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Abstract—Rapidly changing technology is one of the key
triggers of system evolution. Some examples are: physically
relocating a data center; replacement of infrastructure such
as migrating from an in-house broker to CORBA; moving to
a new architectural approach such as migrating from client-
server to a service-oriented architecture. At a high level, the
goals of such an evolution are easy to describe. While the
end goals of the evolution are typically captured and known,
the key architecturally significant requirements that guide the
actual evolution tasks are often unexplored. At best, they are
tucked under maintainability and/or modifiability concerns. In
this paper, we argue that eliciting and using architecturally
significant requirements of an evolution has a potential to
significantly improve the quality of the evolution effort. We focus
on elicitation and representation techniques of architecturally
significant evolution requirements, and demonstrate their use in
analysis for evolution planning.

I. INTRODUCTION

Technology modernization projects are a common form of

system evolution. Such evolutions are typically characterized

by the following features:

• The evolution is triggered by a business need and/or

constraint that necessitate technology upgrade or change.

It has a short-term, well-defined goal.

• The key business drivers and requirements for the target

system of the evolution are known.

• The architecture of the target system is known, or is in

the process of being constructed.

We call an evolution that has these characteristics a closed

evolution [7]. A closed evolution starts with the source (or

the current) system, and results in the target (or the evolved)

system. It is driven by an evolution plan — a sequence of

tasks and activities that lead from the source to the target

system. Creating a good evolution plan is a prerequisite for a

successful evolution.

The main steps in effective planning for closed evolution

are:

• eliciting and representing architecturally significant re-

quirements that guide the evolution; in the rest of this

paper, we refer to such requirements as evolution require-

ments;

• deciding on the tasks that need to be performed for

realizing the evolution, and identifying their inter-

dependencies;

• creating alternative evolution plans by combining the

identified tasks; plans have to respect task inter-

dependencies and evolution requirements;

• selecting an optimum plan from the set of alternatives;

the selection may be based on a comparative cost-benefit

analysis guided by evolution requirements, and cost-

benefit estimates for various tasks.

While each of the above steps is inherently challenging, in

this paper, we focus on the following two challenges:

Challenge 1. Evolution requirements emerge from a variety

of sources — business and technological concerns, differences

between the source and target systems in various dimensions,

and most importantly, constraints on the tasks and intermediate

systems that arise during the evolution process. Identifying and

representing evolution requirements so that they can be used

most fruitfully during evolution planning is non-trivial.

Challenge 2. It is difficult to assign a specific utility value to

an evolution plan. However, we need an objective mechanism

to compare between plans. Otherwise, it is impossible to have

any kind of a systematic approach to choosing an optimal

evolution plan from a set of alternatives.

Our approach to solving the two challenges above relies

crucially on the knowledge of evolution requirements. Such

requirements concern the elements and the relationships of

the source, target, and intermediate systems, and the tasks

performed. Some examples are: (i) all intermediate systems

must be operational, (ii) all evolution tasks must be complete

by 2010, and (iii) the cumulative cost of all evolution tasks

must not exceed 10 person-months. On the other hand, the

requirement that “the personnel must be trained before the

deployment of the new system” is not an evolution requirement

in our setting because it is not architecturally significant.

The source and target architectures for a closed evolution

are known a priori. However, for effective planning, we

must also identify and relate the key architecturally-significant

evolutionary tasks. An architecturally-significant task is either

a change to the system that is reflected by the architecture

(current, target, or both), or some system-related activity,

such as integration tests, that depends on the architecture or

directly influences the plan. Architecturally-significant tasks,

like activities and tasks in project management [15], require

resources to complete.

In this paper, we argue that the architecture and an

architecture-centric reasoning enable effective system evolu-

tion planning. We concentrate on three key aspects:

• Elicitation of key evolution requirements as evolution

quality attributes (EQA);

• Representation of architecturally significant evolution re-

quirements as extended quality attribute scenarios, called



EQA scenarios;

• Construction of evolution plans, captured as a new ar-

chitectural evolution view. This view describes the key

evolutionary tasks that can be traced to the current and

the target systems; and

• Analysis of evolution plans with respect to the EQA

scenarios.

We illustrate our approach on an example of an evolution of

a client-server (CS) system to a service-oriented architecture

(SOA).

We distinguish between evolvability and evolution.

Rowe [21] defines evolvability as “. . . an attribute that bears

on the ability of a system to accommodate changes in its

requirements throughout the system’s lifespan with the least

possible cost while maintaining architectural integrity.” In

contrast, evolution is the process of changing a system to

meet new requirements, possibly with a significant change to

its architecture. Even highly evolvable systems may need to

be evolved and re-designed to meet new business and mission

goals, new technology requirements, etc.

Current architecture-centric practices help with the defini-

tion, development, and evolution of a product [6], [22]. They

also help with evolution management since the structure of

the system needs to be managed [14], [18], [13]. However,

to date, most emphasis has been on minimizing the impact

of an evolution by designing for evolvability. In contrast,

we utilize architecture-centric practices to guide the evolution

itself. In particular, we propose a structured approach for

capturing EQA scenarios, a view for representing evolution

plans, and project management-based techniques for analyzing

and comparing evolution plans.

The rest of the paper is organized as follows. In Section II,

we give a brief overview of our approach and introduce our

running example. We describe elicitation and representation

of EQA scenarios in Section III, the construction of evolution

plans in Section IV, and techniques for analysis of those plans

in Section V. We review related work in Section VI and offer

some concluding remarks in Section VII.

II. APPROACH

The following elements of software architecture support

evolution planning: (i) quality-attribute-based reasoning, (ii)

architectural views, and (iii) quality attribute-based analysis.

First, quality attribute-based reasoning assists in identifying

key concerns, and selecting the most feasible system structure.

Second, architectural views represent identified concerns for

a common understanding of the solution. Finally, quality-

attribute-based analysis enables the evaluation of architectures

represented by different views against the identified concerns.

To understand our approach, first consider the following

architecting workflow example: the architect elicits a perfor-

mance quality-attribute requirement about the (desired) timing

for handling user requests using quality-attribute scenarios;

then uses a process view to model an architectural solution;

and, finally, performs a worst-case latency analysis to check

whether the performance requirement is met [6].

 

Fig. 1. Key elements of our approach.

Analogously, we argue for the following architecture-centric

approach to system evolution:

1) Evolution requirements are explicitly captured and clas-

sified as EQA scenarios;

2) These requirements inform the elaboration of alternative

evolution plans; and,

3) Alternative plans are evaluated with respect to EQA

scenarios.

The main elements of our approach, evolution requirements,

plans, and analyses, are shown in Fig. 1. We propose the use

of EQA scenarios — extended quality-attribute scenarios that

are explicitly aimed at eliciting concerns and features of evo-

lution requirements. Architectural tasks are used to structure

evolution plans. An evaluation is performed by selected under-

lying analyses. Evolution requirements, tasks, and analyses are

related to each other. For example, EQAs are represented by

extended quality attribute scenarios, which along with features

influence the determination of key architectural tasks. Tasks

and scenarios are also input to analyses.

We use a common instance of evolution — from CS to SOA

— as our example. Our system is CIS — a city information

website, adapted from [10] [17]. CIS enables users to retrieve

information about a city using a web browser, and accesses

information resources hosting the data about city events,

places, weather, etc. A simplified architecture of the current

CIS system is shown in Fig. 2(a). In this architecture, the

location of each information resource is hard-coded in the

server. A web-client request is forwarded to two applications,

CityTraffic and Weather. The responses are combined

and returned to the client as a single HTML document.

The evolution of CIS to SOA is motivated by the following

business goals: (i) the profit model for CIS is based on the

number of hits (i.e., user requests) serviced; (ii) it is believed

that additional information resources will attract more users;

and (iii) CIS is expected to evolve over time through addition

of new information resources. SOA simplifies adding and

removing information providers, creating new services, and

maintaining scalability. However, the SOA evolution must

address the following three quality attribute concerns: certainty

of completion time, backwards compatibility, and, in case of



TABLE I
A STANDARD QUALITY-ATTRIBUTE SCENARIO.

Quality 

attribute 
Modifiability 

Concern Ease of adding a new information provider 

Scenario 1 

Adding a new information provider to the current CIS 

should not take more than 10 person-hours 

Stimulus 
Need to add a new information 

provider 

Source of stimulus External information provider 

Environment At design time 

Artifact Code 

Response 
Modification is made with ease 

without  side effects 

Response measure 10 person-hours 

 

an unexpected need, the ability to deliver earlier with sufficient

number of services.

The target SOA CIS architecture is shown in Fig. 2(b). It is

obtained by decomposing the overall application into reusable

components that deliver well-defined business services. Thus,

it supports the addition of new components implementing

required services.

III. ELICITATION OF EVOLUTION REQUIREMENTS

Structured elicitation of concerns relevant to planning and

executing the evolution helps clarify goals and constraints of

the evolution. The quality attribute scenario technique [6]

developed by the Software Engineering Institute (SEI) is a

widely used approach for structured specification of architec-

turally significant requirements. It uses quality attribute sce-

narios (or scenarios, for short) to capture requirements, such

as performance, security, and modifiability. The scenarios are

expressed in natural language, and focus on six parts: source

(the entity generating the stimulus), stimulus (the trigger or

event for the system to respond), artifact (the parts of the

system the stimulus acts upon), environment (the conditions

under which the stimulus is observed), response (observed

outcome), and response measure (quantifiable measurement

for the observed outcome). A modifiability scenario of the

CIS system is shown in Table I.

A traditional scenario only applies to a specific architecture.

For instance, it is possible to evaluate the modifiability sce-

nario in Table I with respect to either the current or the target

CIS architectures in Fig. 2 (e.g., the architect can conclude

that the target architecture satisfies the scenario better than

the current architecture). Thus, conventional scenarios do not

constrain the evolution process, i.e., getting to an end-state

from some initial state. However, evolution planning concerns

the qualities of the evolution process, as well as those of the

end-state. Therefore, we augment scenarios so that they inform

evolution planning more effectively.

Quality attribute scenarios are also one of the key in-

puts to architecture evaluation exercises, such as those con-

ducted using the SEI Architecture Trade-off Analysis Method

(ATAM) [6]. We have examined quality attribute scenarios

from 24 ATAMs conducted by the SEI during 1999–2007 to

see whether concerns referring to the planning and execution

of the evolution emerged. These ATAMs included commer-

cial and government organizations, ranging from avionics to

transportation to combat systems. There are 1072 scenarios in

total [16]. These are the scenarios that various stakeholders

deemed important for the success of the system under evalu-

ation.

The collection of scenarios from ATAM evaluations we

looked at demonstrated concerns referring to evolving the

system. We identified 70 scenarios for which knowing the

aspects of the actual evolution is required to satisfactorily

assess them. In the original data, these scenarios were listed

under the following quality-attribute concerns: maintainability,

extensibility, scalability, reusability, modifiability, upgradabil-

ity, affordability, and flexibility. In these concerns, we observed

that there are “evolution concerns” that are expressible via

extended forms of scenarios. These evolution concerns require

looking at the steps of the evolution in addition to the final

architecture. For the rest of the paper, we focus on such

evolutionary concerns.

The examples of evolution-related concerns we observed

in our data include: interoperability, training, technology re-

freshments, early release points, and resource allocation. Some

sanitized examples are the following:

1) Company X discontinues maintenance of hardware prod-

uct. Product must be replaced for ≤ $600, 000.

2) Adopt CAC/PKI as primary authentication method by

end of year.

3) Throughout development, early releases of new system

must be available at training site. Releases may have

reduced functionality compared to final system.

4) Funders may request to see system earlier. If that hap-

pens, we should be able to deliver system early.

The textual scenarios above not only define the target ar-

chitecture, but also specify concerns regarding the “qualities”

of steps leading to the target architecture. For instance, the

notion of “replacement of parts” captured in Example 1 is

an important step in an evolution plan. Scheduling, as seen in

Example 2, is an evaluation criterion. Similarly, understanding

the need for an early reduced functionality delivery might

change the order of the steps in which one arrives to the

end architecture, a concern that Examples 3 and 4 capture.

Meeting a schedule concern is dependent on how the iterations

are planned.

Our observation is that these concerns are already used

implicitly by architects to develop the steps of evolution

plans. However, explicit elicitation and sharing of evolution-

related concerns with the stakeholder community will improve

evolution planning and execution. Therefore, a structured way

to express evolution quality attribute concerns is needed. We

address this need via EQA scenarios.

In our approach, once the architect identifies the relevant

EQAs for the evolution planning, she elicits a number of



 

 

EVOLUTION 

a) Current architecture b) Target architecture 

Fig. 2. Current and target architectures for CIS (Component-and-Connector view).

representative scenarios for each EQA. We propose to capture

these scenarios in an extension of the standard format of

quality attribute scenario. EQA scenarios are elicited from

stakeholders in two flavors:

(a) Variations along one (or more) part(s) of a standard

quality attribute scenario; and

(b) Inclusion of constrains regarding resources or dependen-

cies in a standard quality attribute scenario.

In type (a) EQA scenarios, a standard 6-part scenario is

augmented with a quantitative difference (delta) between the

current and target system. For example, a type (a) scenario is

obtained by augmenting the one in Table I with the constraint

that the time required to add a new information provider

must be improved from (current) 30 person-hours to (target)

10 person-hours. This enables the use of quality attribute

analysis to determine if the “delta” has been achieved. For

instance, a modifiability reasoning framework enables us to

estimate change impact of adding a new information provider

for the current and target systems [4]. Table II shows the 6-

part template used for conventional quality attribute scenarios

extended with placeholders for the architect to elicit the deltas.

Note that the delta is typically recorded in the response

measure, but may appear in other parts as well.

Type (b) EQA scenarios focus on the “quality” of the evolu-

tion plan itself, instead of considering aspects of the quality of

a specific system. Typical constraints on plan quality involve

resource consumption (e.g., personnel, cost, time), dependency

on previous capabilities (preconditions), and frequency of

change (e.g., in source or stimulus). For example, a type

(b) scenario stipulates that the addition of a new information

provider (meeting the 10 person-hours response measure)

TABLE II
AN EQA SCENARIO EXTENDED WITH DELTAS.

Quality 

attribute 

Modifiability (evolution) 

Concern 
Ease of adding a new information provider 

Scenario 2 

Adding a new information provider to the current CIS 

should be reduced from 30 to 10 person-hours. 

Delta Current Target 

Stimulus 

Need to add 

a new 

information 

provider 

Need to add a 

new 

information 

provider 

Source of stimulus 

External 

information 

provider 

External 

information 

provider 

Environment 
At design 

time 
At design time 

Artifact Code Code 

Response 

Modification 

is made with 

ease without  

side effects 

Modification 

is made with 

ease without  

side effects 

Response measure 
30 person-

hours 

10  person-

hours 

Constraint 
Response measure should be monotonically decreasing 

towards the target measure 

 

should have a low cost in terms of platform/technology

changes and be flexible to accommodate information provider

variations (e.g., API, threading model, security support, etc.).

Terms like “low cost” or “flexibility” apply to the steps

and the way they are ordered when moving from the CS

system to SOA. Table III shows the 6-part template used for



TABLE III
AN EQA SCENARIO EXTENDED WITH PATH CONSTRAINTS.

Quality 

attribute 
Completion time (evolution) 

Concern Certainty of completion time 

Scenario 3 

We need to add information providers every 3 months. 

Inability to do so causes significant revenue loss, 

therefore the part of the system to enable such 

modifications should be completed within 15 months. 

Analysis and confidence level of ability to complete this 

evolution in this amount of time must be provided.  

Stimulus 
Need to add new information 

providers 

Source of 

stimulus 
External information provider 

Environment At design time 

Artifact Code 

Response 
Migration is made with ease and 

without side effects 

Response 

measure 
15 months 

Constraints 

• High confidence in ability to complete the 

evolution 

• A new information provider is expected to be 

added every 3 months 

 

conventional quality-attribute scenarios extended with sections

for the architect to elicit constraints, dependencies and other

assumptions that have effects on the evolution planning.

IV. CONSTRUCTION OF EVOLUTION PLANS

Evolution planning is a shared responsibility between the

project manager and the architect [19]. The architect must

propose alternative evolution plans and provide information for

the manager to make decisions. Thus, we see an architecture

evolution plan as the artifact that will inform managers about

design strategies for the envisioned system to satisfy the

business goals. An evolution plan is also a key artifact for

the orchestration of development activities.

In particular, an evolution plan consists of architecturally-

significant tasks and their dependencies. For example, in-

cluding an Enterprise Service Bus (ESB) in a SOA is an

architecturally-significant task. As an example of task de-

pendencies, vendor lock-in to a particular ESB technology

can affect the tasks of implementating the services and their

communication A logical grouping of tasks culminates in an

event (e.g. release). Events do not use resources [15].

An evolution plan is created as follows:

Step 1 – Task break-down structure: The architect breaks

down the design into coarse-grained tasks that enable the

delivery of certain features. These first tasks describe the work-

breakdown structure for the evolution problem. The structure

takes into account the architectural elements, technology,

and features of the current system, versus the architectural

elements, technology, and features for the target system. At

this stage, the architect is not concerned about dependencies

between tasks, but about estimations of the complexity of each

task. The complexity estimations (e.g., low, medium, high)

are later translated to effort estimations (e.g., money, time,

personnel). Fig. 3 shows an initial task break-down structure

for our example CIS evolution.

Step 2 – Task refinement and estimations: The architect

passes the first set of tasks to the manager, and they engage in

a discussion to refine the plan in terms of finer-grained tasks

and to improve estimations. Mappings between architectural

complexity of tasks and effort/cost estimations are established

in this step. For instance, task Wrap information providers in

Fig. 3 has been regarded as complex and it needs to be further

decomposed. Task estimations are used in plan analyses, as

illustrated in Section V. The refinement of tasks is usually

a helpful exercise for both architect and manager to check

assumptions (e.g., technology, main functionality flows, etc.)

and adjust the plan.

Step 3 – Task sequencing: At this stage, dependencies

between tasks are identified. Task inter-dependencies are

either logical (e.g., is-compatible-with, is-incompatible-with,

requires, etc.) or temporal (e.g., scheduled-before, concurrent-

start-with, synchronized-with, etc.). The tasks of Fig. 3 sketch

the main steps of the SOA evolution plan, but architectural

decisions still need to be made to determine task ordering.

These decisions have to do with: services to be migrated

first, definition of proxies for service consumers and providers,

consolidation of data, communication infrastructure between

service consumers and providers (e.g., point-to-point versus

use of ESB), reengineering of existing applications to make

them reusable and mine services from them, among others.

There are two main strategies for adopting SOA:

integration-in-place and migration [24]. In the integration-in-

place strategy, the applications are not modified but are re-

connected using web services. In the migration strategy, the

applications are internally re-structured and modified, in order

to produce a set of SOA-compliant components with well-

defined interfaces. When discussing the task for the plan(s), the

architect and project manager (and sometimes other relevant

technical stakeholders) decide which strategy to embrace. The

choice of strategy depends on the business/mission goals. For

example, if there is a need to preserve existing application

interfaces, then integration-in place is a more viable option.

For our CIS evolution from client-server to SOA, assume

that the architect has outlined the following two plans:

Evolution Plan 1: Gradually integrate the existing applica-

tion services and the information resources using web services.

First, the service providers/consumers are connected via point-

to-point adapters. Second, an ESB is introduced and the

service providers/consumers are re-connected using the ESB

as the mediator.

Evolution Plan 2: First, migrate the existing application

servers and consolidate them into a new application compo-

nent. Second, develop adapters for the information resources

and prepare their connection to the new application com-

ponent. Third, introduce an ESB in order to mediate the

communications between service providers and consumers.

Several other plans can also be constructed. As these plans

are envisioned to be key inputs to planning and executing the



 

Fig. 3. Architectural task break-down structure for the CIS example.

evolution, it is important to represent them in a manner that is

accessible to multiple stakeholders. We use a node-and-edge

representation for plans, in which nodes refer to architectural

tasks and edges refer to task dependencies, as shown in Fig. 4

for Plans 1 and 2 above. Note that the mappings between the

tasks initially identified in the break-down structure and the

tasks that form the evolution plans are not necessarily one-

to-one. For example, task Connect Web clients with new

server in Fig. 3 corresponds to tasks create adapters for

consumers and connect adapters point-2-point in Fig. 4.

However, task deploy ESB infrastructure in Fig. 4. is not

present in Fig. 3, as it is the result of choosing an ESB-

based architectural solution. Also note that activities such as

retiring the old application servers or disconnecting/connecting

services are assumed, even when they are not explicit in

Plans 1 and 2.

The goal of evolution requirements is to guide the con-

struction of a set of alternative plans, and the selection of

an optimal plan from these alternatives. In practice, evolution

planning is generally driven by features (or capabilities), rather

than by architectural considerations. A feature is a major piece

of functionality that is externally visible. A feature can also

include information about technology or quality of service.

In our problem, examples of features are: map information,

weather information, secure login, web access, etc.

In the closed evolution context, a set of features already exist

in the current system, and another (maybe overlapping) set of

features must be delivered in the target system. From a feature

viewpoint, the architectural tasks to be performed on the

system architecture to achieve a given set of features are not

prescribed. For instance, as long as the target CIS system will

provide map information with secure login, whether an ESB is

used to support those features is not visible (nor required). A

common managerial question here is: what are appropriate fea-

tures to sustain the evolution of the system under criteria such

as: shortest time, minimal resources, or acceptable levels of

risk? However, from the architects perspective, it is crucial to

identify the features that represent “architectural capabilities”

 

Fig. 4. Two evolution plans for CS to SOA evolution.

in the current/target system. Examples of such features in our

example are: a new Bizco server (that consolidates the two old

application servers), support for new information providers,

ESB mediation, separation between service interface and im-

plementation.

The decision of which mix of architectural features should

be considered when creating evolution plans is not straight-

forward. One possibility is to consider a minimal set of

architectural features, so as to clearly identify the “known”

and “unknown” areas in the target architecture. Known areas

represent low risks for the project (e.g., the communication

between the Web clients and the Bizco server), while unknown

areas require further investigation and risk mitigation. Another

possibility is to include a set of features that ensures stability

of the target architecture upon future changes (e.g., provide an

ESB to enable orchestration of services in the future).

We believe that the selection of architectural features is

guided mainly by the evolution requirements (i.e., EQA sce-

narios). The requirements should illuminate architectural is-

sues, without dispensing the importance of features. The EQA

scenario in Table III provides an example for the interplay

of architecture and features. On one hand, the architecture

needs to change to enable easy addition of new information

providers; on the other hand, there is a frequency that these

new providers will be added, enabling new features within the

system. It is the architects job to capture architectural issues

and map them to features, so that they are understood by the

manager when constructing the final plan.

The plans we exemplified for our case-study are influenced

by the choice of technology and ability to enable new ca-

pabilities for Bizco. Plan 1 takes a conservative strategy at

the cost of a longer evolution time. It aims at ensuring a

continuously working system (right after the point-to-point

connections between adapters are established), and favors a

smooth transition to the ESB infrastructure. The decision

of introducing an ESB can be delayed (or even canceled),

with little impact on the service producers/consumers. On

the downside, Plan 1 takes a long time (when compared to

directly introducing an ESB) and it adds redundancy. Rework



 

Fig. 5. Simulation results for Plan 1.

is needed when removing point-to-point adapters and re-

connecting the service providers/consumers. Also, overlapping

of functionality in existing application servers can complicate

their adaptation as service consumers

In contrast, Plan 2 takes a forward-looking strategy and

aims at reducing the migration time. The application servers

are consolidated into a new application component, which

facilitate later connections to the ESB (e.g., by re-structuring

the application servers in a way that fits ESB products).

The introduction of the ESB happens early, which allows

more inter-connections between service consumers/providers.

However, Plan 2 has the risk of failing to deploy the complete

solution (e.g., the migration of application servers do not

go as expected, or there are problems with the ESB). A

considerable up-front investment is necessary to re-structure

the application servers. The re-structuring adds complexity and

more expertise is required from developers (when compared

to just the development of service interfaces). Given all these

risk factors, Plan 2 can be still time-consuming.

The EQA scenarios (see Section III) play different roles in

the construction of the evolution plans. Scenarios typically fall

in two categories: “generative” and “selective”. To be valid,

an evolution plan must satisfy all generative scenarios. In

contrast, selective scenarios are used to assess valid plans for

comparative evaluation. In other words, generative scenarios

determine and constrain the set of alternative plans, while

selective scenarios inform the qualitative evaluation of the

alternatives. For example, the EQA scenario in Table II was

used as the generator for Plans 1 and 2. Once several plans are

available, an optimal plan is chosen on the basis of selective

EQA scenarios like the one in Table III. Some scenarios

are both generative and selective. Nonetheless, focusing only

on the generation aspect may not give the optimum results.

Architects also need to elicit key evolution planning scenarios

and guide analysis technique selection, which we discuss in

Section V.

V. ANALYSIS OF EVOLUTION PLANS

Analysis of evolution plans is the last aspect of our

approach. Having constructed alternative plans in light of

 

Fig. 6. Simulation result for Plan 2.

structurally elicited EQA scenarios, we analyze these plans to

decide which one to proceed with. We focus on the resource

usage aspect of evolution planning. We first demonstrate an

analysis based on certainty of completion time. We use Plans 1

and 2 for illustration.

The comparison of these two plans is dependent on the

key goal, i.e., the expectations of an organization from the

evolution. The EQA scenario in this context is determined

as “The evolution should be completed within 15 person-

months and we should have high certainty of the completion”

as demonstrated in Tables II and III. We categorize the key

EQA as completion time and the concern as certainty. The

goals of tagging key EQAs and the corresponding concerns are

similar to the goals of tagging common quality attributes and

their concerns [6], [16]. For example, a performance quality

attribute scenario with a latency concern can be analyzed with

scheduling analysis such as rate monotonic analysis.

Certainty of completion time can be analyzed with

PDM/CPM (Precedence Diagram/Critical Path Method) [15],

a project management technique that relies on the elicitation

of critical tasks and their inter-dependencies. By simulating

multiple scenarios, PDM/CPM allows for articulation of what-

if, worst-case, best-case, and most likely scenarios. While

such analysis techniques are typical in project management,

elicitation of key architectural tasks and articulation of the

scenarios as a combination of evolution requirements and

features is a novel aspect of our approach.

The plans demonstrated in Fig. 3 and Fig. 4 outline key task

areas. Based on the complexity of each task, we estimated

the minimum, the likeliest, and the maximum time the task

might take. Such estimations are conducted commonly in

organizations, and may be as ad-hoc as expert judgment-based

informal inputs or use estimation tools and methods.

We supplied appropriate estimates for the tasks of Plans 1

and 2 and conducted PDM/CPM analysis [8], [15]. The results

are shown in Fig. 5 and Fig. 6, respectively. The x-axis shows

possible duration of the entire plan in number of months. The

y-axis shows the probability of completion. Each frequency

graph charts a plan’s conclusion in a given amount of time,



TABLE IV
EQA: BACKWARDS COMPATIBILITY.

Quality 

attribute 
Backwards Compatibility (evolution) 

Concern Cost of reverting to as-is system 

Scenario 3 

During the first usage of the to-be system, if it fails, the 
as-is system will be replaceable within 1hr.However, 
30% of new added services should still be functioning. 

Stimulus Failure of new system 

Source of 

stimulus 
External 

Environment During first usage 

Artifact New system 

Response 
As is system will be replaced 

without side affects 

Response 

measure 
Within 1 hr. 

Constraints • 30% of new services have to function 

 

simulated over 1000 runs. The frequency is then interpreted

as the confidence level that the plan will complete within the

corresponding time limit.

This analysis of the plans against EQA scenarios we elicited

helps make the following comparative reasoning:

• There is 23% certainty that Plan 2 will complete in 15

person months as estimated.

• Plan 1 has 80% certainty that it will complete in 21

person months, as estimated.

• In the worst case, Plan 1 takes longer than Plan 2.

The analysis results calls for several possible actions: (i) look

closer at the tasks, and adjust their estimations; (ii) offer to

complete the evolution in 21 months as opposed to 15 and

negotiate the resources, but with more certainty; or (iii) go for

Plan 1, but be aware of its implications.

We present EQA scenarios for two additional EQAs: back-

wards compatibility (see Table IV) and early delivery points

(see Table V). The key to evaluating these EQA scenarios

is the ability to plot the trade-off space and map it to the

evolution planning exercise.

In order to evaluate the plans, we need to capture the

response measure and its corresponding comparative value for

the context of the problem. We capture backwards compati-

bility in the form of “undo cost” – the cost of reverting back

to the old system. We incorporate this factor into our example

evolution by estimating the cost of replacing each new service

with its older version, which is elicited from the technical

people, the architect, and the key developers. A plot of the

two plans for the backwards compatibility EQA scenario is

in Fig. 7. Number of services in the x-axis refers to the new

features demonstrated as services that the company needs to

be able to take advantage of. These are elicited as part of SOA

migration decisions and business requirements gathering.

We observe that Plan 1 has an initial high undo cost; how-

ever, undo cost flattens after the needed tasks are completed

for the first two services. This is in part due to the fact that

TABLE V
EQA: EARLY DELIVERY POINTS.

Quality 

attribute 
Delivery Points (evolution) 

Concern Enabling early delivery 

Scenario 3 

If needed the system should be deliverable with at least 
60% of new functionality. The new functionality should 
maximize new client potential. 

Stimulus Need to deliver early 

Source of 

stimulus 
External 

Environment Deployment time 

Artifact New system 

Response The system should be functional 

Response 

measure 

60% of new functionality should 

exist 

Constraints • Maximized new client potential 

 

the internals of the application servers are preserved. On the

other hand, for Plan 2 each service has its own allocated undo

cost. The ability to observe such differences in the trends of

the plans provides important inputs to their selection process.

Also, note that the decision to draw this plot is motivated

by the details of the backwards compatibility EQA scenario

(Table IV).

A direct way to measure the utility of an evolution plan is

the observed benefits as tasks are completed. This kind of an

analysis is beneficial not only from an economic perspective,

but also if an evaluation of the ability to deliver early is needed.

Plans 1 and 2 are compared in this regard in Fig. 8 based on

the delivery points EQA scenario (Table V).

The services in Fig. 8 are the same as those described in

the backwards compatibility EQA. The expected benefits –

in this case the number of new clients – are determined in

a collaboration between the architect, marketing and project

management staff. If an early stopping point arrives, Plan 1 is

more advantageous since most clients are reached at the end

of completing the 3rd service. Clearly, the inputs to creating

such comparative plots are context and system specific. They

require a focused technical interaction between the stakeholder

to understand the evolving system (as opposed to only under-

standing the final product).

In both scenarios, we evaluate the plans based on the

specific utility value against the number of services migrated.

Therefore, we also perform a trade-off analysis by plotting

a combined utility value against the number of services

migrated, as shown in Fig. 9 by mapping the data obtained

from Fig. 7 and Fig. 8 against each other. Table VI summarizes

the comparison of the plans.

Plan 1 emerges as more advantageous because it has less

of an undo cost in backwards compatibility, yet implements

the maximum number of services in case of an early delivery.

Plan 1 completes in a longer time, but with more certainty, as

determined earlier via PDM/CPM analysis. Therefore, even if



 

Fig. 7. EQA scenario: backwards compatibility.

time to market is a key driver, the combined analysis above

driven by mapping architectural concerns to evolution tasks,

can reveal insights that help business and technical decision

makers.

VI. RELATED WORK

Recent research has focused on architecture-based system

evolution. Practices that emerge from the existing body of

research suggest use of complexity metrics to measure ar-

chitecture evolvability [5]; planning, generation and analysis

of architectural evolution paths [12], [11]; application of eco-

nomic analysis [17], [23]; and focusing evaluations to manage

evolution, such as within a product line [3], [20].

A central tenet of software architecture is that behavioral

change accompanies structural change [6]. Modular design

is a sound approach to deal with change management, ease

of maintenance, and system evolution. Evolution complexity

metrics determine costs of an individual evolution step based

on the number of modules of the system affected by the

step [9], hence suggesting measuring cost of evolution through

modular designs as a key activity for evolution.

Evolution planning combines the need to deal with uncer-

tainty, along with costs and expected benefits. Real options

analysis in the context of architecture design has been applied

as a technique to tackle this problem. For instance, the use of

flexibility mechanisms creates designs that are more (or less)

evolvable [23]. Valuing the stability of middleware [5], and

analyzing the economic value of applying certain architectural

patterns [17] for evolution can also be enabled via real options

analysis.

Approaches to multi-objective optimization of project plans

using search-based techniques such as genetic algorithms and

simulated annealing are described in [2], [1]. These approaches

consider general tasks in software development/maintenance

case-studies, and could be adapted to specific EQAs and

architecturally-significant tasks.

In the context of IT application and architecture design,

“transitional architectures” aim to realize a system architecture

on a time continuum [10]. Conceptually, the approach is

based on three activities: (i) understand the current state of

 

Fig. 8. EQA scenario: early stopping points.

 

Fig. 9. Combined trade-off analysis of EQAs.

the architecture, (ii) envision a desired future vision of the

architecture, and (iii) establish a sequence of discrete steps

via a gap analysis between the current and the envisioned

architectures. Such an approach suggests the creation of an

evolution path based on the architectural changes, but does

not provide guidance for this creation. In our approach, the

evolution quality attributes guide and demystify path genera-

tion process by basing it on analyzable steps.

Another class of work that focuses on the evolution path

notion aims to formalize common evolutions as architecture

evolution styles. Garlan [11] defines an evolution style as a set

of evolution paths among classes of systems, e.g., evolutions

from a web-based architecture to J2EE. Le Goaer et al. [12]

TABLE VI
COMPARISON OF PLAN 1 AND PLAN 2.

EQA Plan 1 Plan 2

Certainty of
completion time

15 person-month de-
livery not possible,
%80 certainty at 21

%23 certainty at 15
person-month, %80
certainty at 23

Backwards

compatibility

No added cost after 2
services are reversed

Increasing cost with
each reversed service

Early delivery

point

After migrating 3
services can add 15
clients

After migrating 3 ser-
vices can add 5 new
clients



define an evolution style at a much lower level of abstraction in

terms of the structural changes involved. Evolution styles are

complementary to our approach. Construction and evaluation

of multiple transition plans eventually provides guidance for

identifying styles.

VII. CONCLUSION AND FUTURE WORK

In this paper, we argue that software architecture can and

must be used to inform evolution planning. To this end,

we propose an approach where key architecturally significant

tasks are identified, put together as evolution plans, and are

evaluated with respect to evolution quality attributes. Our key

contributions are: (1) capturing key evolution requirements as

evolution quality attribute scenarios; (2) a notion of evolution

plans; and (3) techniques for evaluating and comparing such

plans. We demonstrate our approach on a CS to SOA evolution

example.

We only scratch the surface of architecture-centric planning

for evolution. The following three questions guide our future

work: What are key EQA categories? In this paper, we sug-

gest these candidate categories: completion time, backwards

compatibility, and early stopping points. More case studies

are needed to validate them, and expand the selection. What

are the corresponding evaluation techniques? For example,

real option analysis [5], [17] applies to early completion time

concerns. What is the right granularity of a plan? For example,

it seems clear that the architect should not refine tasks, nor

add dependencies, nor estimate beyond his knowledge (e.g.,

stop if the confidence is less than 50%). The architect might

refine the initial steps of the plan to greater detail, and defer

the refinement of the remaining steps. Determining the proper

granularity of task definition is currently an art, and needs tool

support to become more of an engineering activity.

Finally, we are planning to apply our approach to different

evolution case-studies and use that feedback to improve the

approach. We envision that once repeatable EQAs emerge,

they will provide the heuristics to guide the selection and

granularity of tasks for evolution planning and formulation

of key requirements for tool support.
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