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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Model integration in CPS
Energy

Scheduling

Aerodynamics

● Subtle mismatches between technical domains

● Lead to costly fixes or failures
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Analytic aspect of integration
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Frequency scaling

Analysis Allocates

Adjusts
frequency

● Frequency scaling is applicable only when:

– used after Bin packing

– the system is behaviorally deadline-monotonic
● Otherwise, frequency scaling may render the system 

unschedulable
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Frequency scaling assumption
● Behavioral equivalence to deadline-monotonic scheduling

PD
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P=D
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RMS ≠ DMS 

RMS = DMS 

P=D, Harmonic, Sync
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Analysis integration problem

System

Analysis

Analysis

Analysis

● Out-of-order execution

● Invalidation of assumptions

Analysis

Domain 2

Domain 1
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Existing solutions

● Assume-guarantee component composition does not handle 
analytic integration of tools [1][2].  

● Architectural views tackle model consistency, not analytic 
tool consistency [3][4]

● Meta-level AADL languages do not allow domain-specific 
semantics [5] 

● Previous work on analysis contracts: single domain only, 
unsound and incomplete verification [6]

[1] Frehse et al. Assume-guarantee reasoning for hybrid I/O-automata by over-approximation of 
continuous interaction, 2004
[2] Sangiovanni-Vincentelli et al. Taming Dr. Frankenstein: contract-based design for cyber-physical 
systems, 2013
[3] Torngren et al. Integrating viewpoints in the development of mechatronic products, 2013
[4] Rajhans et al. Supporting heterogeneity in cyber-physical systems architectures, 2014
[5] Boddy et al. The FUSED meta-language and tools for complex system engineering, 2011
[6] Nam et al. Resource allocation contracts for open analytic runtime models, 2011 
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Running example
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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Analysis contracts approach

1. Formalize analysis domains

2. Specify dependencies, assumptions, and 
guarantees of analyses

3. Determine correct ordering of analyses

4. Verify assumptions and guarantees of analyses
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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Running example
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Running example

Discharge Charge
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Scheduling domain σ
sched

Bin packing Data security

x

Data security

x



15

Verification domain

Domain σ is a many-sorted signature (A, S, R, T, ⦃⦄
σ
):

– A – set of atoms: ℬ, ℤ, Threads, Batteries, SchedPol

– S – static functions: Period, Dline, CPUBind, Voltage

– R – runtime functions CanPrmpt: Threads x Threads → ℬ

– T – execution semantics

● set of sequences of R assignments

– ⦃⦄
σ
 and ⦃⦄

m
 – domain and model interpretations

● ⦃SchedPol⦄
σ
 = {RMS, DMS, EDF}

● ⦃CPUBind⦄m = { (Ctrl1, CPU1), (Ctrl2, CPU2), ... }  
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Analysis contract

● Given a domain σ, analysis contract C is a tuple (I, O, A, G) 

– Inputs I ⊆ A ∪ S
– Outputs O ⊆ A ∪ S

– Assumptions A ⊆ Fσ

– Guarantees G ⊆ Fσ

● Where:

– Fσ ::= {∀|ⱻ} v1..vn•φ  |  {∀|ⱻ} v1..vn•φ : ψ

– φ is a static predicate formula over A  and S
– ψ is an LTL formula over A , S, and R 

– E.g.: ∀ t
1
, t

2
: Threads • t

1
 ≠ t

2
 ∧ CPUBind(t

1
) = CPUBind(t

2
) :

                 G (CanPrmpt(t
1
, t

2
) ⇒ Dline(t

1
) < Dline(t

2
))
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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Running example

Discharge Charge

Battery Scheduling

Battery domain σbatt

Scheduling domain σ
sched

Bin packing Data security
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Assumption verification

● Goal: 

∀ t
1
, t

2
: Threads • t

1
 ≠ t

2
 ∧ CPUBind(t

1
) = CPUBind(t

2
) :

   G (CanPrmpt(t
1
, t

2
) ⇒ Dline(t

1
) < Dline(t

2
))

● SMT solver finds solutions for static fragment φ

– ∀ t
1
, t

2
:Threads | t

1
 ≠ t

2
 ∧ CPUBind(t

1
) = CPUBind(t

2
)

● Model checking property ψ in a behavioral Promela 
model for each SMT solution:

– G (CanPrmpt(t
1
, t

2
) ⇒ Dline(t

1
) < Dline(t

2
))
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Battery modeling

Discharge Charge

Battery Scheduling

Battery domain σbatt

● Abstraction: circuits
● Selects a scheduler for cell connections
● Oblivious of heat: treats any configuration as 

acceptable heat-wise

● Abstraction: geometry
● Simulates heat propagation
● Cannot scale to dynamic scheduling: 

simulates only fixed cell configurations

● Restrictions on acceptable thermal configurations
● Guarantee: unacceptable ones don't occur
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Battery scheduling guarantee

● G: “Bad thermal configurations are not reachable”
● TN(b, i) ∈ R – number of cells in b with i thermal 

neighbors
● K(b, i) ∈ S – experimental weight for TN(b, i)
● G = {∀ b: Batteries • G ( ∑ i=0..3 K(b, i)*TN(b, i) ) ≥ 0}
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Battery modeling

Discharge Charge

Battery Scheduling

Battery domain σbatt

Selects a battery scheduler
G: ∀ b: Batteries • G ( ∑ i=0..3 K(b, i)*TN(b, i) ) ≥ 0
Verified with battery Promela/Spin model

K(b, i) 

Determines K(b, i) via simulation
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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Framework implementation
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Scalability evaluation

Threads (R/D)MS  
time

EDF time

3 0.01 0.01

4 0.01 0.52

5 0.07 33.4

6 0.37 2290.0

7 2.18 Out Mem

8 12.4 Out Mem

9 71.2 Out Mem

10 421 Out Mem

11 Out Mem Out Mem

Cells FGURR
 time 

FGWRR 
time 

GPWRR
time

9 0.13 0.15 0.15

12 0.61 2.34 3.94

16 44 31.4 127

20 1060 619 Out Mem

25 Out Mem Out Mem Out Mem

● SMT solving typically takes less than 0.1 second 

● Spin model checking times:

All times are in seconds

 σ
sched 

:  σ
batt 

:
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Summary

● Analysis integration is error-prone

– Incorrect ordering

– Violation of implicit assumptions
● Our solution:

– Contract specification language

– Contract verification algorithm

– Framework implementation
● Effective, extensible, and scalable 
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Verification domain

● Domain σ is a many-sorted signature (A, S, R, T, ⦃⦄
σ
):

– A: set of sorts – system elements and standard 
sorts

● E.g.: ℬ, ℤ, Threads, Batteries, SchedPol

– S: A i x ... x A n → A k – static functions that encode 
design properties

● E.g.: Period, Dline, CPUBind, Voltage

– R: A i x ... x A n → A k – runtime functions that encode 
dynamic properties

● E.g.: CanPrmpt: Threads x Threads → ℬ
   TN: Batteries x ℤ → ℤ
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Verification domain

● Domain σ is a many-sorted signature (A, S, R, T, ⦃⦄
σ
):

– T: execution semantics – set of sequences of R assignments

● E.g.: thread scheduler state model for σsched

   battery state model for for σbatt

– ⦃⦄
σ
: domain interpretation for A and S 

● E.g.: ⦃SchedPol⦄
σ
 = {RMS, DMS, EDF} 

● Architectural model m is an interpretation ⦃⦄
m
 of A, S, and T

– E.g.: ⦃Threads⦄
m
 = { SensorSample, Ctrl1, Ctrl2 }

⦃CPUBind⦄m = { (Ctrl1, CPU1), (Ctrl2, CPU2), ... } 
 

– ⦃⦄
σ 

∪ ⦃⦄
m
  is a full interpretation
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Contracts

 


