Combining Predicate and Numeric Abstraction for
Software Model Checking

Arie Gurfinkel and Sagar Chaki
Software Engineering Institute, Carnegie Mellon Univigrsi
{ari e, chaki }@ei . cmu. edu

. . . assune(i==1 || i==2);
Abstract—Predicate (PA) and Numeric (NA) abstractions are switch(i) if(3 <= yl <= 4)

the two principal techniques for software analysis. In this paper, case 1: al=3; break; x1l =yl - 2;

we develop an approach to couple the two techniques tightly case 2: a2=-4; break; X2 = y2 + 2;

into a unified framework via a single abstract domain called switch (i) else if(3 <=y2 <= 4)
NumMPREDDOM. In particular, we develop and evaluate four data ~ case 1: assert(al>0); x1 =y2 - 2

structures that implement NumPReEDDOM but differ in their case 2: assert(a2<0); x2 = y2 + 2, o
expressivity and internal representation and algorithms. All our ~ défaul t: E:;sert(O), assert(5b <= (x14x2) <= 10);

data structures combine BDDs (for efficient propositional reasn-
ing) with data structures for representing numerical constraints.

Our technique is distinguished by its support for complex transfer _. L
functions that allow two way interaction between predicate Fig. 1(b). On the flip side, NA performs poorly when propo-

and numeric information during state transformation. We have Sitional reasoning (i.e., supporting disjunctions andatiegs)
implemented a general framework for reachability analysis of C is required, e.g., for the code fragment in Fig. 1(a).
programs on top of our four data structures. Our experiments |n practice, precise, efficient and scalable program aislys
on non-trivial examples show that our proposed combination of o ires the strengths of both predicate and numeric abstra
PA and NA is more powerful and more efficient than either
technique alone. tlc_)n. For mstance.,. in order to _verlf_y the code fragm.ent in
Fig. 2(a), propositional reasoning is needed to distifguis
l. INTRODUCTION petween differer)t'program paths, and arithmetig reqsoning
is needed to efficiently compute strong enough invariant to
Predicate abstraction (PA) [2] and Abstract Interpretatiadischarge the assertion. More importantly, the propasitio
(Al) with numeric abstract domains, called Numeric abstraand numeric reasoning must interact in non-trivial ways.
tion (NA) [5], are two mainstream techniques for automatiTherefore, a combination of PA and NA is more powerful and
program verification. However, the two techniques have corsfficient than either technique alone. Achieving an effecti
plimentary strengths and weaknesses. Predicate abstractiombination of PA and NA is the subject of our paper.
reduces program verification to propositional reasonirgari Any meaningful combination of PA and NA must have at
automated decision procedure, and then uses a model chetdast two features: (a) propositional predicates are pnéeed
for analysis. This makes PA well-suited for verifying pragrs as numeric constraints where appropriate, and (b) abstract
and properties that are control driven and (mostly) dat&ansfer functions respect the numeric nature of predicatee
independent, e.g., the code fragment in Fig. 1(a). Howevéirst requirement means that, unlike most Al-based combina-
in the worst case, reduction to propositional reasoning ti&ns, the combined abstract domain cannot treat predicate
exponential in the number of predicates. Hence, PA is nahinterpreted Boolean variables. The second requirenment i
as effective for data-driven and (mostly) control-indegemt plies that the combination must support abstract transfosm
programs and properties, such as the code fragment shawat allow the numeric information to affect the update a@f th
in Fig. 1(b) In summary, PA works best for propositionapredicate information, and vice versa.
reasoning, and performs poorly for arithmetic. Against this background we make the following contribu-
On the other hand, Numeric abstraction restricts all reasdions. We present the interface of an abstract domain, dtalle
ing to conjunction of linear constraints. For instance, Ndhw NumMPREDDOM, that combines both PA and NA, and supports
Intervals is limited to conjunctions of inequalities of ttem a rich set of abstract transfer functions that enables thateg
c1 < z < ¢, Wherex is a variable and:,co are numeric of numeric and predicate state information to be influenged b
constants. Instead of relying on a general-purpose decisiach other. We propose four data-structures — NBXR,
procedure, NA leverages a special data structure — NumeN&X, MTNDD and NDD — that implement NMPRED-
Abstract Domain. The data structure is designed to reptes@®oM. The data structures (summarized in Table 1) differ in
and manipulate sets of numeric constraints efficiently; arnldeir expressiveness and in the choice of representatidihdo
provides algorithms to encode statements as transfornfersnomeric part of the domain. Our target is PA-based software
numeric constraints. Thus, in contrast to PA, NA is appiaeri analysis. Thus, all of the data-structures allow for effitie
for verifying properties that are (mostly) control-indepent, (symbolic) propositional reasoning. We present expertailen
but require arithmetic reasoning, e.g., the code fragmentriesults on non-trivial examples and compare and contrast

Fig. 1. Two example programs.

assune(x1==x2);

Name Value Example Num. : assume(z = x2);
27 AL yval =9 (g
NEXPOINT 2% X N (v N(O<z<5) EXP x1 =yl - 2; T ’_2/\ — choice(f, f);
NEX 2P N (PAO<z<3)V X2 = y2 + 2; ;;;:Z;H/\q'* s
(A1 <z <5) EXP o _
MTNDD oP o N (p/\o <z< 3) N, el se (M%E—(ESS)ICE(wl +2=uy /\p»f)) \Y
(@n1<z<5) SYM ~AlXL + x2] =5 ¢ := choice(f, 1)));
NDD 2P 2N (pA(z=0vz=3)V if (A[x1+x2] ==23) ((assume(q);
(gA(@=1Ve=5)) SYM X1 = x1 + x2; o1 =1+ 22;
as)s(grt: ii—txgl' E T2 =z + Y1 — 2) V assume(—q));
TABLE | (x1==x2); assert(z1 = x2)
Summary of implementations of WMPREDDOM; P = predicates;N = (a) (b)

numerical abstract value$alue = type of an abstract elemerExample =

example of allowed abstract valudum = numeric part representation) .)
(explicit or symbolic). Fig. 2. A program (a),Aand its abstraction (b) wh‘ip ={p, ¢}, Vn =
{z1, 72,91, 92}, wherep = ((Afy1 +y2] = 3), andg = (Alz1 +z2] = 3).

this combination is comparable to NEXRNT — our simplest
between the four data-structures on the basis of thesesesiympined domain.
Our experiments show t_hat the pro_posed combination is morezrom the approaches that tightly combine predicate and
powerful and more efficient than either PA or NA alone. nymeric abstractions the work of Bultan et al. [7] is clodest
The rest of the paper is structured as follows. We surveyrs. They present a model-checking algorithm to reasontabo
related work in Section Il and review background materiglystems whose transition relation combines propositianéll
in Section Ill. In Section IV, we present the interface ofumeric constraints. Their algorithms are based on a data
NumMPREDDOM. In Section V, we describe the partiCUlaritie%tructure that uses BDDs [6] for propositiona| reasoning an
of each of our NMPREDDOM implementations. Finally, ex- the Omega library for arithmetic reasoning. While this data
perimental results and conclusions are presented in $€€tio strycture is similar to NEX, we support more complicated
transfer functions, and provide an interface to replace the
Il. RELATED WORK Omega library with an arbitrary numeric abstract domain.

Our domains MTNDD and NDD use BDDs for a purely

The problem of c_omblnlng PA and N.A myolves Comb'n,'n%ymbolic representation of abstract values. Thus, they are
their abstract domains, and is well studied in Al [9]. A tygiic similar to Difference Decision Diagrams (DDDs) [15] that

solution is to combine the domains using a domain combina rpresent propositional formulas over difference constsa

this paper are variants of (disjunctive completion of) et The contribution of our work is in adapting, extending,

product between domalng qf PA and NA. o .and evaluating existing work on combining propositionadl an
One approach for combining abstract domains is to combig, metic reasoning to the needs of software model-checki

results of the analyses — e.g., by using light-weight daa-fl o o,r knowledge, none of the tight combinations of the two

analyses, such as alias analysis and constant propagatiofysiract domains have been evaluated in the context of PA-

to simplify a program prior to applying predicate abstraeli |46y software model-checking. A preliminary version i th
Thus, the invariants discovered by one analysis are assbyned, .k has appeared in [13].

the other. For instance, Jain et al.[14] present a techrigue
compute numeric invariants using NA which are then used [1l. BACKGROUND
to simplify PA. However, this approach only works when In this section, we define notation and our view of abstract
the verification task can be cleanly partitioned into arigim domains.
and propositional reasoning. For example, it is ineffecior Expressions and Statementd_et V' denote the set of program
verifying the program in Fig. 2(a), where purely numerigariables, andE denote the set of expressions oviér A
reasoning is too imprecise to produce any useful invariantsprogram is built out of statementS of the form: (1) an
Another approach is to run the analyses over different afissignment := ¢, where ! is a variable inV and e is an
stract domains in parallel within a single analysis frameéuo expression inF, and (2)assume(e), wheree is in E. Assume
using the abstract transfer functions of each domain as d@gerations are used to model conditional branches. We write
The analyses may influence each other, but only througk|| to denote the collecting semantics, or strongest post-
conditionals of the program. This approach is often taken lopndition transformer, as a function fro@ to itself. For
large-scale abstract interpreters [5], that use diffesdastract example||z:=z+1||(z > 3) = (x > 4), ||z:=5]|(z = 3Ay =
domains to abstract distinct program variables. Receamtly,6) = (x =5 A y = 6) and||assume(xz > 4)||(y = 6) = (z >
similar approach has been incorporated into software mod¢lA y = 6). Atomic statements can be composed in several
checker BAST [10], [4], [3] to combine predicate abstractionways: (a) sequentially, writteg, ; so, meanings; followed by
with various data-flow analyses. In principle, this can be,; (b) with alternative choice, writter; V s, meaning non-
adapted to combining PA and NA. The expressiveness aéterministic choice betweesy and s,, and (c) in parallel,

Interface: ABSDOM(V) For the predicate domainR®D(P) over a set of predi-

g A= FE a cE— A _
meet < AxA Ao Ax A A e T, where & P
isTop : A — bool isBot : A — bool 9 np :=)) b

is a predicate, and and f are Boolean expressions over
P. Informally, ¢t represents the condition forcing to be
true, and f the condition forcingp to be false. For exam-

leq : A x A — bool widen :Ax A— A
aPost: S — (A — A)

Requires: ple, p := choice(p, —p) leavesp unchanged is true iff
leta,b,c € A,e € E,z = 7(a),y = 7(b),z =7(c) in it was true before)p := choice(false, false) changesp non-
true = e = y(ale)) (aPost(s)(a) = b) = [Isll(x) = ¥ geterministically (nothing forces to be only true or false),
leq(a, b) = (a = b) (meet(a,b) = ¢) = (Ay = 2) and p := choice(p A ¢,false) leavesp as true ifq is true,
isTop(a) = (true = a) (join(a,b) = c¢) = (z Vy = 2) otherwisep is changed non-deterministically. Formally, the
isBot(a) = (a = false) (widen(a,b) =c) = (zVy = z) semantics of a Boolean assignment is a forward image (post)

over the relation(p’ A —=f) Vv (—p’ A —t), wherep’ is the value
of p in the next state. Boolean assignments can be composed
in parallel using conjunction of their relations, as usuadr

Fig. 3. Interface of an abstract domail: denotes expressions, denotes
statements, andl denotes abstract values.

Name Notation Abstract Elements numeric abstraction, abstract transformers are compuyed b
Intervals ~ Box(V) {ci<v<c|a,meN,veV] the domain itself. For predicate abstraction, the tramséwris
Scltaﬁlogs I(RB(TXS")/) {£un1 Iﬂ,tvz 2cle El_t_M vw;; eV} constructed using a theorem prover [11].
olynedra Inear inequalities ove
Predicates Rep(V) propositional formulas ovev’ BDDs. Reduced Ordered Binary Decision Diagrams
TABLE I (BDDs) [6] are a canonical representation of propositional

Common abstract domain¥; is a set of numeric/propositional variables; formulas. A BDD is a DAG whose nodes correspond to
domain of numeric constants. propositional variables, and paths to all satisfying assignts
written s; A so, meaning parallel synchronous executionsof of a formula. We us# and1 to denote BDDs for true and
ands,. The usual rules and restrictions of legal compositiorfalse, respectively. For a BDD, we usevarOf(«) for the root
apply. For example, we do not allow for a parallel compoaitiovariable,bddT(u) for the then-branch, andddE(u) for the
x:=5 Az :=6 since both statements changgetc. else-branch ofu, respectively. BDDs have efficient support
Abstract Domain. We assume that the reader is familiar witior conjunction bddAnd), disjunction bddOr), negation
abstract interpretation and only give the necessary deta{bddNot), if-then-else kddite), existential quantification
For a detailed overview, please consult [9]. In this paper, WhddExists), and variable renamingpodPermute). Many of
view an abstract domain operationally as an abstract dpta tghese can be implemented usibddApply(f, u, v), whereu,
that satisfies the interfacee&Dom(V) shown in Fig. 3. For v are BDDs, andf is a binary operator (i.e., conjunction,
simplicity, we assume that the concrete domain is the setdigjunction, etc.) that is defined only for constants.
expressiongr, and not, for example, program states. We use
A to denote the set of all the elements oggDom(V'). The IV. NUMPREDDOM: INTERFACE
interface consists of functionst and v to convert between In this section, we describe the interface obINPRED-

expressions and abstract elementsdinmeet and join Cor- by and ts supported transfer functions UMPREDDOM
respond to conjunction (intersection) and disjunctiondof deals with propositional formulas over predicates and migne
respectively;leq corresponds to implication (subset}Top constraints. A numeric constraint can be treated as both a
andisBot check for validity (universality), and unsatisfiabilitynumeric and a predicate term. For example, in the formula

(emptiness), respectivelyyiden is a widening operator [9]]s)o/\c(:n zbe(()g): A>(y0)2a221’ é’/ is> dg)finiﬁzltyvg pbrgdg:aé%t %‘#t
. .. . > e . P
that over-approximates a disjunction and guarantees NV e icatesy'y a set of numeric variables, atbe a conjunc-

gence when applied to any (possibly infinite) sequence @fe expression. Theropositional projection of e onto Vp,
abstract elements; andyPost approximates the semanticsdenoted byproj,(Vp,e), is a conjunction of predicates from

of a program statement as an abstract transformer, i.e.Vmthatisimplied by (i.e., over-approximates)Similarly, the
function from A to A. numeric projection of e onto Vy, denoted byroj, (Vi ,e), is

. . conjunction of numeric constraints ovex that is implied
Examples of several abstract domains are shown in Tablea e. Some examples of the projections are:
The first three domains, collectively called Numeric, aredus

to represent and manipulate arithmetic constraints. Tke la Projp({php Az 2 0) A (y 2 0) =p
one represents propositional formulas over a set of presica projp({z = 0}, p A (2 2 0) Ay 2 0)) = (w 2 0)
Syntax for Abstract Transformers. For ease of under- projy({y},p A (2 2 0)A(y>20)) =y >0

standing, our syntax for abstract transformers mirror$ tfia Note that the exact definitions @foj, andproj, are imple-
concrete program statements. Let NiX1) be a numeric mentation dependent. We implement them via approximations
domain over variable¥. The syntax for assign transformerdased on syntactic reasoning. However, more precise semant
of NDoM(V) is 1 :=e; A -+ Az, := e,, Where allz; are constructions via the use of theorem provers is also passibl
in V, and alle; are linear arithmetic expressions. The synta®uch implementation choices affect the efficiency vs. gieni

for conditional transformers of NOm(V) is assume(e). trade off, but not correctness.

Interface: NUMPREDDOM(Vy, Vp) extends ABSDOM ri=1xn | 7o | T | 7P | TP | (base case)

ap E— A an :E— A T;\j | (Sequsntce)
unprime : A — A reduce :A— A T) T (non-det.) di
exists 27 xA— A aPosty :S—(A—A) TNPEE (e?mn) AP (numeric + predicate)
Tp ::= p:= choice(e, e) | (predicate)
Fig. 4. The interface of NMPREDDOM: Vv and Vp are numeric and Tp ATp
propositional variables, respectiveliz., S, and A are as in Fig. 3. 2 .
Te = €elTN (conditional)
The interface NNMPREDDOM is shown in Fig. 4. It ex- Tq 1= SSUMe(e) (assume)
tends, i.e., has all the functions of, the basic abstractailom "~ ~= ¥ =Y | (numeric)
ABsDowM shown in Fig. 3. The interface W PREDDOM has TN ATN
two types of variables: numerid/y, and propositionalVp. Fig. 5. BNF grammar for abstract transformers supported by

Moreover, the domain is extended with “primed” VariableyUM_PREDDOM; pis a_predicate:c a numeric variaplee an expression over
v 2 {p’ | p € Vp}. Additional functions provided by predicates and numeric terms;a numeric expression.

the interface areay, ap are restrictions of the abstractionConditional. Written ase?r, wheree is an arbitrary expres-
functiona to conjunction of numeric and propositional expression, andr is a purely numeric transformer. It is interpreted
sions, respectivelyexists existentially quantifies propositional as: A X - aPost y () (aPost(assume(e)) (X)). It is most useful
variables from an abstract value and must satisfy the ove§-a combination with other transformers. For example, it is
approximation condition:(3V" - y(a)) = ~(exists(V,a)); used to abstract an assignmept.= ¢ through a pointer as:
ynprime .renzmes all “primecli.’]: variablebs into the correspolnd— (p=&z?z:=e)V(p=&y?y:=¢)

ing unprimed onespPosty lifts an abstract numeric only . o _ - ,
transformer to the combined domain. Finally, the interfac:/élt? Ve ={p =&a,p =&y} andVy = {z,y} and variables
has a special operation, calledduce, that refines an ab- j

stract value by sharing information between propositiaral hoice(,,, f,.), wherep; are inVp andt, and f; are expres-

numeric parts .Of the _/alue. Notg that Itis possml.e.to aPPYons overVp and Vy. It is interpreted using conjunction and
reduce at any time during analysis to increase precision of ths%dstential quantification:

result. However, since excessive callséduce are expensive,
we have factored it out in the interface. let R = Oé(/\i(p;, A=fi) V (=p; A =t;)) in

The abstraction functiom(e) is defined recursively using
ap anday as follows: ife is a term, then

Predicate Written as: p; := choice(t1, f1) A -+ A pn =

AX - unprime(exists({p1, ..., pn}, meet(X, R))).
N ') _ This transformer is the basic building block for predicate
a(e) = meet(ap(projp (Ve U Vp,e)),an(projy(Vn.e))) abstraction. It depends on both predicate and numeric-infor

else ife = e; A eg, then mation. For example, suppose that = {y > 0,p = &x,p =
ale) 2 meet(aler), ales)) izg} andVy = {z}. Then the assignmenp:=x is abstracted

elselfe=rc1Vey then (y > 0) := choice((p = &) A (y > 0, (p = &y) A (x> 0)) .
ale) = join(a(er), afez)) Numeric and Predicate Written as a parallel composition of

NumPREDDOM is distinguished by its support for a richconditional numeric and predicate transformeeg:ry) A 7p,
set of abstract transformers. The grammar for the supporigHere ¢ is an arbitrary expressiom,y is a purely numeric
transformers is shown in Fig. 5. We now describe each typ@nsformer, andrp is a predicate transformer. It is inter-
of transformer, illustrate in what situations it is reqaiy@nd preted with the help of the following equivalence?7y) A
provide a common implementation when applicable. Tp = assume(e); Tp; Ty. That is, since the purely numeric
Numeric. Written asx; := ey A --- Az, := ex, where the transformer does not depend on the predicates, this paralle
variables inz; ande; are inVy. It is handled byaPosty of composition is reduced to a sequential one. This transfoisne
each implementation of M PREDDOM. It is a basic building used to abstract statements that influence both predicates a
block for abstracting arithmetic transformations. numeric constraints simultaneously. For example, Upt =
Assume Written asassume(e), wheree is an arbitrary ex- {y = 1} and Vy = {x,v,w}. Then, the parallel statement
pression, and interpreted asX - meet(a(e), X). It is used y:=z A2 :=(y=1)?v : w is abstracted as:
to approximate program conditionals with a combination of(y =1):=choicelz =1,z £ DA (y=D)z=v:z=w.
predicate and numeric conditions. For example, in the pEse \jie that the predicatg = 1 is both influenced by numeric
of aliasing, the C program statemeassume(«p > 0) can be ¢,nqiraints on: and influences the next value of

approximated by: Sequential and Non-Deterministic Written asr;; 75 andr Vv
assume((p = &z Az > 0) vV (p =&y Ay >0)V 72, respectively. Interpreted using function sequencingjaimd
(p # &y A p # &z)) operator, respectively:

with predicatesVp = {p = &z,p = &y} and numeric aPost(71;72) = AX - aPost(72)(aPost(r1) (X))
variablesVy = {z,y}. aPost(m; V 1) = AX - join(aPost(m)(X), aPost(r2)(X))

As a complete example, a combined predicate and numdrtuitively, a NEX value is a “union” of NEXBINT values
abstraction of the program in Fig. 2(a) is shown in Fig. 2(b}hat are distinguished by their numeric components. Thus,
Both predicateg and ¢ are necessary to separate differeflEX improves upon the precision of NEXIINT by replacing
paths through the control flow, and predicatgets its value imprecise numerigoin with union. In particular, NEXop =
from a combination of constraints on numeric variables addP.top, N.top)} and NEXbot = §. Conditions C1-C3

predicatep.

In summary, the critical operations in theuMPREDDOM
interface areexists, unprime, proj,, projp, ay, ap, v, leq,
meet, join, widen, aPosty andreduce.

V. NUMPREDDOM: IMPLEMENTATIONS

ensure that the data structures are as “tight” as posditle:
guarantees that the representation of any abstract valeg do
not include any “empty” component£;2 ensures that any
two elements(p;, n1) and (ps2,ng) are distinguished by their
numeric components, and3 — that the elements of a NEX
value are “mutually disjoint”.

In this section, we describe four implementations of To understand the NEX operations, we first introduce a
NUMPREDDOM. We useN to denote the set of abstract valuesormalizing procedure calletbrm. Given any set C 22'7

of the underlying numeric domain ovéfy. We write N.op

N satisfying C3, norm returns a sets C 227 x N that

and P.op to mean the abstract operati@p over numerics satisfiesC1-C3 by performing the following: (i) replacing any

and predicates respectively. We writg 1, Ll andV to mean

(p1,n) € vand(pz,n) € v with (p1Upa, n), and (i) removing

leq, meet, join andwiden when the abstract domain is cleare\,ery (p,n) € v such thatp = PbotV n = N.bot. Thus,

from context; and, writeX.top, X.bot to mean X.«(true)
and X.«a(false), respectively. Our domains, NEXINT, NEX
and MTNDD, share the following definition ofeduce:
reduce(v) £ (a(y(v))). Therefore, we only defineeduce

norm(v) is a NEX value that is semantically equivalentuto
norm has linear complexity since it makes single pass over its
input. Theexists and unprime are performed on the BDDs,
followed by normalization. The other operations are defined

specifically for (NDD) implementation. In addition, all fou 55 follows:

implementations share the same definitiorpadj , andproj»

based on syntactic simplification of expressions to a normal

form.

A. NEXPoOINT: Numeric Explicit Points

The set of abstract values of NEXRT is 227 x N. A
NEXPOINT value is a pair(p,n) wherep is a BDD andn
is a numeric abstract value. In particular, NEXIRT.top =
(P.top, N.top) and NEXPRoINT.bot = (P.bot, N.bot). The

exists and unprime operations are performed on the BDDs

an(e) £ ((P.top, N.a(e))) ap(e) £ ((P.ale), N.top))

Y1, m1)s - (P)) = Vicyap, P(0i) A Noy(ni)
Let v = (p,n) be a NEXPINT value andv =
{(p},nh),....(p,,n;,)} be a NEX value. We say that

v |ff p C |_|{Z|nEn/}p1 For any two NEX val-

ues v = {(p1,n1),. (pk,nk)} and o', leq(v,v’) iff
Vlgigk‘.(pi,ni)gv

meet(v,v’) £ norm({(p1p,nMn’) | (p,n) €Ev A (p/,n') €v'})

N .
The other operations are performed pointwise. Thus, we havd®in(v, v') £ norm(NEXJoin(v, v"))

the following definitions:

an(e) £ (Ptop, N.a(e))
ap(e)é(a(e), N.top)
7(p,n) £ Pry(p) A Ny(n)
op((p,n), (v',n')) =
)

leq((p,n), (v, n)
aPosty (s) £ A(p,n) « (p, N.aPost(s)(n)),

whereop € {meet,join, widen}. Recall thatreduce is de-
fined a5a((v)). Suppose we have two predicate$ (z = 0)

(P.op(p,p'), N.op(n,n’))
ApIZp AnCn

widen(v,v’) = norm(NEXWiden(v, v"))

The algorithm NEXJoin is defined recursively as follows:
(i) NEXJoin(#,v) = wv, (i) NEXJoin(v,0) = v, and (iii)
NEXJoin({(p, n)} UX, {(#/.n")}UX") = {(pr1p/,nin’)}U
NEXJoin({(pr—-p’,n)}, X" YUNEXJoin({(p'M—p,n’)}, X)U
NEXJoin(X, X’). The key idea behinblEXJoin is to ensure
that its output satisfie€3 by splittingpLip’ into three mutually
disjoint fragmentsp M p’, pr1—p’ andp’ M —p. The algorithm
NEXWiden is identical toNEXJoin except that it usewiden
instead ofjoin. The meet, join and widen operations have
qguadratic complexity. Finally, the operatioffosty is defined

andr £ (y = 0), wherex is also a numeric variable. Then,as follows:

reduce(qVr,z =3Ay >0) = (~gAr,z =3ANy =0).
Similarly, reduce(q V r,x2 = 3 Ay < 0) = NEXPOINT.bot.

B. NEX: Numeric Explicit Sets

Each abstract value of the NEX domain is a function
2V N. We represent an abstract value as a set of pa,\r/ﬁ_

{(p1,m1),-.., (pe,ni)} € 22 x N, where eachp; is a

BDD, eachn; is a numeric abstract value, and the followin

conditions hold:
V1 <i<k.p # PbotAn; # N.bot (C1)

aPosty (s) £ M. norm({(p, N.aPost(s)(n)) | (p,n) € v})

C. MTNDD: Multi-Terminal Numeric Decision Diagrams

MTNDD is a symbolic alternative to NEX. MTNDD
values are also functions of ty@®” — N. However, an
NDD value is represented as a BDD over predicate and
numeric terms. This automatically maintains conditids-

€3 of NEX.

Conceptually, an MTNDD value is a Multi-Terminal
BDD [1] whose terminals are numeric abstract values ffgm
In practice, we simulate MTBDDs with BDDs. We associate

: BDD ctxApply (BDD u, Opg, N ¢, SetV)

1: BDD MJoinOp (BDD u, BDD v) ; o)

:if =1vuv=1 turn1 =g, e
2. :f EZ =0) thurnq)L retm 3. if (r # null) returnr
4; if (v=0) returnov 4: b:=varOf(u); e:=term(u)

- (i] i] 5. tt = ctxApply(bddT(u),g,eMe¢, V)
5 if (isNum(u) AisNum(v)) o ff— ctxApply(bddE(u) g e e V)
6: nu = N.co(toExpr(u)) it e 9 1
7: nv := N.a(toExpr(v))

8: returntoBdd(N.(nu U nwv)) g. elégtum bddOr(tt, ff)

: Il :

% retumny 10: returnbddlte (b, tt, ff)

Fig. 6. Implementation oMJoinOp.
Fig. 7. Implementation o€txApply.

a BDD variable with each predicate and numeric term, and
restrict variable ordering to ensure that predicate véegb that complement each other, i.¢;, = —t,, are associated
always appear before numeric ones. For any terthat is With the opposite phases of the same BDD variable. For
both predicate and numeric (i.g10j,(t) = ¢ = projy(t)), examp_le, whenever > 0 is mapped to a BDD variable,
we allocate two distinct variables: one predicate, one migme * < 0 is mapped to-v. We useterm(v) to denote the term
Although there are infinitely many numeric terms, only fihjite corresponding t@. We extend the notation to BDDs and write
many are used in any analysis. Thus, we allocate variabtes #@M(u) to mean the term of the root variable of BDI2
numeric terms dynamically. Each terny is allocated a single BDD variable, independently
We use algorithmsoBdd and toExpr to convert between of whethert is a predicate, a numeric term, or both. Thus,
BDDs and expressions in the usual way. Note that fgropositionally inconsistent expressions are alwaysaeduo
NEXPoINT and NEX, this was achieved viR.a and P.y. 0. unlike in the previous three implementations. For example
For a BDD v, we useisNum(v) to determine whether the if » = (z > 0) is a predicate, thep/\ (z < 0) is reduced t®.
root variable ofv is a numeric term. MTNDDop and For the most part, NDD operations are done using cor-
MTNDD.bot are represented by BDDisand 0, respectively. 'esponding BDD operations. The NDDp and NDDbot
Abstraction and concretization functions simply conveet b are represented by BDDE and 0, respectively. Abstraction
tween expressions and BDDs. Thus: and concretization functionap, oy, and~ are exactly the
N N same as in MTNDD — they simply convert between expres-
ap(t) = oBAd(?) ~an(t) = oBAA(N.y(N.a(t))) sions and BDDs. Functionslzprimrc)a,)/exists, meet, andjoir|1o
7(v) = toEXpr(v) are implemented abddPermute, bddExists, bddAnd, and
The unprime operation is the same as its BDD version. TheddOr, respectively. Thaviden operation is implemented by
MTNDD .exists operation is similar tdddExists except that conversion to MTNDD. AdditionallybddNot is used to over-
MTNDD .join is used instead dbddOr. approximate negation. That is, wheneveover-approximates
The operationsmeet, join, widen, leq, and aPosty an expressior, bddNot(v) over-approximatese.
are implemented as operators ddApply. They work by All of the above operations work on propositional structure
(a) recursively traversing input BDD(s) until they are reof the abstract value. Effectively, they treat numeric ¢aists
duced to BDDs over numeric terms; (b) converting nuds uninterpreted propositional symbols. Their compleisty
meric BDDs to abstract values and applying the corresporlthear in the size of the input. The operatiaesiuce, leq, and
ing numeric operation; and (c) encoding the result backPost treat numeric terms differently. For these operations,
as a BDD. For example MTNDIpin is implemented us- we introduce a functioretxApply, whose implementation is
ing bddApply(MJoinOp, u, v), whereMJoinOp is shown in shown in Fig. 7. The functioctxApply recursively traverses
Fig. 6. Note that the constraint on the variable orderingiezs @ BDD, collecting the context of the current pathdnand
that whenever a root of a BDD is numeric, the rest of is existentially eliminating variables iV. The complexity of
numeric as well. this operation is linear in the number of paths in a BDD.
Since MTNDD operations are implemented using The reduce operation is implemented as
bddApply, their complexity is linear in the size of their inputctxApply(u, reduceOp, N.top,?), where reduceOp(u,c)
BDDs. Due to sharing between various BDDs, the memofgturns0 when N.isBot(c) or v = 0, returnsl whenu = 1,
(and hence time) requirement of MTNDD is expected to b&d returnsnull otherwise. Essentially, it replaces every

better than NEX. unsatisfiable cube in a BDD witld. In particular, for any
] o) unsatisfiable BDDv, reduce(v) is 0. For leq, we use the
D. NDD: Numeric Decision Diagrams fact that for any two formulas:, and v, u implies v (i.e.,

NDD is our most expressive domain, with elements is less thanv) iff uw A —v is unsatisfiable. Since both
in 22"”7*N_ An NDD value is a BDD representing asatisfiability and negation are available, we implemlentas
propositional formula over predicate and numeric termshWi(reduce(meet(u, bddNot(v))) = 0).
each termt, we associate a BDD variable. The association The implementation ofxPosty (s) is similar to reduce.
takes negation into account. Any two ternts and ¢, It usesctxApply to apply a transformer of to every path

[Precision _ Succinct PA NA PropOp NumOP A of the data-structures reduce to BDDs when there

NEXPOINT - + + + + ++ .

NEX + i + +) - are no numeric terms present. Thus, they are all equally

MTNDD + - + - + - well suited for predicate abstraction. NEXRT and NEX

NDD e + + - + -- represent numeric abstract value explicitly, and, theegfare
TABLE Il efficient for numeric abstraction. Both MTNDD and NDD

Summary of the implementationBrecision = precision of abstract values; encode numeric values symbolically and introduce adutiio
Succinct = succinctness of the representati®¥ = applicability to !

predicate abstractiodyA = applicability to numeric abstractiofrop Op = Overhea(_j- - _
complexity of propositional operations (meet, join, ettlym Op = NDD is the best data structure for propositional operations

complexity of numeric operations. since those are implemented directly using BDDs. At the same
time, it is the worst for numerical operations — those use
ctxApply, whose complexity is linear in the number of paths
in a diagram. Again, the efficiency of NEX®NT is a by-
product of its imprecision.

As shown by our informal comparison, there is no clear
winner between the four choices. In the next section, we
evaluate the data structures empirically in the context of
D%)ftware model-checking.

of an input BDD. For a purely numeric statemesit we
first define a functiorNDDPost(s)(u, ¢) such that it returns
0 if N.isBot(c) or u = 0, returns N.aPost(s)(c) if u =
1, and returnsnull otherwise. Second, leNumV be the
set of all numeric BDD variables. ThemPosty (s)(u) =
ctxApply(u, NDDPost(s), N.top, NumV).

In this domain, predicate and numeric terms share B
variables. Thus, parallel compositiany A 7p 0f a numeric VI. EMPIRICAL EVALUATION AND CONCLUSION
(twv) and a predicatérp) transformers cannot be reduced to
a sequential composition (as in Section 1V). Part of the BDB
that is affected byrp may be needed for application ofy.

We implemented a general reachability analysis engine for
programs in Java on top of the four implementations of

Tp partially by storing its result in “shadow” variables, the
applying 75 while eliminating variables changed by, and
finally restoring the state from the shadow variables. L
7p be of the form A, p; := choice(t;, f;), let R be the
relational semantics ofp (as defined in Section IV), and
V = NumV U{p; }; be the set of all numeric variables and al
variables changed byp. Then,aPost(ry ATp)(u) is defined
as:

the PA part of the abstraction and for analyzing counterex-
gtmples. We experimented with two types of examples: (a)
synthetic examples designed to compare and contrast our fou
implementations of NMPREDDOM with each other, and (b)
xamples derived from more realistic benchmarks. For the
synthetic examples, we only compare NEX, MTNDD and
NDD since NEXPINT is less expressive. All our experiments
unprime(ctxApply(u 1 R, NDDPost(7y), N.top, V)) were carried out on a 2.4 GHz machine with 4 GB of RAM.
The w M R part corresponds to partial application of, Synthetic Examples NEX and MTNDD join numeric con-
ctxApply appliesty and eliminates all current-state variablestraints, but NDD maintains an exact union. Thus, we con-
in V, andunprime copies shadow variables into current statéecture that NDD performs poorly when numeric joins are
For example, let/p be {(z = 3), (z = 4)} , Vi be {z}, 7y €xact. To validate this hypothesis we experimented with the
bex:=x+1, and7p be (x = 4) :=choice(z = 3, f). Assume template shown in Fig. 8(a). Our experiments support this
thatu is (x = 3)A(z > 3). Then, applyingp partially results hypothesis. NEX and MTNDD scale beyor@ = 10000
in (z =3)A (x> 3)A(z = 4); applyingy and eliminating (NEX performs better than MTNDD since it does not have
(z = 3) produces(z > 4) A (z = 4)’, and renaming yields the extra overhead of manipulating BDDs). NDD blows up

(x >4) N (z=4). even forC = 400.
Our second conjecture was that when a problem requires
E. Summary a propositionally complex invariant, the sharing capapidif

To summarize our four implementations, we compare theNDD will place it at an advantage to NEX and MTNDD.
with respect to six different criteria: precision, i.e.jl&p to To test this conjecture we experimented with the template in
represent different abstract values; succinctness,coagise- Fig. 8(b). Our experiments support this hypothesis as well.
ness of representation; performance of the data structibiem wNDD requires seconds f@ = 10 while NEX and MTNDD
used solely for predicate (PA), or numeric abstraction (NApoth require several minutes with NEX being the slowest.
and efficiency of propositional (i.e., meet, join), and nuime Realistic Examples For a more realistic evaluation, we used
operations. The results are shown in Table IllI. a set of 22 benchmarks (3 from a suite by Zitser et al. [16],

NDD is the most precise domain. Furthermore, since 2t from OpenSSL version 0.9.6c, 9 based on a controller for a
uses BDDs to encode the propositional structure of the yalumetal casting plant, 2 based on the Micro-C OS version 2.72,
it is more succinct than NEX and MTNDD that do notand 6 based on Windows device drivers). We analysed them
share storage between predicate and numeric parts of tiseng our four implementations of W PREDDOM, and also
abstract value. Succinctness of NEXIRT is a side-effect of with PA and NA. The results are summarized in Table IV.
its imprecision. The total time taken by each individual experiment is shown

) Domain Num Total ¥ join | aPost | Apply
rnt x = 0; Numeric 9 252 | 043 | 041 | 0.44 0.38
() while (x <O ++x; Predicate | 17 | 333.38| 0.05| 0.03 | 0.20 | 0.06
assert(x == Q); NEXPOINT 21 42.30 | 0.38 | 1.13 | 4.04 8.50
NEX 22 4517 | 059 | 2.22 | 3.99 7.20
MTNDD 22 94.05 | 0.02 | 3.71 | 211 56.10
n=1 NDD 22 42.15 | 0.03 | 0.02 | 1.96 17.81
b) if(x0 <0) n=0; .
() else if(xC<0) n=0;) .) TABLE.IV - .
; —— - Time requirements for various operations on realistic exasaplieimeric =
if(x0 < 0) assert(n == 0); ...) S) h ;
. L . purely numeric analysis; Predicate = purely predicate amglilum = no.
else if(xC < 0) assert(n = 0); _ . !
of examples analysedipply = applying abstract transformers. All times are
in seconds.
Fig. 8. Two templates for synthetic examples.

alone. Employing these data structures in an industrigihget
in Fig. 9. For the experiments, we have implemented a simplkquires extending automated abstraction-refinementeim.th
abstraction-refinement scheme based on the analysis ofVé@ used a simple refinement strategy for our preliminary
UNSAT-core of the WP of an infeasible counterexample. Firstxperiments. In the future, we plan to further explore the
the scheme adds all of the numeric variables in the UNSApectrum of possibilities in this area.

core; second, the predicates in the core are added whenghe fir
step fails to eliminate the spurious counterexample. Sihee
goal of the experiments is to explore the difference betweel!
our data structures, we only report on the time taken by the
last iteration of abstraction-refinement, and do not ineltlte [2]
time needed to find a suitable abstraction. Not all examples
could be analyzed by every domain. In particular, only 9 doul (3]
be analyzed numerically, and 17 using predicates. In the cas
of PA, the maximum number of predicates was 10; in the cadél
of NA, the maximum number of numeric variables was 17; ing
the combined domains, these were at 8 (with 6 for NDD)
and 17, respectively. Thus, combining PA and NA requires
less predicates, with fewer predicates required for thetmo?]
expressive combination. 7]

In Table 1V, we show the number of examples analyzed, as
well as time used by basic abstract operations. The tota timg;
includesall of the analysis, including predicate abstraction
with CVCLITE. Note that the last 4 columns of the table®
correspond to operations inside the reachability comjmutat [10]
(they do not add up to total time). The experiments indicate
that a combination of PA and NA is more expressive, artdt
more importantly, more efficient, then either one in isa@ati [12]
In particular, all of the combined domains could not onlysol
more problems that PA, but were 6-7 times faster. For tHiE>
evaluation, NDD performs the best (NEXRT solves only
21/22 problems), which is probably explained by lack of dedpA]
loops in the benchmarks. The two extremes are NEX and
NDD: NEX transformers are efficient to apply, but jgn is [15)
rather slow, while the opposite is true for NDD.

6

In summary, we have presented an approach to cou[)]le]
PA and NA tightly into a unified analysis framework via a
single abstract domain calledumPREDDOM. In particular,
we develop and evaluate four data structures that implement
NumPREDDOM but differ in their expressivity and internal
representation and algorithms. We have implemented a gener
framework for reachability analysis of C programs on top
of our four data structures. Our experiments on non-trivial
examples show that our proposed combination of PA and NA
is more powerful and more efficient than either technique

REFERENCES

R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Paralod
F. Somenzi. “Algebraic Decision Diagrams and Their Applicas”.
FMSD, 10(2/3), 1997.

T. Ball and S. K. Rajamani. “Automatically Validating Temadb Safety
Properties of Interfaces”. IRroc. of SPIN, 2001.

D. Beyer, T. A. Henzienger, and G. Theoduloz. “ConfigueaBoftware
Verification: Concretizing the Convergence of Model Chagkiand
Program Analysis”. InCAV, 2007.

D. Beyer, T. A. Henzinger, and G. Eloduloz. “Lazy Shape Analysis”.
In CAV, 2006.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. MauborgheMing,
D. Monniaux, and X. Rival. “A Static Analyzer for Large SafeCritical
Software”. InPLDI, 2003.

R. Bryant. “Graph-based Algorithms for Boolean Functdvanipula-
tion”. |EEE Transactions on Computers, 35(8), 1986.

T. Bultan, R. Gerber, and W. Pugh. “Composite Model Chegki
Verification with Type-Specific Symbolic RepresentationsTOSEM,
9(1), 2000.

P. Cousot and R. Cousot. “Systematic Design of Programlysis
Frameworks”. InPOPL’79, 1979.

] P. Cousot and R. Cousot. “Abstract Interpretation Fraorés/. JLC,

2(4), 1992.
J. Fischer, R. Jhala, and R. Majumdar. “Joining datafloith redi-
cates”. InFSE, 2005.

] S. Graf and H. Sdi. “Construction of Abstract State Graphs with PVS”.

In CAV, 1997.
S. Gulwani and A. Tiwari. “Combining Abstract Interpees”. In PLDI,
2006.

] A. Gurfinkel and S. Chaki. “Combining Predicate and Numekb-

straction for Software Model Checking (EXTENDED ABSTRACT)
In LFM, 2008.

H. Jain, F. lvancic, A. Gupta, |. Shlyakhter, and C. WangJsing

Statically Computed Invariants Inside the Predicate Abstta and
Refinement Loop”. INCAV, 2006.

J. B. Mgller, J. Lichtenberg, H. R. Andersen, and H. Halgl. “Dif-

ference Decision Diagrams”. 163, 1999.

M. Zitser, R. Lippmann, and T. Leek. “Testing Static Aysis Tools
Using Exploitable Buffer Overflows from Open Source Codei FSE,

2004.

Total Time

[EINA PA ONEXPoint EMTNDD ENEX EINDD |

]
s
T T

ALV LSS
T Y

==
ALTCAE AT AT LA A A AAE A A A A A A A AAE AT A A AL A AEAALCEAALALA A LA A A AR R R R R A

[T1T]
—

SIS,

T T

T T

——
1] [
I
L TLELLLL
W W e e W W W W W W W W "W W W W W W W W W W W

|
]

—

g g g G e T T T

A AR A A A A AT A A AR AR A AR AR AR R R R R R RS

——
[[

I

e T T T T T
FTE I A T L A T A A A A A A T A T A A A A LA AT A LA LA A LA LA LA A AL AL LA AL A AR L AR L LR

A A A A S SISy

———
LA LS E S SIS SIS LSS
A A A A A A LA A A A A A LA AL LA A AR R R
—]
[II1T]

LA A SIS L AL AL S LSS LSS S LSS LSS ESL AT LSS AL EA LSS AL EALESE AL AL AL AL S E AL AL LS SIS ES S
L

==
T T

1
]
P P P P P P P

¥

|
B T T T
T T

LSS S SIS SIS IS
Y

20000

18000 -
16000 -
14000 -
12000 -
10000 -

T T
o o o o
S S S
S S S S
o © < 3
1

(o9sH][1w) saun

M1 12 13 14 15 16 17 18 19 20 21 22

10
Experiment Number

Fig. 9. Bar-chart showing total time taken by each experiment.

