
1

Contract-Based Integration of
Cyber-Physical Analyses

Ivan Ruchkin
Dionisio De Niz

Sagar Chaki
David Garlan

October 14, 2014
14th International Conference on Embedded Software

2

Copyright 2014 ACM

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research
and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission.
Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

DM-0001714

3

Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results

4

Model integration in CPS
Energy

Scheduling

Aerodynamics

● Subtle mismatches between technical domains

● Lead to costly fixes or failures

5

Analytic aspect of integration

Sensor
Sampling

PID
Controller

Actuator
Controller

Communication bus

Sensor

board
CPU

Actuator

board

System

Bin packing

Analysis

P
ow

er

E
xe

c
T

im
e

Frequency scaling

Analysis Allocates

Adjusts
frequency

● Frequency scaling is applicable only when:

– used after Bin packing

– the system is behaviorally deadline-monotonic
● Otherwise, frequency scaling may render the system

unschedulable

6

Frequency scaling assumption
● Behavioral equivalence to deadline-monotonic scheduling

PD

P=D

P=D

P=D

RMS ≠ DMS

RMS = DMS

P=D, Harmonic, Sync

P=D

P=D

EDF ≠ DMS

EDF = DMS

P=D

P=D

7

Analysis integration problem

System

Analysis

Analysis

Analysis

● Out-of-order execution

● Invalidation of assumptions

Analysis

Domain 2

Domain 1

8

Existing solutions

● Assume-guarantee component composition does not handle
analytic integration of tools [1][2].

● Architectural views tackle model consistency, not analytic
tool consistency [3][4]

● Meta-level AADL languages do not allow domain-specific
semantics [5]

● Previous work on analysis contracts: single domain only,
unsound and incomplete verification [6]

[1] Frehse et al. Assume-guarantee reasoning for hybrid I/O-automata by over-approximation of
continuous interaction, 2004
[2] Sangiovanni-Vincentelli et al. Taming Dr. Frankenstein: contract-based design for cyber-physical
systems, 2013
[3] Torngren et al. Integrating viewpoints in the development of mechatronic products, 2013
[4] Rajhans et al. Supporting heterogeneity in cyber-physical systems architectures, 2014
[5] Boddy et al. The FUSED meta-language and tools for complex system engineering, 2011
[6] Nam et al. Resource allocation contracts for open analytic runtime models, 2011

9

Running example

Discharge Charge

Battery Scheduling

Battery

Scheduling

Bin packing Data security

x

Data security

x

10

Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results

11

Analysis contracts approach

1. Formalize analysis domains

2. Specify dependencies, assumptions, and
guarantees of analyses

3. Determine correct ordering of analyses

4. Verify assumptions and guarantees of analyses

12

Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results

13

Running example

Discharge Charge

Battery Scheduling

Battery

Scheduling

Bin packing Data security

x

Data security

x

14

Running example

Discharge Charge

Battery Scheduling

Battery domain σbatt

Scheduling domain σ
sched

Bin packing Data security

x

Data security

x

15

Verification domain

Domain σ is a many-sorted signature (A, S, R, T, ⦃⦄
σ
):

– A – set of atoms: ℬ, ℤ, Threads, Batteries, SchedPol

– S – static functions: Period, Dline, CPUBind, Voltage

– R – runtime functions CanPrmpt: Threads x Threads → ℬ

– T – execution semantics

● set of sequences of R assignments

– ⦃⦄
σ
 and ⦃⦄

m
 – domain and model interpretations

● ⦃SchedPol⦄
σ
 = {RMS, DMS, EDF}

● ⦃CPUBind⦄m = { (Ctrl1, CPU1), (Ctrl2, CPU2), ... }

16

Analysis contract

● Given a domain σ, analysis contract C is a tuple (I, O, A, G)

– Inputs I ⊆ A ∪ S
– Outputs O ⊆ A ∪ S

– Assumptions A ⊆ Fσ

– Guarantees G ⊆ Fσ

● Where:

– Fσ ::= {∀|ⱻ} v1..vn•φ | {∀|ⱻ} v1..vn•φ : ψ

– φ is a static predicate formula over A and S
– ψ is an LTL formula over A , S, and R

– E.g.: ∀ t
1
, t

2
: Threads • t

1
 ≠ t

2
 ∧ CPUBind(t

1
) = CPUBind(t

2
) :

 G (CanPrmpt(t
1
, t

2
) ⇒ Dline(t

1
) < Dline(t

2
))

17

Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results

18

Running example

Discharge Charge

Battery Scheduling

Battery domain σbatt

Scheduling domain σ
sched

Bin packing Data security

x

Data security

x

19

Assumption verification

● Goal:

∀ t
1
, t

2
: Threads • t

1
 ≠ t

2
 ∧ CPUBind(t

1
) = CPUBind(t

2
) :

 G (CanPrmpt(t
1
, t

2
) ⇒ Dline(t

1
) < Dline(t

2
))

● SMT solver finds solutions for static fragment φ

– ∀ t
1
, t

2
:Threads | t

1
 ≠ t

2
 ∧ CPUBind(t

1
) = CPUBind(t

2
)

● Model checking property ψ in a behavioral Promela
model for each SMT solution:

– G (CanPrmpt(t
1
, t

2
) ⇒ Dline(t

1
) < Dline(t

2
))

20

Battery modeling

Discharge Charge

Battery Scheduling

Battery domain σbatt

● Abstraction: circuits
● Selects a scheduler for cell connections
● Oblivious of heat: treats any configuration as

acceptable heat-wise

● Abstraction: geometry
● Simulates heat propagation
● Cannot scale to dynamic scheduling:

simulates only fixed cell configurations

● Restrictions on acceptable thermal configurations
● Guarantee: unacceptable ones don't occur

21

Battery scheduling guarantee

● G: “Bad thermal configurations are not reachable”
● TN(b, i) ∈ R – number of cells in b with i thermal

neighbors
● K(b, i) ∈ S – experimental weight for TN(b, i)
● G = {∀ b: Batteries • G (∑ i=0..3 K(b, i)*TN(b, i)) ≥ 0}

22

Battery modeling

Discharge Charge

Battery Scheduling

Battery domain σbatt

Selects a battery scheduler
G: ∀ b: Batteries • G (∑ i=0..3 K(b, i)*TN(b, i)) ≥ 0
Verified with battery Promela/Spin model

K(b, i)

Determines K(b, i) via simulation

23

Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results

24

Framework implementation

25

Scalability evaluation

Threads (R/D)MS
time

EDF time

3 0.01 0.01

4 0.01 0.52

5 0.07 33.4

6 0.37 2290.0

7 2.18 Out Mem

8 12.4 Out Mem

9 71.2 Out Mem

10 421 Out Mem

11 Out Mem Out Mem

Cells FGURR
 time

FGWRR
time

GPWRR
time

9 0.13 0.15 0.15

12 0.61 2.34 3.94

16 44 31.4 127

20 1060 619 Out Mem

25 Out Mem Out Mem Out Mem

● SMT solving typically takes less than 0.1 second

● Spin model checking times:

All times are in seconds

 σ
sched

: σ
batt

:

26

Summary

● Analysis integration is error-prone

– Incorrect ordering

– Violation of implicit assumptions
● Our solution:

– Contract specification language

– Contract verification algorithm

– Framework implementation
● Effective, extensible, and scalable

27

Verification domain

● Domain σ is a many-sorted signature (A, S, R, T, ⦃⦄
σ
):

– A: set of sorts – system elements and standard
sorts

● E.g.: ℬ, ℤ, Threads, Batteries, SchedPol

– S: A i x ... x A n → A k – static functions that encode
design properties

● E.g.: Period, Dline, CPUBind, Voltage

– R: A i x ... x A n → A k – runtime functions that encode
dynamic properties

● E.g.: CanPrmpt: Threads x Threads → ℬ
 TN: Batteries x ℤ → ℤ

28

Verification domain

● Domain σ is a many-sorted signature (A, S, R, T, ⦃⦄
σ
):

– T: execution semantics – set of sequences of R assignments

● E.g.: thread scheduler state model for σsched

 battery state model for for σbatt

– ⦃⦄
σ
: domain interpretation for A and S

● E.g.: ⦃SchedPol⦄
σ
 = {RMS, DMS, EDF}

● Architectural model m is an interpretation ⦃⦄
m
 of A, S, and T

– E.g.: ⦃Threads⦄
m
 = { SensorSample, Ctrl1, Ctrl2 }

⦃CPUBind⦄m = { (Ctrl1, CPU1), (Ctrl2, CPU2), ... }

– ⦃⦄
σ

∪ ⦃⦄
m
 is a full interpretation

29

Contracts

