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Motivation

Cyber-Physical System (CPSs) play safety-critical roles in day-to-
day lives

• Avionics, automotive, healthcare, energy

High-level of assurance of safe and secure behavior desired

• As close to the executable as possible

Formal verification provides high confidence in principle, but

• Issue1: Application and controller algorithms analysed by 
different techniques – each with their own specialized tools

• Issue2: In practice plagued by scalability issues

• Can compositional reasoning address both issues?

We present a compositional approach to verify CPS software

• Software model checking + hybrid system reachability

• Validated on a multi-agent collision avoidance protocol 
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CPS Model Of Computation

System composed of application 𝐴 and controller 𝐶
• Execute concurrently : 𝑆 = 𝐴 ∥ 𝐶
• Communicate via shared variables

- Cyber variables 𝑉𝐶 written by 𝐴 and read by 𝐶
- Physical variables 𝑉𝑃 written by 𝐶 and read by 𝐴

• Accessed by 𝐴 via API functions

• Application 𝐴 available as source code

• Controller 𝐶 available as a hybrid automaton
- 𝐶 = controller + plant  (from control theory 

perspective)

Want to verify that 𝑆 satisfies a safety property 
(something bad never happens)

• Formally, 𝑆 ⊨ Φ where Φ is an invariant 
expressing the safety property of interest

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝐴

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
𝐶

Shared Variables
(𝑉𝐶 & 𝑉𝑃)

API Function 
Parameters (𝑉𝑃𝑎𝑟)
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Example: 2D Quadcopter Movement

Current setpoint Next setpoint

Cell Ids

Positions

Position 
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Example: Target Property

(Φℎ𝑜𝑣𝑒𝑟 ∧ 𝑠𝑝𝑛𝑥𝑡 = 𝑠𝑝𝑐𝑢𝑟)

(Φ𝑚𝑜𝑣𝑒 ∧ 𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 5,0 ∨ 𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 0,5 )

∨
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Example: 2D Quadcopter Movement

𝐴 𝐶

Shared Variables
Cyber: 𝑠𝑝𝑐𝑢𝑟, 𝑠𝑝𝑛𝑥𝑡

Physical: 𝑝𝑜𝑠

API Function Parameters 
𝑥, 𝑦

Periodically invokes 
API functions 
𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡(𝑥, 𝑦)
and ℎ𝑎𝑠_𝑎𝑟𝑟𝑖𝑣𝑒𝑑()
that update 𝑠𝑝𝑐𝑢𝑟
and 𝑠𝑝𝑛𝑥𝑡 to interact 
with the controller.

Continuously executes 
a control algorithm to 
move/hover the 
platform based on 
values of 𝑠𝑝𝑐𝑢𝑟 and 
𝑠𝑝𝑛𝑥𝑡. Updates 𝑝𝑜𝑠.
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Verification Approach

No existing tools to verify (source code + hybrid automata)

• But each domain has its own specialized tools: software model 
checkers and hybrid reachability checkers

• Developing such a tool that combines the statespace 𝐴 and 𝐶 in a 
brute-force way will not scale

Insight: application and controller make assumptions about each other to 
achieve overall safe behavior

Approach:

• Use “contract automaton” to express inter-dependency between 𝐴
and 𝐶

• Separately verify that 𝐴 and 𝐶 implement desired behavior under 
the assumption that the other party does so as well

• Use an “assume-guarantee” style proof rule to show the 𝐴 ∥ 𝐶 ⊨ Φ
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Benefits of Verification Approach

Use “contract automaton” to express inter-dependency between 𝐴 and 𝐶

• Explicit formal understanding between teams developing 𝐴 and 𝐶

Separately verify that 𝐴 and 𝐶 implement desired behavior under the 

assumption that the other party does so as well

• Compositional ⇒ more scalable

• Use domain-specific tools ⇒ build on progress in each area

Use an “assume-guarantee” style proof rule to show the 𝐴 ∥ 𝐶 ⊨ Φ

• Proof-rule formally proven to be sound ⇒ amortized proof cost

• Other variants can be developed to manage tradeoff between 

completeness and verification complexity
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Example: Assumptions between 𝑨 and 𝑪
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Example: Contract Automaton

𝐶1 and 𝐶2 are 
enforced by the 
possible transitions 
and the function calls 
labeling them.

𝐶3 and 𝐶4 are 
enforced by the 
invariants labeling the 
locations.

State, aka 
location

InvariantTransition 
label
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Contract Automaton Invariant = Target Property

CA Invariant = 
disjunction of 
state invariants

Φℎ𝑜𝑣𝑒𝑟 ∧ 𝑠𝑝𝑛𝑥𝑡 = 𝑠𝑝𝑐𝑢𝑟
∨

(Φ𝑚𝑜𝑣𝑒 ∧
𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 5,0 ∨

𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 0,5
)

Target 
Property
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Assume-Guarantee Proof Rule

Conclusion: System satisfies all invariants of the contract 
automaton 𝑀 = target safety property

Premise1: Application 𝐴 refines 
the contract automaton 𝑀 (calls 

API functions in the right order and 
with proper arguments)

Premise2: Controller 𝐶 refines the 
contract automaton 𝑀 (keeps the 

physical state within required 
bounds)
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Discharging The Premises

Premise1: Application 𝐴 refines the contract automaton 𝑀 (calls 

API functions in the right order and with proper arguments)

• Reduced to software model checking, discharged via CBMC

• Manually supplied invariants and used CBMC to verify that 

they are inductive

• 1700 LOC, 2.9GHz, 16GB RAM, 3.5 seconds

Premise2: Controller 𝐶 refines the contract automaton 𝑀 (keeps 

the physical state within required bounds)

• Reduced to hybrid system reachability, discharged via 

SpaceEX

• Required continuous approximation and symmetry argument

• 2.3GHz, 16GB RAM, 33 seconds
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Discharging Premise 1

Verification Stub for 
𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡()
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Discharging Premise 1

Verification Stubs for 
API functions

Application Source 
code that calls API 

functions

CBMC Software 
Model Checker

Verification 
Result

SUCCESS
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Discharging Premise 1

Verification Stubs for 
API functions

Application Source 
code that calls API 

functions

CBMC Software 
Model Checker

Verification 
Result

FAILURE

More details in paper
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Discharging Premise 2

Hybrid Automaton 
extracted from 

contract automaton

Hybrid automaton for 
controller dynamic

SpaceEX Hybrid 
Reachability Tool

Verification 
Result
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Discharging Premise 2

SpaceEX Hybrid 
Reachability Tool

Success

Used symmetry to 
reduce statespace
(dimensions, time 

horizon)

More details in paper
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Verifying Distributed Collision Avoidance

We implemented a system with 10 quadcopters moving on the 2D grid using a 

DSL called DMPL that supports synchronous model of computation

Verified two properties of this distributed system using software model checking

• Property 1. Distinct quadcopters have disjoint 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 and 𝑐𝑒𝑙𝑙𝑛𝑒𝑥𝑡 values

- ∀𝑖 ≠ 𝑗 ∈ [0,9]. 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 𝑖 ≠ 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 𝑗 ∧ 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 𝑖 ≠ 𝑐𝑒𝑙𝑙𝑛𝑒𝑥𝑡[𝑗]

• Property 2. Setpoints are 5 times cell values

- 𝑠𝑝𝑐𝑢𝑟 = 5 × 𝑐𝑒𝑙𝑙𝑐𝑢𝑟 and 𝑠𝑝𝑛𝑥𝑡 = 5 × 𝑐𝑒𝑙𝑙𝑛𝑒𝑥𝑡

• 17.5KLOC, 2.9GHz, 16GB RAM, 1900 seconds

Proved that these two properties and the property of movement of a single 

quadcopter verified earlier using a contract automaton ⇒ distance between 

centers of distinct quadcopters is always greater that the quadcopter diameter

• Encoded as a SMT formula and proved using Z3

• Implies physical collision avoidance of the distributed system
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Conclusion

Presented a compositional approach to verify CPS consisting of an 

application and a controller

• Combine software model checking with hybrid system 

reachability and works at the source code level

• Based on a contract automaton to capture application-

controller dependencies and a sounds assume-guarantee 

style proof rule

• Validated on a multi-agent collision avoidance protocol

Future Work

• Manual steps automated and packaged as an end-to-end tool

• Parametric verification can reason about unbounded number 

of quadcopters and grids
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