed candidate as the assumption. Empirical evidence (see Section 5)

suggests that this often succeeds well before Tmax is learnt, leading to substantial sav-
ings in time and memory consumption.

We now elaborate on how the teacher assumed by LT is implemented. Specifically,
the membership and candidate queries of LT are processed as follows.

Membership Query. For a given tree t we are to check if t ∈ Tmax. This is equivalent
to checking if t 6∈ T (M1) or t ∈ T (MS). In our implementation, both T (M1) and
T (MS) are maintained as tree automata, and the above check amounts to membership
queries on these automata.

Candidate Query. Given a DTA D we are to check if L(D) = Tmax. We proceed in
three steps as follows.

1. Check if (C1) L(D) ⊆ Tmax = T (M1) ∩ L(MS). This is implemented us-
ing the complementation, intersection and emptyness checking operations on tree
automata. If C1 holds, then we proceed to step 2. Otherwise, we return some
t ∈ Tmax \ L(D) as a counterexample to the candidate query D.

2. Check if (C2) T (M2) ⊆ L(D). If this is true, then (C1) and (C2) together imply
that T (M2) ⊆ Tmax, and thus our overall verification procedure terminates con-
cluding that M1 ‖ M2 4 MS . Note that even though the procedure terminates
L(D) may not be equal to Tmax. On the other hand, if (C2) does not hold, we
proceed to step 3 with some t ∈ T (M2) \ L(D).

3. Check if t ∈ Tmax, which is handled as in the membership query above. If this is
true, then it follows that t ∈ Tmax \ L(D), and hence we return t as a counterex-
ample to the candidate query D. Otherwise, if t 6∈ Tmax then T (M2) 6⊆ Tmax, and
therefore we conclude that M1 ‖ M2 64 MS .

Thus, the procedure for processing the candidate query can either answer the query
or terminate the entire verification procedure with a positive or negative outcome. Fur-
ther, the reader may note that M1 and M2 are never considered together in any of the
above steps. For instance, the candidate D is used instead of M1 in step 1, and instead
of M2 in step 2. Since D is typically very small in size, we achieve significant savings
in time and memory consumption, as reported in Section 5.

5 Experimental Results

Our primary target has been the analysis of concurrent message-passing C pro-
grams. Specifically, we have experimented with a set of benchmarks derived from the
OPENSSL-0.9.6c source code. We analyzed the source code that implements the critical
handshake that occurs when an SSL server and client establish a secure communica-
tion channel between them. The server and client source code contained roughly 2500
LOC each. Since these programs have an infinite state space, we constructed finite con-
servative labeled transition system (LTS) models from them using various abstraction
techniques [6]1. The abstraction process was carried out component-wise.

1 Spurious counterexamples arising due to abstraction are handled by iterative counterexample
guided abstraction refinement.

Name Direct AG Gain
Result T1 M1 T2 M2 M1/M2 |A| MQ CQ

SSL-1 Invalid * 2146 325 207 10.4 8 265 3
SSL-2 Valid * 2080 309 163 12.8 8 279 3
SSL-3 Valid * 2077 309 163 12.7 8 279 3
SSL-4 Valid * 2076 976 167 12.4 16 770 4
SSL-5 Valid * 2075 969 167 12.4 16 767 4
SSL-6 Invalid * 2074 3009 234 8.9 24 1514 5
SSL-7 Invalid * 2075 3059 234 8.9 24 1514 5
SSL-8 Invalid * 2072 3048 234 8.9 24 1514 5

Fig. 4. Experimental results. Result = specification valid/invalid; T1 and T2 are times in seconds;
M1 and M2 are memory in mega bytes; |A| is the assumption size that sufficed to prove/disprove
specification; MQ is the number of membership queries; CQ is the number of candidate queries.
A * indicates out of memory (2 GB limit). Best figures are in bold.

We designed a set of eight LTS specifications on the basis of the SSL documenta-
tion. We verified these specifications on a system composed of one server (M1) and one
client (M2) using both the brute-force composition (M1 ‖ M2), and our proposed auto-
mated AG approach. All experiments were carried out on a 1800+ XP AMD machine
with 3 GB of RAM running RedHat 9.0. Our results are summarized in Table 4. The
learning based approach shows superior performance in all cases in terms of memory
consumption (up to a factor of 12.8). An important reason behind such improvement is
that the sizes of the (automatically learnt) assumptions that suffice to prove or disprove
the specification (shown in column labeled |A|) are much smaller than the size of the
second (client) component (3136 states).

6 Conclusion

We have presented an automated AG-style framework for checking simulation con-
formance between LTSs. Our approach uses a learning algorithm LT to incrementally
construct the weakest assumption that can discharge the premises of a non-circular AG
proof rule. The learning algorithm requires a minimally adequate teacher that is imple-
mented in our framework via a model checker. We have implemented this framework
in the COMFORT [7] toolkit and experimented with a set of benchmarks based on
the OPENSSL source code and the SSL specification. Our experiments indicate that
in practice, extremely small assumptions often suffice to discharge the AG premises.
This can lead to orders of magnitude improvement in the memory and time required for
verification. Extending learning-based AG proof frameworks to other kinds of confor-
mances, such as LTL model checking and deadlock detection, and to other AG-proof
rules [3] remains an important direction for future investigation.

Acknowledgement. We thank the CAV 2005 referees for their invaluable comments
and suggestions. The first author is also grateful to Corina P̆asăreanu and Dimitra Gi-
annakopoulou for informative discussions on assume-guarantee and learning.

References

1. R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of interface specifications for java
classes. In POPL, pages 98–109, 2005.

2. D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987.

3. H. Barringer, D. Giannakopoulou, and C.S Pasareanu. Proof rules for automated composi-
tional verification. In Proc. of the 2nd Workshop on SAVCBS, 2003.

4. M. Bernard and C. de la Higuera. Gift: Grammatical inference for terms. In International
Conference on Inductive Logic Programming, 1999.

5. R. C. Carrasco, J. Oncina, and J. Calera-Rubio. Stochastic inference of regular tree lan-
guages. In Proc. of ICGI, pages 187–198. Springer-Verlag, 1998.

6. S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient verification
of sequential and concurrent C programs. FMSD, 25(2–3), 2004.

7. S. Chaki, J. Ivers, N. Sharygina, and K. Wallnau. The ComFoRT Reasoning Framework. In
Proc. of CAV, 2005. to appear.

8. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In LICS, 1989.
9. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In Proc. of CAV, 2000.
10. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Trans-

actions on Programming Languages and System (TOPLAS), 16(5):1512–1542, 1994.
11. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
12. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions for compo-

sitional verification. In Proceedings of TACAS ’03.
13. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-

masi. Tree Automata Techniques and Applications, chapter 1. 2002. available at
http://www.grappa.univ-lille3.fr/tata.

14. F. Drewes and J. Hogberg. Learning a regular tree language. In LNCS 2710, pp. 279–291,
Proc. Developments in Language Theory (DLT) ’03.

15. M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. In Proc. of ICSE, 1999.

16. P. Garca and J. Oncina. Inference of recognizable tree sets. Technical Report II/47/1993,
Dept. de Sistemas Informticos y Computacin, Universidad Politcnica de Valencia, 1993.

17. E. M. Gold. Language identification in the limit. Information and Control, 10(5), 1967.
18. E. M. Gold. Complexity of automaton identification from given data. Information and

Control, 37(3):302–320, June 1978.
19. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Tools and Algorithms

for Construction and Analysis of Systems, pages 357–370, 2002.
20. P. Habermehl and T. Vojnar. Regular model checking using inference of regular languages.

In Proc. of INFINITY’04, 2004.
21. P. Oncina, J.; Garca. Identifying regular languages in polynomial time. World Scientific

Publishing, 1992. Advances in Structural and Syntactic Pattern Recognition,.
22. D. Peled, M.Y. Vardi, and M. Yannakakis. Black box checking. In FORTE/PSTV, 1999.
23. A. Pnueli. In transition from global to modular temporal reasoning about programs. Logics

and models of concurrent systems, pages 123–144, 1985.
24. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. In

Information and Computation, volume 103(2), pages 299–347, 1993.
25. Y. Sakakibara. Learning context-free grammars from structural data in polynomial time.

Theoretical Computer Science (TCS), 76(2-3):223–242, 1990.

