
1
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.
REV-03.18.2016.0

Verifying Cyber-Physical
Systems by Combining
Software Model
Checking with Hybrid
Systems Reachability

Stanley Bak, AFRL

Sagar Chaki, SEI/CMU

October 4, 2016

2
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0004049

AFRL case number: 88ABW-2016-2806

3
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Motivation

Cyber-Physical System (CPSs) play safety-critical roles in day-to-
day lives

• Avionics, automotive, healthcare, energy

High-level of assurance of safe and secure behavior desired

• As close to the executable as possible

Formal verification provides high confidence in principle, but

• Issue1: Application and controller algorithms analysed by
different techniques – each with their own specialized tools

• Issue2: In practice plagued by scalability issues

• Can compositional reasoning address both issues?

We present a compositional approach to verify CPS software

• Software model checking + hybrid system reachability

• Validated on a multi-agent collision avoidance protocol

4
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

CPS Model Of Computation

System composed of application 𝐴 and controller 𝐶
• Execute concurrently : 𝑆 = 𝐴 ∥ 𝐶
• Communicate via shared variables

- Cyber variables 𝑉𝐶 written by 𝐴 and read by 𝐶
- Physical variables 𝑉𝑃 written by 𝐶 and read by 𝐴

• Accessed by 𝐴 via API functions

• Application 𝐴 available as source code

• Controller 𝐶 available as a hybrid automaton
- 𝐶 = controller + plant (from control theory

perspective)

Want to verify that 𝑆 satisfies a safety property
(something bad never happens)

• Formally, 𝑆 ⊨ Φ where Φ is an invariant
expressing the safety property of interest

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝐴

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
𝐶

Shared Variables
(𝑉𝐶 & 𝑉𝑃)

API Function
Parameters (𝑉𝑃𝑎𝑟)

5
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Example: 2D Quadcopter Movement

Current setpoint Next setpoint

Cell Ids

Positions

Position

6
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Example: Target Property

(Φℎ𝑜𝑣𝑒𝑟 ∧ 𝑠𝑝𝑛𝑥𝑡 = 𝑠𝑝𝑐𝑢𝑟)

(Φ𝑚𝑜𝑣𝑒 ∧ 𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 5,0 ∨ 𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 0,5)

∨

7
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Example: 2D Quadcopter Movement

𝐴 𝐶

Shared Variables
Cyber: 𝑠𝑝𝑐𝑢𝑟, 𝑠𝑝𝑛𝑥𝑡

Physical: 𝑝𝑜𝑠

API Function Parameters
𝑥, 𝑦

Periodically invokes
API functions
𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡(𝑥, 𝑦)
and ℎ𝑎𝑠_𝑎𝑟𝑟𝑖𝑣𝑒𝑑()
that update 𝑠𝑝𝑐𝑢𝑟
and 𝑠𝑝𝑛𝑥𝑡 to interact
with the controller.

Continuously executes
a control algorithm to
move/hover the
platform based on
values of 𝑠𝑝𝑐𝑢𝑟 and
𝑠𝑝𝑛𝑥𝑡. Updates 𝑝𝑜𝑠.

8
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Verification Approach

No existing tools to verify (source code + hybrid automata)

• But each domain has its own specialized tools: software model
checkers and hybrid reachability checkers

• Developing such a tool that combines the statespace 𝐴 and 𝐶 in a
brute-force way will not scale

Insight: application and controller make assumptions about each other to
achieve overall safe behavior

Approach:

• Use “contract automaton” to express inter-dependency between 𝐴
and 𝐶

• Separately verify that 𝐴 and 𝐶 implement desired behavior under
the assumption that the other party does so as well

• Use an “assume-guarantee” style proof rule to show the 𝐴 ∥ 𝐶 ⊨ Φ

9
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Benefits of Verification Approach

Use “contract automaton” to express inter-dependency between 𝐴 and 𝐶

• Explicit formal understanding between teams developing 𝐴 and 𝐶

Separately verify that 𝐴 and 𝐶 implement desired behavior under the

assumption that the other party does so as well

• Compositional ⇒ more scalable

• Use domain-specific tools ⇒ build on progress in each area

Use an “assume-guarantee” style proof rule to show the 𝐴 ∥ 𝐶 ⊨ Φ

• Proof-rule formally proven to be sound ⇒ amortized proof cost

• Other variants can be developed to manage tradeoff between

completeness and verification complexity

10
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Example: Assumptions between 𝑨 and 𝑪

11
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Example: Contract Automaton

𝐶1 and 𝐶2 are
enforced by the
possible transitions
and the function calls
labeling them.

𝐶3 and 𝐶4 are
enforced by the
invariants labeling the
locations.

State, aka
location

InvariantTransition
label

12
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Contract Automaton Invariant = Target Property

CA Invariant =
disjunction of
state invariants

Φℎ𝑜𝑣𝑒𝑟 ∧ 𝑠𝑝𝑛𝑥𝑡 = 𝑠𝑝𝑐𝑢𝑟
∨

(Φ𝑚𝑜𝑣𝑒 ∧
𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 5,0 ∨

𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 0,5
)

Target
Property

13
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Assume-Guarantee Proof Rule

Conclusion: System satisfies all invariants of the contract
automaton 𝑀 = target safety property

Premise1: Application 𝐴 refines
the contract automaton 𝑀 (calls

API functions in the right order and
with proper arguments)

Premise2: Controller 𝐶 refines the
contract automaton 𝑀 (keeps the

physical state within required
bounds)

14
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Discharging The Premises

Premise1: Application 𝐴 refines the contract automaton 𝑀 (calls

API functions in the right order and with proper arguments)

• Reduced to software model checking, discharged via CBMC

• Manually supplied invariants and used CBMC to verify that

they are inductive

• 1700 LOC, 2.9GHz, 16GB RAM, 3.5 seconds

Premise2: Controller 𝐶 refines the contract automaton 𝑀 (keeps

the physical state within required bounds)

• Reduced to hybrid system reachability, discharged via

SpaceEX

• Required continuous approximation and symmetry argument

• 2.3GHz, 16GB RAM, 33 seconds

15
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Discharging Premise 1

Verification Stub for
𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡()

16
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Discharging Premise 1

Verification Stubs for
API functions

Application Source
code that calls API

functions

CBMC Software
Model Checker

Verification
Result

SUCCESS

17
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Discharging Premise 1

Verification Stubs for
API functions

Application Source
code that calls API

functions

CBMC Software
Model Checker

Verification
Result

FAILURE

More details in paper

18
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Discharging Premise 2

Hybrid Automaton
extracted from

contract automaton

Hybrid automaton for
controller dynamic

SpaceEX Hybrid
Reachability Tool

Verification
Result

19
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Discharging Premise 2

SpaceEX Hybrid
Reachability Tool

Success

Used symmetry to
reduce statespace
(dimensions, time

horizon)

More details in paper

20
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Verifying Distributed Collision Avoidance

We implemented a system with 10 quadcopters moving on the 2D grid using a

DSL called DMPL that supports synchronous model of computation

Verified two properties of this distributed system using software model checking

• Property 1. Distinct quadcopters have disjoint 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 and 𝑐𝑒𝑙𝑙𝑛𝑒𝑥𝑡 values

- ∀𝑖 ≠ 𝑗 ∈ [0,9]. 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 𝑖 ≠ 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 𝑗 ∧ 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 𝑖 ≠ 𝑐𝑒𝑙𝑙𝑛𝑒𝑥𝑡[𝑗]

• Property 2. Setpoints are 5 times cell values

- 𝑠𝑝𝑐𝑢𝑟 = 5 × 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 and 𝑠𝑝𝑛𝑥𝑡 = 5 × 𝑐𝑒𝑙𝑙𝑛𝑒𝑥𝑡

• 17.5KLOC, 2.9GHz, 16GB RAM, 1900 seconds

Proved that these two properties and the property of movement of a single

quadcopter verified earlier using a contract automaton ⇒ distance between

centers of distinct quadcopters is always greater that the quadcopter diameter

• Encoded as a SMT formula and proved using Z3

• Implies physical collision avoidance of the distributed system

21
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Conclusion

Presented a compositional approach to verify CPS consisting of an

application and a controller

• Combine software model checking with hybrid system

reachability and works at the source code level

• Based on a contract automaton to capture application-

controller dependencies and a sounds assume-guarantee

style proof rule

• Validated on a multi-agent collision avoidance protocol

Future Work

• Manual steps automated and packaged as an end-to-end tool

• Parametric verification can reason about unbounded number

of quadcopters and grids

22
Verifying Cyber-Physical Systems: Chaki, Bak

October 4, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

QUESTIONS?

