
Combining Predicate and Numeric Abstraction for
Software Model Checking

Arie Gurfinkel and Sagar Chaki
Software Engineering Institute, Carnegie Mellon University

{arie,chaki}@sei.cmu.edu

Abstract—Predicate (PA) and Numeric (NA) abstractions are
the two principal techniques for software analysis. In this paper,
we develop an approach to couple the two techniques tightly
into a unified framework via a single abstract domain called
NUMPREDDOM. In particular, we develop and evaluate four data
structures that implement NUMPREDDOM but differ in their
expressivity and internal representation and algorithms. All our
data structures combine BDDs (for efficient propositional reason-
ing) with data structures for representing numerical constraints.
Our technique is distinguished by its support for complex transfer
functions that allow two way interaction between predicate
and numeric information during state transformation. We have
implemented a general framework for reachability analysis of C
programs on top of our four data structures. Our experiments
on non-trivial examples show that our proposed combination of
PA and NA is more powerful and more efficient than either
technique alone.

I. I NTRODUCTION

Predicate abstraction (PA) [2] and Abstract Interpretation
(AI) with numeric abstract domains, called Numeric abstrac-
tion (NA) [5], are two mainstream techniques for automatic
program verification. However, the two techniques have com-
plimentary strengths and weaknesses. Predicate abstraction
reduces program verification to propositional reasoning via an
automated decision procedure, and then uses a model checker
for analysis. This makes PA well-suited for verifying programs
and properties that are control driven and (mostly) data-
independent, e.g., the code fragment in Fig. 1(a). However,
in the worst case, reduction to propositional reasoning is
exponential in the number of predicates. Hence, PA is not
as effective for data-driven and (mostly) control-independent
programs and properties, such as the code fragment shown
in Fig. 1(b) In summary, PA works best for propositional
reasoning, and performs poorly for arithmetic.

On the other hand, Numeric abstraction restricts all reason-
ing to conjunction of linear constraints. For instance, NA with
Intervals is limited to conjunctions of inequalities of theform
c1 ≤ x ≤ c2, wherex is a variable andc1,c2 are numeric
constants. Instead of relying on a general-purpose decision
procedure, NA leverages a special data structure – Numeric
Abstract Domain. The data structure is designed to represent
and manipulate sets of numeric constraints efficiently; and
provides algorithms to encode statements as transformers of
numeric constraints. Thus, in contrast to PA, NA is appropriate
for verifying properties that are (mostly) control-independent,
but require arithmetic reasoning, e.g., the code fragment in

assume(i==1 || i==2);
switch(i)
case 1: a1=3; break;
case 2: a2=-4; break;

switch (i)
case 1: assert(a1>0);
case 2: assert(a2<0);
default: assert(0);

if(3 <= y1 <= 4)
x1 = y1 - 2;
x2 = y2 + 2;

else if(3 <= y2 <= 4)
x1 = y2 - 2;
x2 = y2 + 2;

assert(5 <= (x1+x2) <= 10);
(a) (b)

Fig. 1. Two example programs.

Fig. 1(b). On the flip side, NA performs poorly when propo-
sitional reasoning (i.e., supporting disjunctions and negations)
is required, e.g., for the code fragment in Fig. 1(a).

In practice, precise, efficient and scalable program analysis
requires the strengths of both predicate and numeric abstrac-
tion. For instance, in order to verify the code fragment in
Fig. 2(a), propositional reasoning is needed to distinguish
between different program paths, and arithmetic reasoning
is needed to efficiently compute strong enough invariant to
discharge the assertion. More importantly, the propositional
and numeric reasoning must interact in non-trivial ways.
Therefore, a combination of PA and NA is more powerful and
efficient than either technique alone. Achieving an effective
combination of PA and NA is the subject of our paper.

Any meaningful combination of PA and NA must have at
least two features: (a) propositional predicates are interpreted
as numeric constraints where appropriate, and (b) abstract
transfer functions respect the numeric nature of predicates. The
first requirement means that, unlike most AI-based combina-
tions, the combined abstract domain cannot treat predicates as
uninterpreted Boolean variables. The second requirement im-
plies that the combination must support abstract transformers
that allow the numeric information to affect the update of the
predicate information, and vice versa.

Against this background we make the following contribu-
tions. We present the interface of an abstract domain, called
NUMPREDDOM, that combines both PA and NA, and supports
a rich set of abstract transfer functions that enables the updates
of numeric and predicate state information to be influenced by
each other. We propose four data-structures — NEXPOINT,
NEX, MTNDD and NDD — that implement NUMPRED-
DOM. The data structures (summarized in Table I) differ in
their expressiveness and in the choice of representation for the
numeric part of the domain. Our target is PA-based software
analysis. Thus, all of the data-structures allow for efficient
(symbolic) propositional reasoning. We present experimental
results on non-trivial examples and compare and contrast

Name Value Example Num.

NEXPOINT 22
P

× N (p ∨ q) ∧ (0 ≤ x ≤ 5) EXP
NEX 2P 7→ N (p ∧ 0 ≤ x ≤ 3) ∨

(q ∧ 1 ≤ x ≤ 5) EXP
MTNDD 2P 7→ N (p ∧ 0 ≤ x ≤ 3) ∨

(q ∧ 1 ≤ x ≤ 5) SYM
NDD 2P 7→ 2N (p ∧ (x = 0 ∨ x = 3) ∨

(q ∧ (x = 1 ∨ x = 5))) SYM

TABLE I
Summary of implementations of NUMPREDDOM; P = predicates;N =

numerical abstract values;Value = type of an abstract element;Example =
example of allowed abstract value;Num = numeric part representation

(explicit or symbolic).

between the four data-structures on the basis of these results.
Our experiments show that the proposed combination is more
powerful and more efficient than either PA or NA alone.

The rest of the paper is structured as follows. We survey
related work in Section II and review background material
in Section III. In Section IV, we present the interface of
NUMPREDDOM. In Section V, we describe the particularities
of each of our NUMPREDDOM implementations. Finally, ex-
perimental results and conclusions are presented in Section VI.

II. RELATED WORK

The problem of combining PA and NA involves combining
their abstract domains, and is well studied in AI [9]. A typical
solution is to combine the domains using a domain combinator
such as direct, reduced [8], [9], or logical [12] products. The
result can be further extended with disjunctions (or unions)
using a disjunctive completion [9]. The domains we develop in
this paper are variants of (disjunctive completion of) reduced
product between domains of PA and NA.

One approach for combining abstract domains is to combine
results of the analyses – e.g., by using light-weight data-flow
analyses, such as alias analysis and constant propagation –
to simplify a program prior to applying predicate abstraction.
Thus, the invariants discovered by one analysis are assumedby
the other. For instance, Jain et al.[14] present a techniqueto
compute numeric invariants using NA which are then used
to simplify PA. However, this approach only works when
the verification task can be cleanly partitioned into arithmetic
and propositional reasoning. For example, it is ineffective for
verifying the program in Fig. 2(a), where purely numeric
reasoning is too imprecise to produce any useful invariants.

Another approach is to run the analyses over different ab-
stract domains in parallel within a single analysis framework,
using the abstract transfer functions of each domain as is.
The analyses may influence each other, but only through
conditionals of the program. This approach is often taken by
large-scale abstract interpreters [5], that use differentabstract
domains to abstract distinct program variables. Recently,a
similar approach has been incorporated into software model-
checker BLAST [10], [4], [3] to combine predicate abstraction
with various data-flow analyses. In principle, this can be
adapted to combining PA and NA. The expressiveness of

assume(x1==x2);
if (A[y1 + y2] == 3)
x1 = y1 - 2;
x2 = y2 + 2;

else
A[x1 + x2] = 5;

if (A [x1 + x2] == 3)
x1 = x1 + x2;
x2 = x2 + y1 - 2;

assert(x1==x2);

assume(x1 = x2);
((assume(p);

x1 := y1 − 2 ∧ q := choice(f, f);
x2 := y2 + 2 ∧

q := choice(x1 + 2 = y1 ∧ p, f)) ∨
(assume(¬p);

q := choice(f, t)));
((assume(q);

x1 := x1 + x2;
x2 := x2 + y1 − 2) ∨ assume(¬q));

assert(x1 = x2)

(a) (b)

Fig. 2. A program (a), and its abstraction (b) withVP = {p, q}, VN =
{x1, x2, y1, y2}, wherep , ((A[y1+y2] = 3), andq , (A[x1+x2] = 3).

this combination is comparable to NEXPOINT – our simplest
combined domain.

From the approaches that tightly combine predicate and
numeric abstractions the work of Bultan et al. [7] is closestto
ours. They present a model-checking algorithm to reason about
systems whose transition relation combines propositionaland
numeric constraints. Their algorithms are based on a data
structure that uses BDDs [6] for propositional reasoning and
the Omega library for arithmetic reasoning. While this data
structure is similar to NEX, we support more complicated
transfer functions, and provide an interface to replace the
Omega library with an arbitrary numeric abstract domain.

Our domains MTNDD and NDD use BDDs for a purely
symbolic representation of abstract values. Thus, they are
similar to Difference Decision Diagrams (DDDs) [15] that
represent propositional formulas over difference constraints.
However, unlike DDD, we do not restrict the domain of
numerical constraints. This makes our implementation more
general, at the cost of strong canonicity properties of DDDs.

The contribution of our work is in adapting, extending,
and evaluating existing work on combining propositional and
arithmetic reasoning to the needs of software model-checking.
To our knowledge, none of the tight combinations of the two
abstract domains have been evaluated in the context of PA-
based software model-checking. A preliminary version of this
work has appeared in [13].

III. B ACKGROUND

In this section, we define notation and our view of abstract
domains.
Expressions and Statements. Let V denote the set of program
variables, andE denote the set of expressions overV . A
program is built out of statementsS of the form: (1) an
assignmentl := e, where l is a variable inV and e is an
expression inE, and (2)assume(e), wheree is in E. Assume
operations are used to model conditional branches. We write
||s|| to denote the collecting semantics, or strongest post-
condition transformer, as a function fromE to itself. For
example,||x:=x+1||(x > 3) = (x > 4), ||x:=5||(x = 3∧y =
6) = (x = 5 ∧ y = 6) and ||assume(x > 4)||(y = 6) = (x >

4 ∧ y = 6). Atomic statements can be composed in several
ways: (a) sequentially, writtens1; s2, meanings1 followed by
s2; (b) with alternative choice, writtens1 ∨ s2, meaning non-
deterministic choice betweens1 and s2, and (c) in parallel,

Interface: ABSDOM(V)
γ : A → E α : E → A

meet : A × A → A join : A × A → A

isTop : A → bool isBot : A → bool
leq : A × A → bool widen : A × A → A

αPost : S → (A → A)
Requires:
let a, b, c ∈ A, e ∈ E, x = γ(a), y = γ(b), z = γ(c) in

true ⇒ e ⇒ γ(α(e)) (αPost(s)(a) = b) ⇒ ||s||(x) ⇒ y

leq(a, b) ⇒ (a ⇒ b) (meet(a, b) = c) ⇒ (x ∧ y ⇒ z)

isTop(a) ⇒ (true ⇒ a) (join(a, b) = c) ⇒ (x ∨ y ⇒ z)

isBot(a) ⇒ (a ⇒ false) (widen(a, b) = c) ⇒ (x ∨ y ⇒ z)

Fig. 3. Interface of an abstract domain:E denotes expressions,S denotes
statements, andA denotes abstract values.

Name Notation Abstract Elements

Intervals BOX(V) {c1 ≤ v ≤ c2 | c1, c2 ∈ N , v ∈ V }
Octagons OCT(V) {±v1 ± v2 ≥ c | c ∈ N , v1, v2 ∈ V }
Polyhedra PK(V) linear inequalities overV
Predicates PRED(V) propositional formulas overV

TABLE II
Common abstract domains;V is a set of numeric/propositional variables;N

domain of numeric constants.

written s1 ∧ s2, meaning parallel synchronous execution ofs1

ands2. The usual rules and restrictions of legal compositions
apply. For example, we do not allow for a parallel composition
x := 5 ∧ x := 6 since both statements changex, etc.
Abstract Domain. We assume that the reader is familiar with
abstract interpretation and only give the necessary details.
For a detailed overview, please consult [9]. In this paper, we
view an abstract domain operationally as an abstract data type
that satisfies the interface ABSDOM(V) shown in Fig. 3. For
simplicity, we assume that the concrete domain is the set of
expressionsE, and not, for example, program states. We use
A to denote the set of all the elements of ABSDOM(V). The
interface consists of functions:α and γ to convert between
expressions and abstract elements inA; meet and join cor-
respond to conjunction (intersection) and disjunction (union),
respectively;leq corresponds to implication (subset);isTop
and isBot check for validity (universality), and unsatisfiability
(emptiness), respectively;widen is a widening operator [9]
that over-approximates a disjunction and guarantees conver-
gence when applied to any (possibly infinite) sequence of
abstract elements; and,αPost approximates the semantics
of a program statement as an abstract transformer, i.e., a
function fromA to A.

Examples of several abstract domains are shown in Table II.
The first three domains, collectively called Numeric, are used
to represent and manipulate arithmetic constraints. The last
one represents propositional formulas over a set of predicates.
Syntax for Abstract Transformers. For ease of under-
standing, our syntax for abstract transformers mirrors that of
concrete program statements. Let NDOM(V) be a numeric
domain over variablesV . The syntax for assign transformers
of NDOM(V) is x1 := e1 ∧ · · · ∧ xn := en, where allxi are
in V , and allei are linear arithmetic expressions. The syntax
for conditional transformers of NDOM(V) is assume(e).

For the predicate domain PRED(P) over a set of predi-
catesP , an abstract transformer is represented by aBoolean
assignment of the formp := choice(t, f), where p ∈ P

is a predicate, andt and f are Boolean expressions over
P . Informally, t represents the condition forcingp to be
true, andf the condition forcingp to be false. For exam-
ple, p := choice(p,¬p) leaves p unchanged (p is true iff
it was true before),p := choice(false, false) changesp non-
deterministically (nothing forcesp to be only true or false),
and p := choice(p ∧ q, false) leavesp as true if q is true,
otherwisep is changed non-deterministically. Formally, the
semantics of a Boolean assignment is a forward image (post)
over the relation(p′ ∧¬f)∨ (¬p′ ∧¬t), wherep′ is the value
of p in the next state. Boolean assignments can be composed
in parallel using conjunction of their relations, as usual.For
numeric abstraction, abstract transformers are computed by
the domain itself. For predicate abstraction, the transformer is
constructed using a theorem prover [11].
BDDs. Reduced Ordered Binary Decision Diagrams
(BDDs) [6] are a canonical representation of propositional
formulas. A BDD is a DAG whose nodes correspond to
propositional variables, and paths to all satisfying assignments
of a formula. We use0 and 1 to denote BDDs for true and
false, respectively. For a BDDu, we usevarOf(u) for the root
variable,bddT(u) for the then-branch, andbddE(u) for the
else-branch ofu, respectively. BDDs have efficient support
for conjunction (bddAnd), disjunction (bddOr), negation
(bddNot), if-then-else (bddIte), existential quantification
(bddExists), and variable renaming (bddPermute). Many of
these can be implemented usingbddApply(f, u, v), whereu,
v are BDDs, andf is a binary operator (i.e., conjunction,
disjunction, etc.) that is defined only for constants.

IV. N UMPREDDOM: INTERFACE

In this section, we describe the interface of NUMPRED-
DOM and its supported transfer functions. NUMPREDDOM
deals with propositional formulas over predicates and numeric
constraints. A numeric constraint can be treated as both a
numeric and a predicate term. For example, in the formula
p ∧ (x ≥ 0) ∧ (y ≥ 0), p is definitely a predicate, but
so can be(x ≥ 0) and (y ≥ 0). Let VP be a set of
predicates,VN a set of numeric variables, ande be a conjunc-
tive expression. Thepropositional projection of e onto VP ,
denoted byprojP (VP , e), is a conjunction of predicates from
VP that is implied by (i.e., over-approximates)e. Similarly, the
numeric projection of e ontoVN , denoted byprojN (VN , e), is
a conjunction of numeric constraints overVN that is implied
by e. Some examples of the projections are:

proj
P
({p}, p ∧ (x ≥ 0) ∧ (y ≥ 0)) = p

proj
P
({x ≥ 0}, p ∧ (x ≥ 0) ∧ (y ≥ 0)) = (x ≥ 0)

proj
N

({y}, p ∧ (x ≥ 0) ∧ (y ≥ 0)) = y ≥ 0

Note that the exact definitions ofprojP andprojN are imple-
mentation dependent. We implement them via approximations
based on syntactic reasoning. However, more precise semantic
constructions via the use of theorem provers is also possible.
Such implementation choices affect the efficiency vs. precision
trade off, but not correctness.

Interface: NUMPREDDOM(VN , VP) extends ABSDOM

αP : E → A αN : E → A

unprime : A → A reduce : A → A

exists : 2VP × A → A αPostN : S → (A → A)

Fig. 4. The interface of NUMPREDDOM: VN and VP are numeric and
propositional variables, respectively.E, S, andA are as in Fig. 3.

The interface NUMPREDDOM is shown in Fig. 4. It ex-
tends, i.e., has all the functions of, the basic abstract domain
ABSDOM shown in Fig. 3. The interface NUMPREDDOM has
two types of variables: numeric,VN , and propositional,VP .
Moreover, the domain is extended with “primed” variables
V ′

P , {p′ | p ∈ VP }. Additional functions provided by
the interface are:αN , αP are restrictions of the abstraction
functionα to conjunction of numeric and propositional expres-
sions, respectively;exists existentially quantifies propositional
variables from an abstract value and must satisfy the over-
approximation condition:(∃V · γ(a)) ⇒ γ(exists(V, a));
unprime renames all “primed” variables into the correspond-
ing unprimed ones;αPostN lifts an abstract numeric only
transformer to the combined domain. Finally, the interface
has a special operation, calledreduce, that refines an ab-
stract value by sharing information between propositionaland
numeric parts of the value. Note that it is possible to apply
reduce at any time during analysis to increase precision of the
result. However, since excessive calls toreduce are expensive,
we have factored it out in the interface.

The abstraction functionα(e) is defined recursively using
αP andαN as follows: if e is a term, then

α(e) , meet(αP (projP (VP ∪ V ′
P , e)), αN (projN (VN , e)))

else if e = e1 ∧ e2, then

α(e) , meet(α(e1), α(e2))

else if e = e1 ∨ e2, then

α(e) , join(α(e1), α(e2))

NUMPREDDOM is distinguished by its support for a rich
set of abstract transformers. The grammar for the supported
transformers is shown in Fig. 5. We now describe each type
of transformer, illustrate in what situations it is required, and
provide a common implementation when applicable.
Numeric. Written asx1 := e1 ∧ · · · ∧ xk := ek, where the
variables inxi andei are inVN . It is handled byαPostN of
each implementation of NUMPREDDOM. It is a basic building
block for abstracting arithmetic transformations.
Assume. Written asassume(e), where e is an arbitrary ex-
pression, and interpreted asλX · meet(α(e),X). It is used
to approximate program conditionals with a combination of
predicate and numeric conditions. For example, in the presence
of aliasing, the C program statementassume(∗p > 0) can be
approximated by:

assume((p = &x ∧ x > 0) ∨ (p = &y ∧ y > 0) ∨

(p 6= &y ∧ p 6= &x))

with predicatesVP = {p = &x, p = &y} and numeric
variablesVN = {x, y}.

τ ::= τN | τa | τc | τP | τNP | (base case)
τ ; τ | (sequence)
τ ∨ τ (non-det.)

τNP ::= (e?τN) ∧ τP (numeric + predicate)
τP ::= p := choice(e, e) | (predicate)

τP ∧ τP

τc ::= e?τN (conditional)
τa ::= assume(e) (assume)
τN ::= x := v | (numeric)

τN ∧ τN

Fig. 5. BNF grammar for abstract transformers supported by
NUMPREDDOM; p is a predicate;x a numeric variable;e an expression over
predicates and numeric terms;v a numeric expression.

Conditional. Written ase?τ , wheree is an arbitrary expres-
sion, andτ is a purely numeric transformer. It is interpreted
as:λX ·αPostN (τ)(αPost(assume(e))(X)). It is most useful
in a combination with other transformers. For example, it is
used to abstract an assignment∗p := e through a pointer as:

(p = &x ? x := e) ∨ (p = &y ? y := e)

with VP = {p = &x, p = &y} andVN = {x, y} and variables
in e.
Predicate. Written as: p1 := choice(t1, f1) ∧ · · · ∧ pn :=
choice(tn, fn), wherepi are inVP and ti and fi are expres-
sions overVP andVN . It is interpreted using conjunction and
existential quantification:

let R = α(
∧

i
(p′i ∧ ¬fi) ∨ (¬p′i ∧ ¬ti)) in

λX · unprime(exists({p1, . . . , pn}, meet(X,R))) .

This transformer is the basic building block for predicate
abstraction. It depends on both predicate and numeric infor-
mation. For example, suppose thatVP = {y > 0, p = &x, p =
&y} andVN = {x}. Then the assignment∗p:=x is abstracted
as:
(y > 0) := choice((p = &x) ∧ (y > 0), (p = &y) ∧ (x > 0)) .

Numeric and Predicate. Written as a parallel composition of
conditional numeric and predicate transformers:(e?τN)∧ τP ,
where e is an arbitrary expression,τN is a purely numeric
transformer, andτP is a predicate transformer. It is inter-
preted with the help of the following equivalence:(e?τN) ∧
τP ≡ assume(e); τP ; τN . That is, since the purely numeric
transformer does not depend on the predicates, this parallel
composition is reduced to a sequential one. This transformer is
used to abstract statements that influence both predicates and
numeric constraints simultaneously. For example, letVP =
{y = 1} and VN = {x, v, w}. Then, the parallel statement
y := x ∧ x := (y = 1)?v : w is abstracted as:
(y = 1) := choice(x = 1, x 6= 1) ∧ (y = 1)?x = v : x = w .

Note that the predicatey = 1 is both influenced by numeric
constraints onx and influences the next value ofx.
Sequential and Non-Deterministic. Written asτ1; τ2 andτ1∨
τ2, respectively. Interpreted using function sequencing andjoin
operator, respectively:

αPost(τ1; τ2) = λX · αPost(τ2)(αPost(τ1)(X))

αPost(τ1 ∨ τ2) = λX · join(αPost(τ1)(X), αPost(τ2)(X))

As a complete example, a combined predicate and numeric
abstraction of the program in Fig. 2(a) is shown in Fig. 2(b).
Both predicatesp and q are necessary to separate different
paths through the control flow, and predicateq gets its value
from a combination of constraints on numeric variables and
predicatep.

In summary, the critical operations in the NUMPREDDOM

interface areexists, unprime, projN , projP , αN , αP , γ, leq,
meet, join, widen, αPostN and reduce.

V. NUMPREDDOM: IMPLEMENTATIONS

In this section, we describe four implementations of
NUMPREDDOM. We useN to denote the set of abstract values
of the underlying numeric domain overVN . We write N.op
and P.op to mean the abstract operationop over numerics
and predicates respectively. We write⊑, ⊓, ⊔ and∇ to mean
leq, meet, join andwiden when the abstract domain is clear
from context; and, writeX.top, X.bot to meanX.α(true)
andX.α(false), respectively. Our domains, NEXPOINT, NEX
and MTNDD, share the following definition ofreduce:
reduce(v) , (α(γ(v))). Therefore, we only definereduce
specifically for (NDD) implementation. In addition, all four
implementations share the same definition ofprojN andprojP
based on syntactic simplification of expressions to a normal
form.

A. NEXPOINT: Numeric Explicit Points

The set of abstract values of NEXPOINT is 22
VP × N . A

NEXPOINT value is a pair(p, n) wherep is a BDD andn

is a numeric abstract value. In particular, NEXPOINT.top =
(P.top, N.top) and NEXPOINT.bot = (P.bot, N.bot). The
exists and unprime operations are performed on the BDDs.
The other operations are performed pointwise. Thus, we have
the following definitions:

αN (e) , (P.top, N.α(e))

αP (e) , (P.α(e), N.top)

γ(p, n) , P.γ(p) ∧ N.γ(n)

op((p, n), (p′, n′)) , (P.op(p, p′), N.op(n, n′))

leq((p, n), (p′,′ n)) , p ⊑ p′ ∧ n ⊑ n′

αPostN (s) , λ(p, n) � (p,N.αPost(s)(n)) ,

where op ∈ {meet, join, widen}. Recall thatreduce is de-
fined asα(γ(v)). Suppose we have two predicatesq , (x = 0)
and r , (y = 0), wherex is also a numeric variable. Then,
reduce(q ∨ r, x = 3 ∧ y ≥ 0) = (¬q ∧ r, x = 3 ∧ y = 0).
Similarly, reduce(q ∨ r, x = 3 ∧ y < 0) = NEXPOINT.bot.

B. NEX: Numeric Explicit Sets

Each abstract value of the NEX domain is a function
2VP 7→ N . We represent an abstract value as a set of pairs
{(p1, n1), . . . , (pk, nk)} ⊆ 22

VP × N , where eachpi is a
BDD, eachni is a numeric abstract value, and the following
conditions hold:

∀1 ≤ i ≤ k � pi 6= P.bot ∧ ni 6= N.bot (C1)

∀1 ≤ i < j ≤ k � ni 6= nj (C2) ∧ pi ⊓ pj = P.bot (C3)

Intuitively, a NEX value is a “union” of NEXPOINT values
that are distinguished by their numeric components. Thus,
NEX improves upon the precision of NEXPOINT by replacing
imprecise numericjoin with union. In particular, NEX.top =
{(P.top, N.top)} and NEX.bot = ∅. Conditions C1–C3
ensure that the data structures are as “tight” as possible:C1
guarantees that the representation of any abstract value does
not include any “empty” components,C2 ensures that any
two elements(p1, n1) and (p2, n2) are distinguished by their
numeric components, andC3 — that the elements of a NEX
value are “mutually disjoint”.

To understand the NEX operations, we first introduce a
normalizing procedure callednorm. Given any setv ⊆ 22

VP ×
N satisfying C3, norm returns a setu ⊆ 22

VP × N that
satisfiesC1–C3 by performing the following: (i) replacing any
(p1, n) ∈ v and(p2, n) ∈ v with (p1⊔p2, n), and (ii) removing
every (p, n) ∈ v such thatp = P.bot ∨ n = N.bot. Thus,
norm(v) is a NEX value that is semantically equivalent tov.
norm has linear complexity since it makes single pass over its
input. Theexists and unprime are performed on the BDDs,
followed by normalization. The other operations are defined
as follows:
αN (e) , 〈(P.top, N.α(e))〉 αP (e) , 〈(P.α(e), N.top)〉

γ(〈(p1, n1), . . . , (pk, nk)〉) ,
∨

1≤i≤k P.γ(pi) ∧ N.γ(ni)

Let v = (p, n) be a NEXPOINT value and v′ =
{(p′

1
, n′

1
), . . . , (p′k, n′

k)} be a NEX value. We say that
v ⊑ v′ iff p ⊑

⊔
{i|n⊑n′

i
} p′i. For any two NEX val-

ues v = {(p1, n1), . . . , (pk, nk)} and v′, leq(v, v′) iff
∀1 ≤ i ≤ k � (pi, ni) ⊑ v′.

meet(v, v′) , norm({(p ⊓ p′, n ⊓ n′) | (p, n) ∈ v ∧ (p′, n′) ∈ v′})

join(v, v′) , norm(NEXJoin(v, v′))

widen(v, v′) , norm(NEXWiden(v, v′))

The algorithm NEXJoin is defined recursively as follows:
(i) NEXJoin(∅, v) = v, (ii) NEXJoin(v, ∅) = v, and (iii)
NEXJoin({(p, n)}∪X, {(p′, n′)}∪X ′) = {(p⊓p′, n⊔n′)}∪
NEXJoin({(p⊓¬p′, n)},X ′)∪NEXJoin({(p′⊓¬p, n′)},X)∪
NEXJoin(X,X ′). The key idea behindNEXJoin is to ensure
that its output satisfiesC3 by splittingp⊔p′ into three mutually
disjoint fragments:p⊓ p′, p⊓¬p′ andp′ ⊓¬p. The algorithm
NEXWiden is identical toNEXJoin except that it useswiden
instead ofjoin. The meet, join and widen operations have
quadratic complexity. Finally, the operationαPostN is defined
as follows:

αPostN (s) , λv � norm({(p,N.αPost(s)(n)) | (p, n) ∈ v})

C. MTNDD: Multi-Terminal Numeric Decision Diagrams

MTNDD is a symbolic alternative to NEX. MTNDD
values are also functions of type2VP 7→ N . However, an
MTNDD value is represented as a BDD over predicate and
numeric terms. This automatically maintains conditionsC1–
C3 of NEX.

Conceptually, an MTNDD value is a Multi-Terminal
BDD [1] whose terminals are numeric abstract values fromN .
In practice, we simulate MTBDDs with BDDs. We associate

1: BDD MJoinOp (BDD u, BDD v)
2: if (u = 1 ∨ v = 1) return1

3: if (u = 0) returnu

4: if (v = 0) returnv

5: if (isNum(u) ∧ isNum(v))
6: nu := N.α(toExpr(u))
7: nv := N.α(toExpr(v))
8: return toBdd(N.γ(nu ⊔ nv))
9: returnnull

Fig. 6. Implementation ofMJoinOp.

a BDD variable with each predicate and numeric term, and
restrict variable ordering to ensure that predicate variables
always appear before numeric ones. For any termt that is
both predicate and numeric (i.e.,projP (t) = t = projN (t)),
we allocate two distinct variables: one predicate, one numeric.
Although there are infinitely many numeric terms, only finitely
many are used in any analysis. Thus, we allocate variables for
numeric terms dynamically.

We use algorithmstoBdd and toExpr to convert between
BDDs and expressions in the usual way. Note that for
NEXPOINT and NEX, this was achieved viaP.α and P.γ.
For a BDD v, we useisNum(v) to determine whether the
root variable of v is a numeric term. MTNDD.top and
MTNDD.bot are represented by BDDs1 and0, respectively.
Abstraction and concretization functions simply convert be-
tween expressions and BDDs. Thus:

αP (t) , toBdd(t) αN (t) , toBdd(N.γ(N.α(t)))

γ(v) , toExpr(v)

The unprime operation is the same as its BDD version. The
MTNDD.exists operation is similar tobddExists except that
MTNDD.join is used instead ofbddOr.

The operationsmeet, join, widen, leq, and αPostN
are implemented as operators tobddApply. They work by
(a) recursively traversing input BDD(s) until they are re-
duced to BDDs over numeric terms; (b) converting nu-
meric BDDs to abstract values and applying the correspond-
ing numeric operation; and (c) encoding the result back
as a BDD. For example MTNDD.join is implemented us-
ing bddApply(MJoinOp, u, v), whereMJoinOp is shown in
Fig. 6. Note that the constraint on the variable ordering ensures
that whenever a root of a BDDv is numeric, the rest ofv is
numeric as well.

Since MTNDD operations are implemented using
bddApply, their complexity is linear in the size of their input
BDDs. Due to sharing between various BDDs, the memory
(and hence time) requirement of MTNDD is expected to be
better than NEX.

D. NDD: Numeric Decision Diagrams

NDD is our most expressive domain, with elements
in 22

VP ×N . An NDD value is a BDD representing a
propositional formula over predicate and numeric terms. With
each termt, we associate a BDD variable. The association
takes negation into account. Any two termst1 and t2

1: BDD ctxApply (BDD u, Op g, N c, SetV)
2: r := g(u, c)
3: if (r 6= null) returnr

4: b := varOf(u); e := term(u)
5: tt = ctxApply(bddT(u), g, e ⊓ c, V)
6: ff = ctxApply(bddE(u), g,¬e ⊓ c, V)
7: if (b ∈ V)
8: returnbddOr(tt, ff)
9: else

10: returnbddIte(b, tt, ff)

Fig. 7. Implementation ofctxApply.

that complement each other, i.e.,t1 = ¬t2, are associated
with the opposite phases of the same BDD variable. For
example, wheneverx > 0 is mapped to a BDD variablev,
x ≤ 0 is mapped to¬v. We useterm(v) to denote the term
corresponding tov. We extend the notation to BDDs and write
term(u) to mean the term of the root variable of BDDu.
Each termt is allocated a single BDD variable, independently
of whethert is a predicate, a numeric term, or both. Thus,
propositionally inconsistent expressions are always reduced to
0, unlike in the previous three implementations. For example,
if p , (x > 0) is a predicate, thenp∧(x ≤ 0) is reduced to0.

For the most part, NDD operations are done using cor-
responding BDD operations. The NDD.top and NDD.bot
are represented by BDDs1 and 0, respectively. Abstraction
and concretization functionsαP , αN , and γ are exactly the
same as in MTNDD — they simply convert between expres-
sions and BDDs. Functionsunprime, exists, meet, and join
are implemented asbddPermute, bddExists, bddAnd, and
bddOr, respectively. Thewiden operation is implemented by
conversion to MTNDD. Additionally,bddNot is used to over-
approximate negation. That is, wheneverv over-approximates
an expressione, bddNot(v) over-approximates¬e.

All of the above operations work on propositional structure
of the abstract value. Effectively, they treat numeric constraints
as uninterpreted propositional symbols. Their complexityis
linear in the size of the input. The operationsreduce, leq, and
αPost treat numeric terms differently. For these operations,
we introduce a functionctxApply, whose implementation is
shown in Fig. 7. The functionctxApply recursively traverses
a BDD, collecting the context of the current path inc, and
existentially eliminating variables inV . The complexity of
this operation is linear in the number of paths in a BDD.

The reduce operation is implemented as
ctxApply(u, reduceOp, N.top, ∅), where reduceOp(u, c)
returns0 whenN.isBot(c) or u = 0, returns1 whenu = 1,
and returnsnull otherwise. Essentially, it replaces every
unsatisfiable cube in a BDD with0. In particular, for any
unsatisfiable BDDv, reduce(v) is 0. For leq, we use the
fact that for any two formulasu, and v, u implies v (i.e.,
u is less thanv) iff u ∧ ¬v is unsatisfiable. Since both
satisfiability and negation are available, we implementleq as
(reduce(meet(u, bddNot(v))) = 0).

The implementation ofαPostN (s) is similar to reduce.
It usesctxApply to apply a transformer ofs to every path

Precision Succinct PA NA Prop Op Num Op

NEXPOINT - + + + + ++ + +
NEX + - + + - + +
MTNDD + - + - + -
NDD + + + + - ++ - -

TABLE III
Summary of the implementations;Precision = precision of abstract values;

Succinct = succinctness of the representation;PA = applicability to
predicate abstraction;NA = applicability to numeric abstraction;Prop Op =

complexity of propositional operations (meet, join, etc.);Num Op =
complexity of numeric operations.

of an input BDD. For a purely numeric statements, we
first define a functionNDDPost(s)(u, c) such that it returns
0 if N.isBot(c) or u = 0, returnsN.αPost(s)(c) if u =
1, and returnsnull otherwise. Second, letNumV be the
set of all numeric BDD variables. Then,αPostN (s)(u) ,

ctxApply(u, NDDPost(s), N.top, NumV).
In this domain, predicate and numeric terms share BDD

variables. Thus, parallel compositionτN ∧ τP of a numeric
(τN) and a predicate(τP) transformers cannot be reduced to
a sequential composition (as in Section IV). Part of the BDD
that is affected byτP may be needed for application ofτN .
To solve this, we implement the transformer by first applying
τP partially by storing its result in “shadow” variables, then
applying τN while eliminating variables changed byτP , and
finally restoring the state from the shadow variables. Let
τP be of the form

∧
i pi := choice(ti, fi), let R be the

relational semantics ofτP (as defined in Section IV), and
V = NumV ∪{pi}i be the set of all numeric variables and all
variables changed byτP . Then,αPost(τN ∧τP)(u) is defined
as:

unprime(ctxApply(u ⊓ R, NDDPost(τN), N.top, V))

The u ⊓ R part corresponds to partial application ofτP ,
ctxApply appliesτN and eliminates all current-state variables
in V , andunprime copies shadow variables into current state.
For example, letVP be {(x = 3), (x = 4)} , VN be {x}, τN

bex :=x+1, andτP be (x = 4) := choice(x = 3, f). Assume
thatu is (x = 3)∧(x ≥ 3). Then, applyingτP partially results
in (x = 3)∧ (x ≥ 3)∧ (x = 4)′; applyingτN and eliminating
(x = 3) produces(x ≥ 4) ∧ (x = 4)′, and renaming yields
(x ≥ 4) ∧ (x = 4).

E. Summary

To summarize our four implementations, we compare them
with respect to six different criteria: precision, i.e., ability to
represent different abstract values; succinctness, i.e.,concise-
ness of representation; performance of the data structure when
used solely for predicate (PA), or numeric abstraction (NA);
and efficiency of propositional (i.e., meet, join), and numeric
operations. The results are shown in Table III.

NDD is the most precise domain. Furthermore, since it
uses BDDs to encode the propositional structure of the value,
it is more succinct than NEX and MTNDD that do not
share storage between predicate and numeric parts of the
abstract value. Succinctness of NEXPOINT is a side-effect of
its imprecision.

All of the data-structures reduce to BDDs when there
are no numeric terms present. Thus, they are all equally
well suited for predicate abstraction. NEXPOINT and NEX
represent numeric abstract value explicitly, and, therefore, are
efficient for numeric abstraction. Both MTNDD and NDD
encode numeric values symbolically, and introduce additional
overhead.

NDD is the best data structure for propositional operations
since those are implemented directly using BDDs. At the same
time, it is the worst for numerical operations — those use
ctxApply, whose complexity is linear in the number of paths
in a diagram. Again, the efficiency of NEXPOINT is a by-
product of its imprecision.

As shown by our informal comparison, there is no clear
winner between the four choices. In the next section, we
evaluate the data structures empirically in the context of
software model-checking.

VI. EMPIRICAL EVALUATION AND CONCLUSION

We implemented a general reachability analysis engine for
C programs in Java on top of the four implementations of
NUMPREDDOM. We used theAPRON package for numeric
reasoning (in our experiments we used the Polyhedra domain),
a Java implementation of BDDs, and CVCLITE for building
the PA part of the abstraction and for analyzing counterex-
amples. We experimented with two types of examples: (a)
synthetic examples designed to compare and contrast our four
implementations of NUMPREDDOM with each other, and (b)
examples derived from more realistic benchmarks. For the
synthetic examples, we only compare NEX, MTNDD and
NDD since NEXPOINT is less expressive. All our experiments
were carried out on a 2.4 GHz machine with 4 GB of RAM.
Synthetic Examples. NEX and MTNDD join numeric con-
straints, but NDD maintains an exact union. Thus, we con-
jecture that NDD performs poorly when numeric joins are
exact. To validate this hypothesis we experimented with the
template shown in Fig. 8(a). Our experiments support this
hypothesis. NEX and MTNDD scale beyondC = 10000
(NEX performs better than MTNDD since it does not have
the extra overhead of manipulating BDDs). NDD blows up
even forC = 400.

Our second conjecture was that when a problem requires
a propositionally complex invariant, the sharing capability of
NDD will place it at an advantage to NEX and MTNDD.
To test this conjecture we experimented with the template in
Fig. 8(b). Our experiments support this hypothesis as well.
NDD requires seconds forC = 10 while NEX and MTNDD
both require several minutes with NEX being the slowest.
Realistic Examples. For a more realistic evaluation, we used
a set of 22 benchmarks (3 from a suite by Zitser et al. [16],
2 from OpenSSL version 0.9.6c, 9 based on a controller for a
metal casting plant, 2 based on the Micro-C OS version 2.72,
and 6 based on Windows device drivers). We analysed them
using our four implementations of NUMPREDDOM, and also
with PA and NA. The results are summarized in Table IV.
The total time taken by each individual experiment is shown

int x = 0;
while (x < C) ++x;
assert(x == C);

n = 1;
if(x0 < 0) n = 0; ...
else if(xC < 0) n = 0;
if(x0 < 0) assert(n == 0); ...
else if(xC < 0) assert(n = 0);

(a)

(b)

Fig. 8. Two templates for synthetic examples.

in Fig. 9. For the experiments, we have implemented a simple
abstraction-refinement scheme based on the analysis of an
UNSAT-core of the WP of an infeasible counterexample. First,
the scheme adds all of the numeric variables in the UNSAT
core; second, the predicates in the core are added when the first
step fails to eliminate the spurious counterexample. Sincethe
goal of the experiments is to explore the difference between
our data structures, we only report on the time taken by the
last iteration of abstraction-refinement, and do not include the
time needed to find a suitable abstraction. Not all examples
could be analyzed by every domain. In particular, only 9 could
be analyzed numerically, and 17 using predicates. In the case
of PA, the maximum number of predicates was 10; in the case
of NA, the maximum number of numeric variables was 17; in
the combined domains, these were at 8 (with 6 for NDD)
and 17, respectively. Thus, combining PA and NA requires
less predicates, with fewer predicates required for the most
expressive combination.

In Table IV, we show the number of examples analyzed, as
well as time used by basic abstract operations. The total time
includes all of the analysis, including predicate abstraction
with CVCLITE. Note that the last 4 columns of the table
correspond to operations inside the reachability computation
(they do not add up to total time). The experiments indicate
that a combination of PA and NA is more expressive, and
more importantly, more efficient, then either one in isolation.
In particular, all of the combined domains could not only solve
more problems that PA, but were 6-7 times faster. For this
evaluation, NDD performs the best (NEXPOINT solves only
21/22 problems), which is probably explained by lack of deep
loops in the benchmarks. The two extremes are NEX and
NDD: NEX transformers are efficient to apply, but itsjoin is
rather slow, while the opposite is true for NDD.

In summary, we have presented an approach to couple
PA and NA tightly into a unified analysis framework via a
single abstract domain called NUMPREDDOM. In particular,
we develop and evaluate four data structures that implement
NUMPREDDOM but differ in their expressivity and internal
representation and algorithms. We have implemented a general
framework for reachability analysis of C programs on top
of our four data structures. Our experiments on non-trivial
examples show that our proposed combination of PA and NA
is more powerful and more efficient than either technique

Domain Num Total γ join αPost Apply
Numeric 9 2.52 0.43 0.41 0.44 0.38
Predicate 17 333.38 0.05 0.03 0.20 0.06

NEXPOINT 21 42.30 0.38 1.13 4.04 8.50
NEX 22 45.17 0.59 2.22 3.99 7.20

MTNDD 22 94.05 0.02 3.71 2.11 56.10
NDD 22 42.15 0.03 0.02 1.96 17.81

TABLE IV
Time requirements for various operations on realistic examples. Numeric =
purely numeric analysis; Predicate = purely predicate analysis; Num = no.

of examples analysed;Apply = applying abstract transformers. All times are
in seconds.

alone. Employing these data structures in an industrial setting
requires extending automated abstraction-refinement to them.
We used a simple refinement strategy for our preliminary
experiments. In the future, we plan to further explore the
spectrum of possibilities in this area.

REFERENCES

[1] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. “Algebraic Decision Diagrams and Their Applications”.
FMSD, 10(2/3), 1997.

[2] T. Ball and S. K. Rajamani. “Automatically Validating Temporal Safety
Properties of Interfaces”. InProc. of SPIN, 2001.

[3] D. Beyer, T. A. Henzienger, and G. Theoduloz. “Configurable Software
Verification: Concretizing the Convergence of Model Checking and
Program Analysis”. InCAV, 2007.

[4] D. Beyer, T. A. Henzinger, and G. Théoduloz. “Lazy Shape Analysis”.
In CAV, 2006.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. “A Static Analyzer for Large Safety-Critical
Software”. InPLDI, 2003.

[6] R. Bryant. “Graph-based Algorithms for Boolean Functions Manipula-
tion”. IEEE Transactions on Computers, 35(8), 1986.

[7] T. Bultan, R. Gerber, and W. Pugh. “Composite Model Checking:
Verification with Type-Specific Symbolic Representations”.TOSEM,
9(1), 2000.

[8] P. Cousot and R. Cousot. “Systematic Design of Program Analysis
Frameworks”. InPOPL’79, 1979.

[9] P. Cousot and R. Cousot. “Abstract Interpretation Frameworks”. JLC,
2(4), 1992.

[10] J. Fischer, R. Jhala, and R. Majumdar. “Joining dataflow with predi-
cates”. InFSE, 2005.

[11] S. Graf and H. Säıdi. “Construction of Abstract State Graphs with PVS”.
In CAV, 1997.

[12] S. Gulwani and A. Tiwari. “Combining Abstract Interpreters”. In PLDI,
2006.

[13] A. Gurfinkel and S. Chaki. “Combining Predicate and Numeric Ab-
straction for Software Model Checking (EXTENDED ABSTRACT)”.
In LFM, 2008.

[14] H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. “Using
Statically Computed Invariants Inside the Predicate Abstraction and
Refinement Loop”. InCAV, 2006.

[15] J. B. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. “Dif-
ference Decision Diagrams”. InCSL, 1999.

[16] M. Zitser, R. Lippmann, and T. Leek. “Testing Static Analysis Tools
Using Exploitable Buffer Overflows from Open Source Code”. In FSE,
2004.

Fig. 9. Bar-chart showing total time taken by each experiment.

