
Dynamic Component Substitutability Analysis ?

Sagar Chaki Edmund Clarke Natasha Sharygina Nishant Sinha
chaki|nys@sei.cmu.edu emc|natalie|nishants@cs.cmu.edu

Carnegie Mellon University

Abstract. This paper presents an automated and compositional pro-
cedure to solve the substitutability problem in the context of evolving
software systems. Our solution contributes two techniques for checking
correctness of software upgrades: 1) a technique based on simultaneous
use of over and under approximations obtained via existential and uni-
versal abstractions; 2) a dynamic assume-guarantee reasoning algorithm
– previously generated component assumptions are reused and altered
on-the-fly to prove or disprove the global safety properties on the updated
system. When upgrades are found to be non-substitutable our solution
generates constructive feedback to developers showing how to improve
the components. The substitutability approach has been implemented
and validated in the ComFoRT model checking tool set and we report
encouraging results on an industrial benchmark.

Keywords: Software Model Checking, Verification of Evolving Software,
Learning Regular Sets, Assume/Guarantee Reasoning

1 Introduction

Software systems evolve throughout the product life-cycle. For example, any
software module (or component) is inevitably transformed as designs take shape,
requirements change, and bugs are discovered and fixed. In general such evolution
results in the removal of previous behaviors from the component and addition of
new ones. Since the behavior of the updated software component has no direct
correlation to that of its older counterpart, substituting it directly can lead to
two kinds of problems. First, the removal of behavior can lead to unavailability
of previously provided services. Second, the addition of new behavior can lead to
violation of global correctness properties that were previously being respected.

In this context, the substitutability problem has been defined [7] as the verifi-
cation of the following two criteria: (i) any updated portion of a software system

? This research was sponsored by the National Science Foundation (NSF) under grants
no. CCR-9803774 and CCR-0121547, the Office of Naval Research (ONR) and the
Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796, and was
conducted as part of the Predictable Assembly from Certifiable Components (PACC)
project at the Software Engineering Institute (SEI). The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of NSF, ONR, NRL,
the U.S. Government or any other entity.

must continue to provide all services offered by its earlier counterpart, and (ii)
previously established system correctness properties must remain valid for the
new version of the software system.

Model checking can be used at each stage of a system’s evolution to solve
both the above problems. However, conventionally model checking is applied to
the entire system after every update irrespective of the degree of modification
involved. The amount of time and effort required to verify an entire system can
be prohibitive and repeating the exercise after each (even minor) system up-
date is therefore impractical. In this article we present an automated framework
that localizes the necessary verification to only modified system components,
and thereby reduces dramatically the effort to check substitutability after every
system update. Note that our framework is general enough to handle changes in
the environment since the environment can also be modeled as a component.

In our framework a component is essentially a C program communicating
with other components via blocking message passing. An assembly is a collec-
tion of such concurrently executing and mutually interacting components. We
will define the notion of a component’s behavior precisely later but for now
let us denote the set of behaviors of a component C by Behv (C). Given two
components C and C ′ we will write C v C ′ to mean Behv (C) ⊆ Behv (C ′).

Suppose we are given an assembly of components: C = {C1, . . . ,Cn}, and a
safety property ϕ. Now suppose that multiple components in C are upgraded.
In other words, consider an index set I ⊆ {1, . . . , n} such that for each i ∈ I
there is a new component C

′

i to be used in place of its old version Ci. Our goal

is to check the substitutability of C
′

i for Ci in C for every i ∈ I with respect
to the property ϕ. This paper presents a framework that satisfies this goal by
establishing the following two tasks:

Containment. Verify, for each i ∈ I, that every behavior of Ci is also a
behavior of C

′

i , i.e., Ci v C
′

i . If Ci 6v C
′

i , we also construct a set Fi of behaviors

in Behv (Ci)\Behv (C
′

i) which will be subsequently used for feedback generation.
Note that the upgrade may involve the removal of behaviors designated as errant,
say B. In this case, we check Ci \ B v C

′

i since behaviors of B will clearly be

absent in C
′

i .

Compatibility. Let us denote by C′ the assembly obtained from C by replac-
ing the old component Ci with its new version C

′

i for each i ∈ I. Since in general

it is not the case that for each i ∈ I, C
′

i v Ci. Therefore, the new assembly C′

may have more behaviors than the old assembly C. Hence C′ might violate ϕ

even though C did not. Thus, our second task is to verify that C′ satisfies the
safety property ϕ (which would imply that the new components can be safely
integrated).

Note that checking compatibility is non-trivial because it requires the ver-
ification of a concurrent system where multiple components might have been
modified. Moreover, this task is complicated by the fact that our goal is to focus
on the components that have been modified.

The component substitutability framework is defined by the following new
algorithms: 1) a technique based on simultaneous use of over and under approx-

imations obtained via existential and universal abstractions for the containment
check of the substitutable components; 2) a dynamic assume-guarantee algorithm
developed for the compatibility check. The algorithm is based on automata-
theoretic learning for regular sets. It is dynamic in the sense that it learns
appropriate environment assumptions for the new components by reusing the
environment assumptions for their older versions.

The framework uses an iterative abstraction/refinement paradigm for both
the containment and compatibility check procedures. The abstraction-based ap-
proach is essential since it not only enables the extraction of finite-state models
from software programs but also reduces the complexity of software verification.
Details of the abstraction procedure and the abstraction/refinement process are
beyond the scope of this article and can be found in [4]. In summary, the devel-
oped component substitutability framework has several advantageous features:

– It allows multiple components to be upgraded simultaneously. This is crucial
since modifications in different components often interact non-trivially to
maintain overall system safety and integrity. Hence such modifications must
be analyzed jointly.

– It identifies features of an old component which are absent in its updated
version. It subsequently generates feedback to localize the modifications re-
quired to add the missing features back.

– It is completely automated and uses dynamic assume-guarantee style rea-
soning to scale to large software systems.

– It allows new components to have more behaviors than their old counter-
parts in order be replaceable. The extra behaviors are critical since they
provide vendors with flexibility to implement new features into the prod-
uct upgrades. Our framework verifies if these new behaviors do not violate
previously established global specifications of a component assembly1.

We employ state/event-based modeling techniques [5] to model and reason
about both the data and communication aspects of software. In particular we
use the state/event computational structures, called Doubly Labeled Automata
(DLA) to model, as well as to specify, software systems. We have implemented
the substitutability framework as part of the ComFoRT [6] reasoning frame-
work, which is based on the C model checker magic [4, 15]. We experimented
with an industrial benchmark and report encouraging results in Section 7.

2 Related Work

Related projects often impose the restriction that every behavior of the new
component must also be a behavior of the old component. In such a case the new
component is said to refine the old component. For instance, de Alfaro et al. [11,
8] define a notion of interface automaton for modeling component interfaces and

1 Verification of these new features remains a responsibility of designers of the up-
graded systems.

show compatibility between components via refinement and consistency between
interfaces. However, automated techniques for constructing interface automata
from component implementations are not presented. In contrast, our approach
automatically extracts conservative DLA models (which are similar to finite
state interface automata) from component implementations. Moreover, we do
not require refinement among the old components and their new versions.

Ernst et al. [16] suggest a technique for checking compatibility of multi-
component upgrades. They derive consistency criteria by focusing on in-
put/output component behavior only and abstract away the temporal infor-
mation. Even though they state that their abstractions are unsound in general,
they report success in detecting important errors. In contrast, our abstractions
preserve temporal information about component behavior and are always sound.
They also use a refinement-based notion on the generated consistency criteria
for showing compatibility.

The application of learning is extremely useful from a pragmatic point of
view since it is amenable to complete automation, and is gaining rapid pop-
ularity [14] in formal verification. The use of learning for automated assume-
guarantee reasoning was proposed originally by Cobleigh et al. [10]. The use of
learning along with predicate abstraction has also been applied in the context
of interface synthesis [1] and various types of assume-guarantee proof rules for
automated software verification [3].

This work is related to our earlier project [7] that solves the component sub-
stitutability problem in the context of verifying individual component upgrades.
A major improvement of the current work is that it is aimed at verifying the
component substitutability in the presence of simultaneous upgrades of multiple
components. Another distinction of this work is that it provides an innovative dy-
namic assume-guarantee reasoning framework for the compatibility check. The
dynamic nature of the compatibility check allows reusing previously computed
assumptions to prove or disprove the global properties of the updated system.

Additionally, this paper gives a new solution to the containment check prob-
lem presented in [7]. In our earlier work, the containment step is solved using
learning techniques for regular sets and handles finite-state systems only. In
contrast, the new approach is extended to handle infinite-state C programs.
Moreover, this paper defines a new technique based on simultaneous use of over
and under approximations obtained via existential and universal abstractions.

3 Background and Notation

Let • denote the concatenation operator over sequences and X∗ denote zero or
more applications of • over X as usual. For any two sets X and Y we will denote
the set {x • y | x ∈ X ∧ y ∈ Y } by X • Y .

Definition 1 (Words and Traces). Given an alphabet Σ and a set of atomic
propositions AP we often say that (Σ,AP) is a state/event (SE) alphabet. For

an SE alphabet Σ̂ = (Σ,AP), the set of words over Σ̂ is denoted by Word(Σ̂)

and defined as Word(Σ̂) = (Σ • 2AP)∗. The set of traces over Σ̂ is denoted by

Trace(Σ̂) and defined as Trace(Σ̂) = 2AP •Word(Σ̂).

Thus a word or a trace is an alternating sequence of subsets of AP and
elements of Σ. However a word always begins with an action and ends with a
set of propositions and can be empty. In contrast, a trace begins and ends with
a set of propositions and cannot be empty.

Definition 2 (Doubly Labeled Automaton). A doubly labeled automaton
(DLA) is a 7-tuple (S , Init ,AP ,L, Σ, δ,F) such that: (i) S is a finite set of
states, (ii) Init ⊆ S is a set of initial states, (iii) AP a finite set of (atomic)
state propositions, (iv) L : S → 2AP a state-labeling function, (v) Σ a finite set
of events or actions (alphabet), (vi) δ ⊆ S × Σ × S a transition relation, and
(vii) F ⊆ S is a set of final or accepting states.

For any DLA with transition relation δ we write q
α
−→ q′ to mean q′ ∈ δ(q, α).

A DLA is said to be deterministic (DDLA) iff for any q ∈ S , α ∈ Σ and p ⊆ AP

there is at most one q′ ∈ S such that q
α
−→ q′ and L(q′) = p. DLAs are

not more expressive than standard finite automata since propositional labelings
can always be rewritten in terms of actions [9]. However, we choose to use the
DLA formalism for the sake of simplicity since it captures the essence of the
state/event-based notation.

Definition 3 (Language). Let M = (S , Init ,AP ,L, Σ, δ,F) be a DLA

and Σ̂ = (Σ,AP). A trace t ∈ Trace(Σ̂) is accepted by M iff t =
p1, α1, p2, . . . , αn−1, pn and there exists a sequence s1, s2, . . . , sn of states of M

such that: (i) s1 ∈ Init, (ii) sn ∈ F, (iii) for 1 ≤ i ≤ n, L(si) = pi, and (iii) for

1 ≤ i < n, si
αi−→ si+1. The language of M is denoted by L(M) and defined as

the set of all traces accepted by M .

A language is said to be regular iff it is accepted by some DLA. The set
of regular languages is closed under union, intersection and complementation.
DDLAs are equivalent to DLAs as far as language acceptance is concerned. In
other words for any regular language L there is a DDLA M such that L(M) = L.
Also every regular language L is accepted by a unique (up to isomorphism)
minimal DDLA.

Definition 4 (Abstraction). Given two DLAs M1 and M2 we say that M2 is
an abstraction of M1, denoted by M1 vM2, iff L(M1) ⊆ L(M2).

Definition 5 (Parallel Composition). Let M1 =
(S1, Init1,AP1,L1, Σ1, δ1,F1) and M2 = (S2, Init2,AP2,L2, Σ2, δ2,F2) be
two DLAs. The parallel composition of M1 and M2, denoted by M1 ‖M2, is
the DLA (S1 × S2, Init1 × Init2,AP1 ∪ AP2,L, Σ1 ∪Σ2, δ,F1 × F2), where: (i)

L(s1, s2) = L1(s1) ∪ L2(s2), and (ii) δ is such that (s1, s2)
α
−→ (s′1, s

′

2) iff:

∀i ∈ {1, 2} � (α 6∈ Σi ∧ si = s′i)
∨

(α ∈ Σi ∧ si
α
−→ s′i)

In other words, DLAs must synchronize on shared actions and proceed inde-
pendently on local actions. This notion of parallel composition is derived from
CSP [19].

Definition 6 (Weakest Assumption). For any DLA M , and any safety prop-
erty, expressed as a DLA ϕ, there exists a weakest (w.r.t. the v preorder) DLA
WA with the following property: for any DLA E, M ‖ E v ϕ iff E v WA [12].
In fact it can be shown that WA is a DLA accepting the language L(M ‖ ϕ).

4 Containment

Recall that in the containment step we verify for each i ∈ I, that Ci v C
′

i ,

i.e., every behavior of Ci is also a behavior of C
′

i . If Ci 6v C
′

i , we also con-

struct a set Fi of behaviors in Behv (Ci) \ Behv (C
′

i) which will be subsequently
used for feedback generation. This containment check is performed iteratively
and component-wise as depicted in Figure 1 (CE refers to the counterexample
generated during the verification phase). For each i ∈ I, the containment check
proceeds as follows:

True

No All behaviors are preserved

No

Over−approximate Under−approximate

Report Feedback

False + CE

Yes

M′iMi

C′iCi

RefineRefine

Build: F ←CE

Check:CE 6∈C′i

Check:CE ∈CiVALIDATION 1

VALIDATION 2

Check:Mi ⊆M′iVERIFICATION

ABSTRACTION

Yes⇒CE ∈Ci \C′i

Fig. 1. The containment phase of the substitutability framework.

1. Abstraction. Construct finite models M and M ′ such that (C1) Ci v M

and (C2) M ′ v C
′

i . Note that M is an over-approximation of Ci and can be con-
structed by standard predicate abstraction [13]. However M ′ is constructed from
C

′

i via a modified predicate abstraction which produces an under-approximation
of its input C component. We give an overview of predicate abstraction and then
the modified predicate abstraction. Complete details of our predicate abstraction
procedure can be found elsewhere [4].

Predicates and Valuations. Suppose we are given a set of predicates
(pure C expressions) P . Each valuation V of P is simply a mapping from P
to {0, 1}. Thus if P = {x < 1, y ≥ 0} then the set of valuations of P is
{(0, 0), (0, 1), (1, 0), (1, 1)}. Let P = {p1, . . . , pn} and V be a valuation of P .
Then the concretization of V is denoted by γ(V) and defined as: γ(V) ≡

∧n

i=1
Xi

where Xi = pi iff V(pi) = 1 and ¬pi otherwise. For example consider P = {x <

1, y ≥ 0} and V = (0, 1). Then γ(V) = ¬(x < 1) ∧ (y ≥ 0).

Predicate Abstraction. Suppose that Ci comprises of a set of C statements
Stmt = {st1, . . . , stk}. Without loss of generality we assume that each statement
of Ci is either an assignment, an if-then-else or a goto. Also we are given a
set of predicates P with set of valuations Val . The general idea behind predicate
abstraction is to represent a set of concrete states symbolically using a formula.
Thus the predicate abstraction Ci w.r.t. P is an DLA M whose set of states
= Stmt × Val . Intuitively each state s = (st ,V) of M represents the set of all
concrete execution states c of Ci such that st is the next statement to be executed
at c and the expression γ(V) is satisfied by the memory configuration at c. In
such a case we often say c ∈ s to highlight the fact that each state of M can be
thought of as a set of concrete execution states of Ci.

The transitions of M are defined such that M is an over-approximation of
Ci via existential abstraction. For example, let s1 = (st1,V1) and s2 = (st2,V2)
be two states of M such that st1 is an assignment. Then M contains a transition
from s1 to s2 if there is a transition from some concrete state c1 ∈ s1 to some
concrete state c2 ∈ s2. It turns out that this is equivalent to: (i) st2 being the
next statement to be executed after st1, and (ii) the formula WP{γ(V2)}[st1] ∧
γ(V1) being satisfiable where WP{γ(V2)}[st1] denotes the weakest precondition
of γ(V2) w.r.t. st1. Other kinds of statements are handled analogously.

Modified Predicate Abstraction. In contrast our modified predicate ab-
straction constructs an under-approximation of the concrete system via univer-
sal abstraction. More precisely suppose C

′

i comprises of a set of C statements
Stmt ′ and we are given a set of predicates P ′ with set of valuations Val ′. Then
the modified predicate abstraction of C

′

i w.r.t. P ′ is an DLA M ′ whose set of
states = Stmt ′ × Val ′. The correspondence between the states of M ′ and the
execution states of C

′

i is exactly as in the case of predicate abstraction. The
difference is in the way the transitions of M ′ are defined. More precisely, let
s1 = (st1,V1) and s2 = (st2,V2) be two states of M ′ such that st1 is an assign-
ment. Then M ′ contains a transition from s1 to s2 if there is a transition from
every concrete state c1 ∈ s1 to some concrete state c2 ∈ s2. This is equivalent
to: (i) st2 being the next statement to be executed after st1, and (ii) the formula
γ(V1) =⇒ WP{γ(V2)}[st1] being valid. Other kinds of statements are han-
dled analogously. The satisfiability and validity of formulas are checked using an
automated theorem prover.

2. Verification. Verify if M vM ′ (or alternatively M \B vM ′ if the upgrade
involved some bug fix and the bug was defined as a DLA B). If so then from

(C1) and (C2) above we know that Ci v C
′

i and we terminate with success.
Otherwise we obtain a counterexample CE .

3. Validation 1. Check if CE is a real behavior of Ci. To do this we first
compute the set S of concrete states of Ci that can simulate CE . This is done
via symbolic simulation and the result is a formula φ that represents S. Then
CE is a real behavior of Ci iff S 6= ∅, i.e., iff φ is satisfiable. If CE is a real
behavior of Ci, we proceed to the next step. Otherwise we refine model M by
constructing a new set of predicates P and repeat from Step 2. The refinement
step is done according to the procedure implemented in the magic [4] tool.

4. Validation 2. Check if CE is not a real behavior of C
′

i . To do this we first

compute the set S′ of concrete states of C
′

i that can simulate CE . This is done
as above and the result is again a formula φ that represents S′. Then CE is
not a real behavior of C

′

i iff S′ = ∅, i.e., iff φ is unsatisfiable. If CE is not a

real behavior of C
′

i , we know that CE ∈ Behv (Ci) \ Behv (C
′

i). We add CE to
Fi and stop. Otherwise we refine M ′ by constructing a new set of predicates
P ′ and repeat from Step 2. This refinement step is an antithesis of standard
abstraction-refinement since it adds the valid behavior CE back to M ′. However
it is conceptually similar to standard abstraction-refinement and we omit its
details in this article.

Note that the above process terminates as soon as it adds a single behavior
to Fi. However it can be extended to generate a set of behaviors in Fi as follows.
First a set of counterexamples ĈE is constructed in Step 2. Then each element
of ĈE is processed via Steps 3 and 4 and every counterexample which belongs to
Ci but not to C

′

i is added to Fi. The use of Fi to provide feedback to developers
showing how to correct the updated components is discussed in Section 6.

5 Compatibility

Recall that the compatibility check is aimed at ensuring that the upgraded sys-
tem satisfies global safety specifications. Our compatibility check procedure in-
volves two key paradigms - dynamic regular set learning and assume guarantee
reasoning. We first present these two techniques and then describe their use in
our overall compatibility algorithm.

5.1 Dynamic Regular Set Learning

Central to our compatibility check procedure is a new dynamic algorithm to
learn regular languages. Our algorithm is based on the L∗ algorithm developed
by Angluin [2]. The compatibility check uses a state/event version of the L∗ that
is a straight forward extension of the original algorithm (for simplicity we will
refer to both as L∗). The detailed description of the state/event L∗ algorithm
and the proof of its correctness and complexity analysis can be found in [20]. We
will first present the state/event learning algorithm and then describe a dynamic

version of it that we actually use for checking compatibility. We will denote the
symmetric difference of two sets X and Y by X⊕Y , i.e, ρ ∈ X⊕Y iff ρ ∈ X \Y
or ρ ∈ Y \X .

The L
∗ Algorithm. Let U be an unknown regular language over some SE

alphabet Σ̂ = (Σ,AP). In order to learn U , L∗ interacts with a minimally
adequate teacher MAT for U , which can provide Boolean answers the following
two kinds of queries:

1. Membership. Given a ρ ∈ Trace(Σ̂), MAT returns true iff ρ ∈ U .

2. Candidate. Given a DDLA D, MAT returns true iff L(D) = U . If MAT
returns false, it also returns a counterexample trace w ∈ L(D) ⊕ U .

Given an unknown regular language U ⊆ Trace(Σ̂) and a MAT for U , the
L∗ algorithm iteratively constructs a minimal DDLA D such that L(D) = U . It
maintains an observation table (S, E, T) where: (i) S is a prefix-closed set over

Trace(Σ̂) labeling the rows of the table, (ii) E a suffix-closed set over Word(Σ̂)

labeling the columns of the table, and (iii) T : (S ∪ S • Σ̂) × E → {0, 1} is the
valuation of the table entries such that:

∀s ∈ S ∪ S • Σ̂ � ∀e ∈ E � T [s, e] = 1 ⇐⇒ s • e ∈ U

Additionally, for any s ∈ S ∪ S • Σ̂, let us define a function rs as follows:

∀e ∈ E � rs(e) = T [s, e]

Given a trace t ∈ Trace(Σ̂) we write Last(t) to mean the last set of propositions
in t. L∗ always ensures that the following invariant holds on the table: for any
two distinct s1, s2 ∈ S either rs1

6= rs2
or Last(s1) 6= Last(s2). The table is said

to be closed if for every t ∈ S • Σ̂, there exist an s ∈ S such that rs = rt and
Last(s) = Last(t).

Let us denote the empty word by λ. Then L∗ starts with a table (S, E, T)
such that S = 2AP , E = {λ} and in each iteration proceeds as follows. It first
updates the table using membership queries till it is closed. Next L∗ builds a
candidate DDLA D from the table and makes a candidate query with D. If the
MAT returns true to the candidate query, L∗ returns D and stops. Otherwise,
L∗ updates E with a single word (constructed from the CE returned by the
candidate query) and proceeds with the next iteration. The complexity of L∗ is
expressed by the following theorem [2, 20].

Theorem 1. If n is the number of states of the minimum DDLA accepting U

and m is the upper bound on the length of any counterexample provided by the
MAT, then the total running time of L∗ is bounded by a polynomial in m and
n. Moreover, the observation table is of size O(m2n2 + mn3).

Dynamic L
∗. Normally L∗ initializes with: S = 2AP and E = {λ}. This can

be a drawback in cases where a previously learned candidate (and hence a table)
exists and we wish to restart learning using information from the previous table.
In the following, we show (Theorem 2) that if L∗ begins with any non-empty
valid table then it must terminate with the correct result. In particular, this
allows us to perform our compatibility check dynamically by restarting L∗ with
any previously computed table by re-validating it instead of starting from an
empty table2.

Definition 7 (Agreement). An observation table (S, E, T) is said to agree

with a regular language U iff: ∀(s, e) ∈ (S ∪S • Σ̂)×E, T (s, e) = 1 iff s • e ∈ U .
Also, (S, E, T) agrees with a candidate DDLA D if it agrees with L(D).

Definition 8 (Validity). An observation table T = (S, E, T) is said to be valid
for a language U iff (S, E, T) agrees with U . We say that a candidate derived
from a closed table T is valid if T is valid.

Theorem 2. L∗ terminates with a correct result for any unknown language U

starting from any valid table for U .

Proof. Let n be the number of states in the minimal DDLA MU such that
L(MU) = U . Note that both Theorem 1 and Lemma 5 from Angluin’s correctness
proof for L∗ [2] hold for valid and closed tables and candidates consistent with
them. It follows from Theorem 1 and Lemma 5 that L∗ can always make a valid
table closed and hence is able to construct a candidate, say D, with at most n

states. We now show that every subsequent candidate must have at least one
more state than D.

A candidate query with D either returns true or a counterexample CE ∈
L(D)⊕ U . Note that the table must agree with D since D is consistent with it.

Also since the table is valid, it must agree with U . Therefore, CE 6∈ (S∪S•Σ̂)•E
and will be added to S. Again, a valid and closed table (S′, E′, T ′) must be
obtained eventually after adding CE . Let D′ be the corresponding candidate.

Now, D′ is consistent with T since T ′ extends T . Also D′ agrees with MU as
far accepting CE is concerned while D does not. Hence D′ is inequivalent to D

and by Theorem 1 in Angluin’s proof, must have at least one more state than D.
Hence, starting from D, L∗ can make at most n− 1 incorrect candidates, since
the number of states is initially at least one, always increases monotonically and
may not exceed n− 1. Since L∗ must keep making new candidates as long as it
is running, it must terminate with a correct candidate MU . ut

Suppose we have a table T which is valid for an unknown language U and we
have a new unknown language U ′ different from U . Suppose we want to learn U ′

by starting L∗ with table T . Note that in general T will not be valid for U ′ and
hence starting from T will not be appropriate. However, we can first validate T
against U ′ and then start L∗ from the validated T . Theorem 2 provides the key
insight behind the correctness of this procedure. As we shall see, this idea forms
the backbone of our dynamic compatibility check procedure (cf. Section 5.3).

2 A similar idea was also proposed in the context of adaptive model checking [14].

5.2 Assume-Guarantee Reasoning

Along with dynamic L∗, we also use assume-guarantee style compositional rea-
soning to check compatibility. Given a set of component DLAs M1, . . . , Mn and
a specification DLA ϕ, the following non-circular rule AG [17] can be used to
verify M1 ‖ · · · ‖Mn v ϕ:

M1 ‖ A1 v ϕ

M2 ‖ · · · ‖Mn v A1

M1 ‖ · · · ‖Mn v ϕ

In the above, A1 is an DLA representing the assumption about the envi-
ronment under which M1 is expected to operate correctly. As also observed by
Cobleigh et al. [10], the second premise is itself an instance of the top-level proof-
obligation with n−1 component DLAs. Hence, AG can be applied to decompose
it further.

5.3 Compatibility Check for C Components

The procedure for checking compatibility of new components in the context of the
original component assembly is presented in Figure 2. Given an old component
assembly C = {C1, . . . ,Cn}, and a set of new components C′ = {C′

i | i ∈ I}
(where I ⊆ {1, . . . , n}), it checks if a safety property ϕ holds in the new assembly.
We first present an overview of the compatibility procedure and then discuss its
implementation in detail. The procedure uses a DynamicCheck algorithm, and
is done in an iterative abstraction refinement style as follows:

1. Use predicate abstraction to obtain finite DLA models Mi, where Mi is
constructed from Ci if i 6∈ I and from C′

i if i ∈ I. The abstraction is carried
out component-wise. LetM = {M1, . . . , Mn}.

2. Apply DynamicCheck onM. If the result is true the compatibility check
terminates successfully. Otherwise we obtain a counterexample CE .

3. Check if CE is a valid counterexample. Once again this is done component-
wise. If CE is valid, the compatibility check terminates unsuccessfully with
CE as counterexample. Otherwise we go to the next step.

4. Refine a specific model, say Mk, such that the spurious CE is eliminated.
Repeat from Step 2.

Overview of DynamicCheck. We first present an overview of the algorithm
for two DLAs and then generalize it to an arbitrary collection of DLAs. Suppose
we have two old DLAs M1, M2 and a property DLA ϕ. We assume that we
previously tried to verify M1 ‖ M2 v ϕ using DynamicCheck. The algorithm
DynamicCheck uses dynamic L∗ to learn appropriate assumptions that can
discharge the premises of AG. In particular suppose that while trying to verify
M1 ‖M2 v ϕ, DynamicCheck had constructed an observation table T .

Now suppose we have new versions M ′

1, M
′

2 for M1, M2. Note than in general
it could be that either M ′

1 or M ′

2 is identical to its old version. DynamicCheck

will now reuse T and invoke the dynamic L∗ algorithm to automatically learn
an assumption A′ such that: (i) M ′

1 ‖ A′ v ϕ and (ii) M ′

2 v A′. More precisely,
DynamicCheck proceeds iteratively as follows:

New Components

L*

True

CE spurious

No
CE provided

False + CE
Yes

Old Components

Predicate Abstraction

RefineM

M = {M1, . . . ,Mn}

Check:M � ϕ

New Components are Substitutable

New Components are not Substitutable

{Ci | i 6∈ I} {C′i | i ∈ I}

Fig. 2. The compatibility phase of the substitutability framework.

1. It checks if M1 = M ′

1. If so, it starts learning from the previous table T ,
i.e., it sets T ′ := T . Otherwise it re-validates T against M ′

1 to obtain a new
table T ′.

2. It derives a conjecture A′ from T ′ and checks if M ′

2 v A′. If this check passes
it terminates with true and the new assumption A′. Otherwise it obtains a
counterexample CE .

3. It analyzes CE to see if CE corresponds to a real counterexample to M ′

1 ‖
M ′

2 v ϕ. If so, it constructs such a counterexample and terminates with
false. Otherwise it updates T ′ using CE .

4. It makes T ′ closed by making membership queries and repeats from Step 2.

Generalized DynamicCheck. We first describe the key ideas that enable us to
reuse the previous assumptions and then present the complete DynamicCheck
algorithm for multiple DLAs. Note that due to its dynamic nature, the algorithm
will be able to locally identify the set of assumptions that need to be modified
to re-validate the system.

Incremental Changes between Successive Assumptions. Recall that the
L∗ algorithm maintains an observation table (S, E, T) corresponding to an as-
sumption A for every component M . During an initial compatibility check, this
table stores the information about membership of the current set of traces in
an unknown language U (i.e., the language of the weakest assumption for M).
Upgrading the component M modifies this unknown language for the corre-
sponding assumption from U to say, U ′. Therefore, checking compatibility after

an upgrade requires that the learner must compute a new assumption A′ corre-
sponding to U ′. In most cases, the languages L(A) and L(A′) may differ only
slightly and hence the information about behaviors of A is reused in computing
A′.

Table Re-validation. The original L∗ algorithm computes A′ starting from
an empty table. However, as mentioned before, a more efficient algorithm would
intend to reuse the previously inferred set of elements of S and E to learn
A′. The result in Section 5.1 (Theorem 2) precisely enables the L∗ algorithm
to achieve this goal. In particular, since L∗ terminates starting from any valid
table, the assumption learner first obtains a valid table by reusing words in S

and E: update T by asking membership queries w.r.t. U ′ for each ρ ∈ (S ∪ S •

Σ̂) • E. The valid table (S, E, T ′) hence obtained is subsequently made closed
and then learning proceeds in the normal fashion. This allows the compatibility
check to restart from any previous set of assumptions by re-validating them. The
GenerateAssumption module implements this feature.

Overall DynamicCheck Procedure. The DynamicCheck procedure in-
stantiates the AG rule for n components and enables checking multiple upgrades
simultaneously by reusing previous assumptions and verification results. In the
description, we denote the previous and the new versions of a component DLA by
M and M ′ and the previous and the new versions of a component assemblies by
M andM′ respectively. For ease of description, we always use a property, ϕ, to
denote the right hand side of the top-level proof obligation of the compositional
rule. We denote the modified property3 at each recursion level of the algorithm
by ϕ′. The old and new assumptions are denoted by A and A′ respectively.

Figure 3 presents the pseudo-code of the algorithm DynamicCheck to per-
form the compatibility check. Lines (1-4) describe the case when M contains
only one component. In Line 5, an assumption A′ corresponding to M ′ and ϕ′

is generated using dynamic L∗ such that M ′ ‖ A′ v ϕ′. Lines (6-8) describe
recursive invocation of DynamicCheck onM\M against property A′. Finally,
lines (9-15) show how the algorithm detects a counterexample CE and updates
A′ with it or terminates with a true/false result. The salient features of this
algorithm are the following:

– GenerateAssumption (line 5) does not generate new assumptions every
time DynamicCheck is invoked. Instead, it reuses (by re-validating if nec-
essary) the assumption A computed in the previous compatibility check.
When CE is used to update A, GenerateAssumption (line 12) does not
need to re-validate A since it must be validated previously.

– Verification checks are repeated on a component M ′ (or a collection of com-
ponents M′ \ M ′) only if it is (they are) found to be different from the
previous version M (M\M) or if the corresponding property ϕ has changed

3 Note that under the recursive application of the compatibility check procedure the
updated property ϕ′ corresponds to an assumption from the previous recursion level

DynamicCheck (M′, ϕ′) returns counterexample or true

1: let M ′ = first element of M′;
2: if (M′ = {M ′})
3: if (M 6= M ′ or ϕ 6= ϕ′) return (M ′ v ϕ′);
4: else return M v ϕ;
5: A′ := GenerateAssumption(M ′, ϕ′);
6: if (A 6= A′ or M\ M 6= M′ \ M ′)
7: CE := DynamicCheck(M′ \ M ′, A′);
8: else CE := DynamicCheck(M\ M , A);
9: while(CE is non-empty)
10: if (M ′ ‖ CE v ϕ′)
11: A′ := UpdateAssumption (A′,CE);
12: A′ := GenerateAssumption (M ′, ϕ′);
13: CE = DynamicCheck (M′ \ M ′, A′);
14: else return a witness counterexample CE to M ′ ‖ CE 6v ϕ′;
15: return true;

Fig. 3. Pseudo-code for efficient compatibility check

(lines 3,7,12). Otherwise, the previously computed result is re-used (lines
4,8).

The correctness of DynamicCheck follows from the following theorem.

Theorem 3. Given modified M′ and ϕ′, DynamicCheck algorithm always
terminates with either true or a counterexample CE to M′ v ϕ′.

We use the notion of weakest assumptions in proving the correctness of Dy-
namicCheck. We know that for any DLA M , there must exist a weakest en-
vironment assumption DLA WA such that M ‖ Eϕ iff E v WA. Suppose, we
have a system of components M1, . . . , Mn and a global property ϕ. Consider
rules of form Mi ‖ Ai v Ai−1(1 ≤ i ≤ n − 1, A0 = ϕ) and Mn v An−1 as
used in our recursive procedure to show that M1 ‖ .. ‖ Mn v ϕ. It is clear that
a weakest assumption WA1 exists such that M1 ‖ WA1 v ϕ. Given WA1, it
follows that WA2 must exist so that M2 ‖WA2 vWA1. Therefore, by induction
on i, there must exist weakest assumptions WAi for 1 ≤ i ≤ n − 1, such that
Mi ‖ WAi v WAi−1(1 ≤ i ≤ n − 1,WA0 = ϕ) and Mn v An−1. Also, by The-
orem 2, UpdateAssumption(A,CE) must terminate starting from any valid
assumption A′ with respect to U ′ and a counterexample CE ∈ L(A′)⊕ U ′.

Proof. Suppose, without loss of generality, that component DLA M ′, is up-
graded. Note that after an upgrade, a weakest assumption WA′ (possibly differ-
ent from WA) must exist for every M ′ ∈ M′. We proceed by induction over the
size k ofM′. In the base case, it is clear that we need to model check M ′ against
ϕ′ only if either M or ϕ changed (line 3). This either returns a counterexample
to M ′ v ϕ′ or the previous M v ϕ (line 4) result holds.

Assume for the inductive case that DynamicCheck(M′\M ′, A′) terminates
with either true or a counterexample CE . It is clear from its definition that A′

computed by GenerateAssumption (line 5) is valid. If line 6 holds, i.e, A′ 6= A

orM\M 6=M′\M ′ then by inductive hypothesis, execution of line 7 terminates
with either a true result or a counterexample CE . Otherwise, the previously
computed CE result is used (line 8). It remains to be shown that lines (9-15)
compute the correct return value based on this result.

If this result is true then it follows from the soundness of the assume-
guarantee rule that M′ v ϕ′ and DynamicCheck returns true (line 15). If
M ′ ‖ CE 6v ϕ′ (line 10), then by set-theoretic arguments based on the definitions
of A′ and CE , we know thatM′ 6v P ′ and a suitable witness CE ′ (line 14) is re-
turned by the algorithm. Otherwise, since A′ is valid, both UpdateAssumption
(line 11) and GenerateAssumption (line 12) must terminate by learning a new
assumption, say A′′, such that M ′ ‖ A′′ v ϕ′. It follows from the proof of cor-
rectness of L∗ that |A′| < |A′′| and from the definition of weakest assumptions
that |A′′| ≤ |WA′|. Also, by inductive hypothesis, line 13 must terminate with
the correct CE result. Hence, lines 9-13 of the while loop may be executed only
a finite number of times until |A′′| = |WA′|, when (by set-theoretic arguments)
either the result is true (line 15) or a witness counterexample CE ′ (line 14) for
M′ 6v P ′ is returned.

ut

Further optimizations. Recall that our procedure reuses assumptions gener-
ated during previous compatibility checks. We further optimize it by identifying
a subset of assumptions that have to be re-validated at the initialization of the
next check. This optimization is enabled by the following lemma whose proof
follows directly from Theorem 3 and definition of weakest assumptions.

Lemma 1. Let M = {M1, . . . , Mn} be an assembly of components, A =
{A1, . . . , An−1} be a set of previously computed assumptions and I ⊆ {1, . . . , n}
be an index set. Also, let {M ′

i | i ∈ I} be the set of new components. If k is
the minimum index of I, then it is sufficient for DynamicCheck to re-validate
only the assumptions in the set {Aj | j ≥ k ∧ j ≤ n}.

6 Feedback

Recall that for some i ∈ I, if our containment check detects that Ci 6v C
′

i , it
also computes a set Fi. Intuitively each element of Fi represents a behavior of
Ci which is not a behavior of C

′

i . We now present our process of generating

feedback from Fi. In the rest of this section we will write C , C
′

and F to mean
Ci, C

′

i and Fi respectively.
Consider any behavior π in F . Recall that π is a trace of a DLA M obtained

by predicate abstraction of C . By simulating π on M , we construct an alternating
sequence Rep(π) = 〈s1, α1, . . . , sn〉 of states and actions of M corresponding to
π. Recall from our earlier discussion of predicate abstraction (cf. Section 4) that
each si is of the form (st i,Vi) where st i is a statement of C and Vi is a predicate
valuation. Thus, Rep(π) = 〈(st1,V1), α1, . . . , (stn,Vn)〉.

We also know that π represents an actual behavior of C but not an actual
behavior of C

′

. Thus, there is a prefix Pref (π) of π such that Pref (π) represents
a behavior of C

′

. However any extension of Pref (π) is no longer a valid behavior
of C

′

. Note that Pref (π) can be constructed by simulating π on C
′

. Let us denote
the suffix of π after Pref (π) by Suff (π). Since Pref (π) is an actual behavior of C

′

we can also construct a representation for Pref (π) in terms of the statements and
predicate valuations of C

′

. Let us denote this representation by Rep′(Pref (π)).

As our feedback we output, for each π ∈ F , the following representations:
Rep(Pref (π)), Rep(Suff (π)) and Rep′(Pref (π)). Note that such feedback allows
us to identify the exact divergence point of π beyond which it ceases to correspond
to any concrete behavior of C

′

. Since the feedback refers to program statement,
it allows us to understand at the source code level why C is able match π

completely but C
′

is forced to diverge from π beyond Pref (π). This makes it
easier to modify C

′

so as to add back to it the missing behavior π.

7 Implementation and Experimental Evaluation

We implemented and evaluated the compatibility check phase for checking com-
ponent substitutability in the ComFoRT framework. ComFoRT extracts ab-
stract component DLA models from C programs using predicate abstraction. It
also serves as a MAT (cf. Section 5.1) for learning assumptions in the compatibil-
ity check. If the compatibility check returns a counterexample, the counterexam-
ple validation and abstraction-refinement modules of ComFoRT are employed
to check for spuriousness and do refinement, if necessary.

We validated the component substitutability framework while verifying up-
grades of a benchmark provided to us by our industrial partner, ABB Inc.
(http://www.abb.com). The benchmarks consist of seven components which to-
gether implement an interprocess communication (IPC) protocol. The combined
state-space is over 106.

Upgrade#(Prop.) # Mem. Queries Torig (msec) Tug (msec)

ipc1(P1) 279 2260 13

ipc1(P2) 308 1694 14

ipc2(P1) 358 3286 17

ipc2(P2) 232 805 10

ipc3(P1) 363 3624 17

ipc3(P2) 258 1649 14

ipc4(P1) 355 1102 24

Table 1. Comparison of times required for original verification (Torig) and verification
on upgrade (Tug) by DynamicCheck. #Mem. Queries denotes the total number of
membership queries made during verification of the original assembly.

We used a set of properties describing functionality of the verified portion of
the IPC protocol. We used upgrades of the write-queue (ipc1) and the ipc-queue
(ipc2 and ipc3) components. The upgrades had both missing and extra behaviors
compared to their original versions. We verified two properties (P1 and P2)
before and after the upgrades. We also verified the properties on a simultaneous
upgrade (ipc4) of both the components. P1 specifies that a process may write
data into the ipc-queue only after it obtains a lock for the corresponding critical
section. P2 specifies an order in which data may be written into the ipc-queue.
Table 1 shows the comparison between time required for initial verification of
the IPC system with the time taken by DynamicCheck for verification of
upgrades. We observed that the previously generated assumptions in all the cases
were sufficient to prove the properties on the upgraded system also. Hence, the
compatibility check succeeded in a small fraction of time (Tug) as compared to
the time for compositional verification (Torig) of the original system.

8 Conclusions and Future Work

We proposed a solution to the critical and vital problem of component substi-
tutability consisting of two phases: containment and compatibility. The compat-
ibility check performs compositional reasoning with help of a dynamic regular
language inference algorithm and a model checker. Our experiments confirm that
the dynamic approach is more effective than complete re-validation of the system
after an upgrade. The containment check detects behaviors which were present
in each component before but not after the upgrade. These behaviors are used to
construct useful feedback to the developers. We observed that the order of com-
ponents used to discharge the assume-guarantee rules has a significant impact on
the algorithm run times and hence needs investigation. We would further like to
investigate a modification of it based on a more efficient L∗ algorithm by Rivest
et al. [18] in order to improve the performance of DynamicCheck.

Acknowledgement. We thank the FM 2005 referees for their invaluable com-
ments and suggestions. The first author is also grateful to Corina S. Păsăreanu
and Dimitra Giannakopoulou for insightful discussions on automated assume-
guarantee and learning.

References

1. R. Alur, P. Cerny, G. Gupta, P. Madhusudan, W. Nam, and A. Srivastava. Syn-
thesis of interface specifications for Java classes. In Symp. on Principles Of Pro-
gramming Languages (POPL), 2005.

2. D. Angluin. Learning regular sets from queries and counterexamples. In Informa-
tion and Computation, volume 75(2), pages 87–106, November 1987.

3. S. Chaki, E. Clarke, D. Giannakopoulou, and C. S. Pasareanu. Abstraction and
assume-guarantee reasoning for automated software verification. Technical Report
05.02, Research Institute for Advanced Computer Science (RIACS), August 2004.

4. S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient
verification of sequential and concurrent C programs. Formal Methods in System
Design, 25(2–3), 2004.

5. S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based
software model checking. In Integrated Formal Methods, volume 2999, pages 128–
147. LNCS, 2004.

6. S. Chaki, J. Ivers, N. Sharygina, and K. Wallnau. The ComFoRT reasoning frame-
work. In Proceedings of Computer Aided Verification (CAV), 2005.

7. S. Chaki, N. Sharygina, and N. Sinha. Verification of evolving software. In 3rd
Workshop on Spec. and Ver. of Component-based Systems, ESEC/FSE, 2004.

8. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. Jurdzinski, and F. Y. C.
Mang. Interface compatibility checking for software modules. In Proceedings of the
14th International Conference on Computer-Aided Verification, pages pp. 428–441.
LNCS 2404, Springer-Verlag, 2002.

9. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
10. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for

compositional verification. In Tools and Algorithms for Construction and Analysis
of Systems, volume 2619. Springer-Verlag, 2003.

11. L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering. ACM Press, 2001.

12. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation
for software component verification. In Proceedings of the ASE, 2002.

13. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Proceed-
ings of Computer Aided Verification, 1997.

14. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Tools and
Algorithms for Construction and Analysis of Systems, pages 357–370. Springer-
Verlag, 2002.

15. MAGIC. http://www.cs.cmu.edu/~chaki/magic.
16. S. McCamant and M. D. Ernst. Early identification of incompatibilities in multi-

component upgrades. In ECOOP 2004 — Object-Oriented Programming, 18th
European Conference, Oslo, Norway, 2004.

17. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logics and Models of Concurrent Systems, pages 123–144, New York,
NY, USA, 1985. Springer-Verlag New York, Inc.

18. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing se-
quences. In Information and Computation, volume 103(2), pages 299–347, 1993.

19. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Int., 1997.
20. Learning for software. http://www.cs.cmu.edu/~chaki/fme-05.

