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Abstract—Boolean manipulation and existential quantification
of numeric variables from linear arithmetic (LA) formulas is at
the core of many program analysis and software model checking
techniques (e.g., predicate abstraction). We present a new data
structure, Linear Decision Diagrams (LDDs), to represent formu-
las in LA and its fragments, which has certain properties that
make it efficient for such tasks. LDDs can be seen as an extension
of Difference Decision Diagrams (DDDs) to full LA. Beyond this
extension, we make three key contributions. First, we extend
sifting-based dynamic variable ordering (DVO) from BDDs to
LDDs. Second, we develop, implement, and evaluate several
algorithms for existential quantification. Third, we implement
LDDs inside CUDD, a state-of-the-art BDD package, and evaluate
them on a large benchmark consisting of 850 functions derived
from the source code of 25 open source programs. Overall, our
experiments indicate that LDDs are an effective data structure
for program analysis tasks.

I. INTRODUCTION

Many program analysis problems – e.g., computation and

application of predicate abstraction, image computation, func-

tion summarization – are ultimately reduced to manipulating

propositional formulas over some theory. Typically, two types

of operations are required: (i) Boolean (conjunction, negation,

etc.) and (ii) existential quantification (henceforth QELIM). For

example, the predicate abstraction of a transition relation R is

computed as

∃~x, ~x′
� R(~x, ~x′) ∧
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where ~x, ~x′ are current- and next-sate program variables, ~v, ~v′

are current- and next-state propositional abstract variables, and

pi is the definition of the i-th abstract variable in terms of ~x.
Thus, effective predicate abstraction – and program analysis

tasks in general – requires a mechanism that combines space-

efficient representation of formulas and fast QELIM.

This is challenging because QELIM algorithms require a

formula in Disjunctive Normal Form (DNF), but DNF is a

space-inefficient representation, e.g., relative to Conjunctive

Normal Form (CNF). Common solutions to this issue follow

one of three approaches: DNF, Abstract Syntax Tree (AST),

and Decision Diagram (DD). In the DNF approach, a for-

mula is represented by the set of terms of a DNF, e.g., a

disjunctive invariant is represented by a set of octagons [15].

This approach is easy to implement, but does not scale to

formulas with large DNFs. In the AST approach, a formula is

represented as an AST (or a DAG) whose nodes correspond

to variables, constants, and operators. This is the most space-

efficient representation. However, converting an AST into

DNF during QELIM – e.g., using a SMT-solver [12] – is

expensive, in many cases exponential in the AST size. In the

DD approach, a formula is represented by a DAG whose nodes

are labeled by atomic terms. The DAG enables sharing of sub-

expressions, and, at the same time, is easy to convert to DNF.

This is the approach we explore in this paper by introducing

and evaluating a new data structure, Linear Decision Diagram

(LDD), for quantifier-free first-order linear arithmetic (LA)

formulas.

LDDs extend DDDs – decision diagrams for difference logic

– proposed by Møller et al. [16]. Predicates in difference

logic are of the form x − y ≤ c or x − y < c for variables

x, y and a constant c, ranging over Q or Z. The key idea of

DDDs is to represent first-order quantifier-free difference logic

formulas as BDDs with nodes labeled by atomic predicates,

and to reduce redundancy by leveraging implications between

those predicates. For example, in a DDD, a node labeled with

x − y ≤ 10 never appears as a high child of a node labeled

with x − y ≤ 5. For a fixed variable order, a DDD of a

formula f is no larger than a BDD representing a propositional

abstraction of f (i.e., f with all atomic terms replaced by

propositional variables). An important feature of DDDs is a

QELIM algorithm based on Fourier-Motzkin elimination [3].

The algorithm lends itself well to dynamic programming, thus,

leveraging the DAG-structure of DDs.

DDDs have three main limitations as an instrument to

aid program analysis: (a) difference logic is too restrictive

for many program analysis tasks, (b) DDDs do not support

dynamic variable ordering (DVO), and (c) there are no publicly

available implementations of DDDs and no reports of their

effectiveness in solving practical program analysis problems.

Our solution via LDDs address all three limitations. Specif-

ically, LDDs extend to full linear arithmetic, and support

efficient algorithms for DVO and QELIM. Moreover, we imple-

mented LDD within CUDD, a state-of-the-art BDD package.

Finally, we have evaluated LDDs using a benchmark derived

from open-source programs.

Extending the Boolean operations from DDDs to LDDs is

straightforward. The key challenges are in supporting DVO

and QELIM. The importance of DVO for DDs is well-known.

This is especially true for LDDs since they add restrictions

on the variable order. We show that the standard BDD DVO

cannot be used “as is” for LDDs. Instead, we adapt Rudell’s

sifting algorithm [18], as implemented in CUDD. Our adap-

tation does not add any overhead over the BDD version of

DVO. Our experiments confirm that DVO reduces the size of

LDDs significantly.



We develop two types of QELIM for LDDs. The black-

box QELIM applies an external QELIM-solver to each path

in the LDD. It is linear in the number of paths (bad), but is

compatible with any off-the-shelf solver (good). In contrast,

the white-box QELIM is a generalized and optimized variant

of the DDD version. It recursively applies pairwise resolution

to DD nodes, in the style of Fourier-Motzkin. In the worst

case, this algorithm is exponential in the size of the diagram.

However, our experiments indicate that it performs well in

practice. Black-box and white-box QELIM have success rates

of 4.47% and 98.94%, respectively, when solving our bench-

mark problems.

The basic white-box QELIM algorithm only eliminates one

variable at a time – a fundamental limitation of Fourier-

Motzkin. However, many applications of QELIM in program

analysis require eliminating multiple variables. To address this,

we present an elimination strategy that iterates, while there are

variables to be eliminated, between (a) dropping constraints

with variables that are not resolved on during Fourier-Motzkin,

and (b) choosing and eliminating an existentially quantified

variable which results in a minimum number of resolutions.

This heuristic yields a speedup of over 5 times for QELIM in

our benchmark.

In order to test the suitability of LDDs for solving practical

program analysis programs, we have evaluated our implemen-

tation on a benchmark derived from open source programs.

The benchmark consists of transition relations (in Static Single

Assignment form) of 850 functions from 25 C programs. In

each case, we measured the space required (in DD nodes) to

represent the transition relation, and time to compute a forward

image (i.e., strongest post-condition). The experimental results

lead us to believe that LDDs are an effective representation

for fragments of LA for program analysis tasks.

Related Work. DDs for theories other than propositional

logic have been studied extensively since the early 90’s,

capitalizing on the great success of BDDs and numerous BDD

optimizations. Among these, we do not cover DDs – such as

Binary Moment Diagrams (BMDs) [5], Algebraic Decision

Diagrams (ADDs) [2], and Boolean Expression Diagrams

(BEDs) [1] – which are restricted to variables with finite

domains. Thus, the most relevant structures to LDDs are those

that label the nodes with linear predicates over the reals.

Groote and Tveretina [9] proposed decision diagrams for

full first-order logic. Assuming an input formula is in Prenex

normal form, they represent the negation of its quantification

suffix with a DD, and prove a contradiction using Skolemiza-

tion and standard strategies, e.g., applying unifiers.

Equational (EQ) BDDs [10] are aimed at deciding equalities

with uninterpreted functions (EUF). In EQ-BDDs, nodes are

labeled with predicates (equalities), and reduction rules en-

force substitution according to a predefined order � between

variables. For example, if x � y, then y is substituted by x in

high sub-DD of a node labeled x = y. Equational BDDs are

semi-canonical – they reduce to 0 (or 1) if they represent a

contradiction (or tautology), but are non-canonical otherwise.

Cavada et al. [6] propose a QELIM technique for LA that

combines BDDs and SMT-solvers. They focus on predicate

abstraction, and consider the problem of quantifying all nu-

meric variables from LA formulas (see (1) for a template)

over LA predicates and propositional variables. The Boolean

structure of the formulas are encoded via BDDs. QELIM is

done by recursively traversing the BDD, carrying, along each

path, the set of linear predicates (i.e., the context) seen on it.

At each recursive step, an SMT-solver is used to check whether

the context is consistent. Paths with inconsistent context are

removed. The use of the context precludes the use of dynamic

programming. Thus, the algorithm is linear in the number of

paths of the BDD. We call such an approach “black box”

because it uses an external decision procedure as is. In Sec. IV,

we present a similar “black box” algorithm for quantifying

some or all numeric variables.

The most relevant prior work is on DDDs [16]. QELIM of

a numeric variable from a DDD is based on Fourier-Motzkin.

Although in the worst case this procedure is exponential in the

size of the DD, in the best case it is the same as QELIM for

BDDs. We describe it in more detail in Sec. IV, as it is the base

for our improved method. Clock Difference Diagrams [13],

is an alternative to DDDs that was developed independently

around the same time. CDDs are based on DDs with arbitrary

branching degree. QELIM is done in the black-box fashion

by traversing all 1-paths. We are not aware of any work

that has adapted DVO to either DDDs, CDDs, or EQ-BDDs.

DDDs and CDDs are extensions of Interval Decision Diagrams

(IDD) [19].

We define LDDs in the next section. In Sec. III and IV

we discuss the problems of dynamic variable ordering and

QELIM with such diagrams, respectively. Sec. V is dedicated

to experimental results, and we conclude in Sec. VI.

II. LINEAR DECISION DIAGRAMS

We assume the reader is familiar with the basics of deci-

sion diagrams. A Linear Decision Diagram (LDD) is a data

structure to represent and manipulate propositional formula

over (a fragment of) linear arithmetic. Formally, they are

BDDs with (a) nodes labeled by linear atomic predicates, and

(b) satisfying ordering and local reduction constraints. In the

rest of this paper, we use T to denote a fragment of linear

arithmetic, unless mentioned otherwise. For a formula p, we
write VARS(p) to mean the set of variables in p.

A. Definitions

An LDD over a theory T is a directed acyclic graph with

• Two terminal nodes labeled with 0 and 1, respectively;

• Nonterminal nodes. Each nonterminal node u has two

children, denoted by H(u) and L(u), and is labelled with

a T -atom (i.e., an atomic predicate), denoted by C(u).
• Edges (u,H(u)) and (u,L(u)) for every non-terminal

node u.

We use attr(u) to denote the triple (C(u),H(u), L(u)). An
LDD with a root node u represents the formula exp(u) over



T defined as follows: exp(0) is FALSE, exp(1) is TRUE,

otherwise, exp(u) is defined recursively as:

exp(u) = ITE(C(u), exp(H(u)), exp(L(u))) ,

where

ITE(a, b, c) = (a ∧ b) ∨ (¬a ∧ c) .

For simplicity, we don’t distinguish between a node u and

exp(u).

Example 1 An example of an LDD for the formula

(z − y ≤ 0 ∧ x − y ≤ 10) ∨ (z − y > 0 ∧ x − y ≤ 5)

is shown in Fig. 3(a). A different LDD for the same formula,

owing to a different order, is shown in Fig. 3(b).

B. Requirements from the theory

A theory T over variables Var is LDD-adequate, or simply

adequate, if for any given set of consistent T -atoms AT over

Var (e.g., x < x is an inconsistent T -atom for T being linear

arithmetic), the following functions can be provided:

• (Negation) NEG : AT 7→ AT such that NEG(c) ⇔ ¬c.
In the following, we write ¬c to mean NEG(c).

• (Normalization) N : AT 7→ AT such that if c ⇔ c′ or
c ⇔ ¬c′ then N(c) = N(c′). Note that ∀c ∈ AT �N(c) =
N(¬c). If c = N(c), then c and ¬c are represented by

ITE(c,1,0) and ITE(c,0,1), respectively.
• (Negation Check) isNEG : AT 7→ Bool such that

isNEG(c) ⇔ (c = ¬N(c)).
• (Implication) IMP : AT × AT 7→ Bool such that

IMP(c1, c2) iff (c1 ⇒ c2).
• (Resolution) RSLV : AT × Var × AT 7→ AT ∪ {TRUE}

such that RSLV(c1, x, c2) = c3 iff x ∈ VARS(c1) ∩
VARS(c2), and c3 ⇔ ∃x� c1∧c2. We syntactically extend

RSLV so its first argument is a set of T -atoms as follows:

RSLV(S, x, c) =
∧

s∈S RSLV(s, x, c).

Example 2 Let UTVPI be the quantifier-free first order theory

of Unit Two Variables Per Inequality over the integers. The set

of UTVPI-atoms is

{ax + by ≤ k | x, y ∈ Var , a, b ∈ {−1, 1}, k ∈ Z} .

This theory is also known as Octagons [15]. UTV PI is

adequate, as shown below:

• NEG(ax + by ≤ k) = −ax − by ≤ −k − 1.
• Let <V be a total order on Var and c = ax + by ≤ k.

Then, N(c) is (i) N(by + ax ≤ k) if y <V x, (ii) c if

x <V y ∧ a > 0, and (iii) NEG(c) otherwise.

• IMP(c1, c2) = TRUE iff c1 = ax + by ≤ k and c2 =
ax + by ≤ k′ and k ≤ k′.

• RSLV(c1, x, c2) is TRUE if x does not appear in op-

posite phases in c1 and c2. Otherwise, it is the result

of resolution on x between c1 and c2. For example,

RSLV(x − y ≤ 5, x, z − x ≤ 2) = z − y ≤ 7.

Other adequate theories include: intervals, whose atoms are

{x ≤ k | x ∈ Var , k ∈ Z}; difference logic, whose atoms are

1: function MK (AT c, LDD f , LDD g)
2: if (IMP(c, C(f))) then f ← H(f)

3: if (f = g) then return g

4: if (IMP(c, C(g)) ∧ f = H(g)) then return g

5: return BDDNODE(c, f, g)

Fig. 1. MK: Building an LDD.

{x − y ≤ k | x, y ∈ Var , k ∈ Z}; and linear arithmetic over

the reals. We use UTVPI for illustrations in this paper and in

all of our experiments.

C. Variable ordering

For LDDs, “T -atoms ordering” replaces the traditional BDD

“variable ordering”. Ordering between the T -atoms facilitates

the construction of reduced diagrams. Let ≤IMP be the partial

order on AT induced by IMP : c1 ≤IMP c2 ⇔ IMP(c1, c2).
A T -atoms ordering is any total order ≤T that extends ≤IMP

to a total order on AT . An LDD u is ordered w.r.t. ≤T iff

for every node v reachable from u, C(v) ≤T C(H(v)) and

C(v) ≤T C(L(v)). An LDD u is well-ordered if it is ordered

with respect to some T -atoms ordering ≤T . Both of the LDDs

in Fig. 3 are well-ordered.

D. Local Reductions

An LDD is locally reduced iff the following five conditions

hold on every internal node u and v.

1) No duplicate nodes. attr(u) = attr(v) ⇒ u = v.
2) No redundant nodes. L(v) 6= H(v).
3) Normalized labels. C(v) = N(C(v)).
4) Imply high. ¬IMP(C(v), C(H(v))).
5) Imply low. IMP(C(v), C(L(v))) ⇒ H(v) 6= H(L(v)).

For example, the LDD in Fig. 3(a) is reduced, but the LDD

in Fig. 3(b) is not. From here on, we write LDD to mean

Reduced Ordered LDD (ROLDD). The function MK(c, f, g),
shown in Fig. 1, constructs an ROLDD for ITE(c, f, g), where
(i) c is a normalized constraint, (ii) f and g are ROLDDs s.t.

f 6= g, and (iii) c ≤T C(f) and c ≤T C(g). Lines 2–4 ensure

that the result is reduced, and line 5 returns a unique diagram

node representing the ITE. The proof of correctness of MK is

based on the following two reduction rules to enforce Imply

high and Imply low, respectively:

ITE(x, ITE(y, h, l), z) IMP(x, y)

ITE(x, h, z)
,

ITE(x, y, ITE(z, h, l)) IMP(x, z) y ⇔ h

ITE(z, h, l)
.

E. Basic LDD Operations

For any symmetric operator op that distributes over ITE, the

function APPLY (Op op, LDD f , LDD g) constructs the LDD

for f op g. It is similar to the equivalent BDD operation. It

is based on the following transformations (if multiple rules

apply, the earliest is selected) and their symmetric versions

obtained by swapping the arguments of op:

ITE(x, y, z) op ITE(u, v, w) x ⇔ u

ITE(x, y op v, z op w)
,



1: function SWAPINPLACE (i, j)
2: replace every BDD node F : (i, H, L) with (j, G1, G0)

where
3: F10, F11 are the ¬j and j cofactors of H
4: F00, F01 are the ¬j and j cofactors of L
5: G1 ← (F11 = F01) ? F11 : (i, F11, F01)
6: G0 ← (F00 = F10) ? F00 : (i, F10, F00)

Fig. 2. Swapping adjacent labels in a BDD.

ITE(x, y, z) op ITE(u, v, w) IMP(x, u)

ITE(x, y op v, z op ITE(u, v, w))
, and

ITE(x, y, z) op ITE(u, v, w) x ≤T u

ITE(x, y op ITE(u, v, w), z op ITE(u, v, w))
.

LDD conjunction (AND) and LDD disjunction (OR) are im-

plemented via APPLY. LDD negation (NOT) is implemented

as in BDDs. The implementation of ternary LDD if-then-else

(ITE) is similar to APPLY.

In summary, extending Boolean operations from BDDs to

LDDs is straightforward. In the next two sections, we show

how to extend dynamic variable ordering and QELIM, which

are more challenging.

III. DYNAMIC VARIABLE ORDERING

It is well known that the variable order of a decision diagram

has a crucial effect on its size. Both finding the best order and

deciding whether an order is optimal are NP-hard [4]. A lot

of BDD research (e.g., [18], [8], [17]) has been dedicated to

heuristics for finding a good variable order. In this section,

we show how to adapt the sifting heuristic of Rudell [18],

as implemented in CUDD, to LDDs. The exact details of the

heuristic are beyond the scope of this paper. We only focus

on the parts that we changed.

Sifting heuristic is based on trial-and-error. Each node label

(i.e., a BDD variable) is moved up and down in the order by

swapping the order of two adjacent labels. The best position

is recorded and restored at the end. There are several factors

that make sifting very efficient: a set of Boolean functions

is represented as one multi-rooted DAG; a unique table is

used to locate nodes in the DAG in constant time; the table

is partitioned into subtables, one per label, to locate all nodes

with a given label in O(1); and, finally, swapping adjacent

labels i and j in all diagrams in the unique table is done in

time linear in the number of nodes labeled with i or j.
Only the swapping algorithm needs to be adapted for

LDDs. Swapping adjacent labels amounts to reordering di-

agrams in the unique table. In CUDD, this operation is called

SWAPINPLACE. We first show how SWAPINPLACE works for

BDDs, and then, that it does not work for LDDs.

Pseudocode for SWAPINPLACE is shown in Fig. 2. Note that

the swapping is done in place – any edge that was pointing

to a node labeled with i before the swap points to the same

node, but now labeled with j after the swap. Furthermore,

SWAPINPLACE maintains an invariant that every diagram in

the unique table is well-ordered and reduced.

SWAPINPLACE does not work for LDDs. Consider an LDD

shown in Fig. 3(a). Completely unrestricted swapping of ad-

jacent labels conflicts with LDD well-orderedness constraints.

(a) (b)

z − y ≤ 0

x − y ≤ 5

x − y ≤ 10

10

x − y ≤ 5

x − y ≤ 10 x − y ≤ 10

z − y ≤ 0 z − y ≤ 0

10

Fig. 3. (a) An ROLDD ordered by z − y ≤ 0,x − y ≤ 5, x − y ≤ 10; (b)
An OLDD ordered by x − y ≤ 5, x − y ≤, z − y ≤ 0.

1: function GROUPMOVE (X ⊆ AT , Y ⊆ AT )
2: for (i = |X|; i ≥ 1; i← i− 1) do
3: for (j = 1; j ≤ |Y |; j ← j + 1) do
4: LDDSWAPINPLACE(xi, yj)

Fig. 4. Swapping two adjacent sets of labels.

Say, we swap z − y ≤ 0 and x − y ≤ 5. Then, the result

is not well-ordered since a node labeled z − y ≤ 0 appears

between the nodes labeled with x − y ≤ 5 and x − y ≤ 10.
Thus, we must swap groups of variables at a time. Say, we

further swap z − y ≤ 0 with x− y ≤ 10. The result is shown

in Fig. 3(b). This LDD is well-ordered, but it is not reduced:

the Imply high rule (see Sec. II-D) is violated. It is easy to

construct an example where the Imply low rule is violated as

well.

To overcome the problems shown above, we propose a

new algorithm, called GROUPMOVE. GROUPMOVE takes two

ordered sets of T -atoms X = {x1, . . . , x|X|} and Y =
{y1, . . . , y|Y |}, and swaps them in the variable order. The order

before GROUPMOVE is x1, . . . , x|X|, y1, . . . , y|Y |, and after

GROUPMOVE is y1, . . . , y|Y |, x1, . . . , x|X|. This is done with

|X| × |Y | calls to the helper function LDDSWAPINPLACE.

Intuitively, GROUPMOVE sifts each atom in the top class, one

at a time, through the bottom class.

Function LDDSWAPINPLACE (shown in Fig. 5) is a variant

of the original SWAPINPLACE that also maintains LDD reduc-

tions. Lines 7 and 10 ensure that any newly constructed LDD

has no redundant nodes and satisfies Imply low rule. Lines 5

and 6 establish a stronger variant of Imply high: if a node v is

reachable from a node u through H(u), then C(u) does not

imply C(v). This is crucial for ensuring that Imply high rule

is established at the end of GROUPMOVE.

1: function LDDSWAPINPLACE (AT x , AT y)
2: replace every LDD F :(x, H, L) with (y, G1, G0), where
3: F00, F01 are the ¬y and y cofactors of L
4: F10, F11 are the ¬y and y cofactors of H
5: F ′

11 ← IMP(y, C(F11)) ? H(F11) : F11

6: F ′

01 ← IMP(y, C(F01)) ? H(F01) : F01

7: if (F ′

11 = F ′

01 ∨ (IMP(x, C(F ′

01))∧ F11 = H(F ′

01))) then
8: G1 = F ′

01

9: else G1 ← (x, F ′

11, F
′

01)

10: if (F00 = F10 ∨ (IMP(x, C(F00))∧ F10 = H(F00))) then
11: G0 ← F00

12: else G0 ← (x, F10, F00)

Fig. 5. Swapping adjacent labels in an LDD.



1: function BBQE (LDD f , P ⊆ T -atoms, V ⊆ Var )
2: if (f = 1) then return TOTDD (THQELIM (V, P ))

3: if (f = 0 ∨ THUNSAT(P )) then return 0

4: c← C(f)
5: if (V ∩ VARS(c) 6= ∅) then
6: t← BBQE(H(f), P ∪ {c}, V )
7: e← BBQE(L(f), P ∪ {¬c}, V )
8: return OR(t, e)
9: else
10: t← BBQE(H(f), P, V )
11: e← BBQE(L(f), P, V )
12: return ITE (c, t, e)

Fig. 6. Black-box QELIM.

Correctness of GROUPMOVE . Let G = (V,E) be a multi-

rooted DAG of LDDs. A set of T -atoms X is closed for G iff

whenever x ∈ X and there is a v ∈ V s.t. IMP(C(v), x) or

IMP(x,C(v)), then C(v) ∈ X . The correctness follows from

Theorem 1.

Theorem 1 Let G = (V,E) be a multi-rooted DAG of

ROLDDs, and X,Y be two non-empty sets of T -atoms that

are closed and adjacent in G. Let G′ = (V ′, E′) be the DAG

after GROUPMOVE(X,Y ). Then, (i) G′ is a DAG of ROLDDs,

and (ii) for any node v in G and the same node v′ in G′,

exp(v) ⇔ exp(v′).

IV. EXISTENTIAL QUANTIFICATION FOR LDDS

In this section, we describe three techniques for QELIM

over LDDs. In the algorithms, TOTDD is used to convert a

set P of T -atoms into an LDD for
∧

P ; ITE and OR mean

the corresponding LDD operations. For simplicity, we do not

distinguish between a single T -atom and the corresponding

LDD.

A. Black-box QELIM

Our black-box QELIM (see Fig.6) is called BBQE. It applies

an external theory QELIM to each path of an LDD. BBQE

requires the following helper functions from the theory:

• THUNSAT(P ) decides whether
∧

P is unsatisfiable;

• THQELIM(V, P ) given a set of variables V and a set of

T -atoms P , computes a set of T -atoms P ′ s.t.
∧

P ′ is

equivalent to ∃V �

∧
P .

Running time of BBQE(f, P, V ) is linear in the number of

paths of f . BBQE is not compatible with dynamic program-

ming since it propagates the context P along every branch of

an LDD.

B. White-box QELIM

Our white-box QELIM applies Fourier-Motzkin (FM) elim-

ination directly to LDDs. It extends the QELIM algorithm of

DDDs [16] to any adequate fragment T of LA.

First, we briefly recall FM elimination [3]. Let ϕ be a

conjunction of T -atoms, and x be a numeric variable. FM

elimination of x from ϕ proceeds as follows: Initially S is the

set of all atoms of ϕ, and S′ = ∅. For each p ∈ S, remove

p from S. If x 6∈ VARS(p) then add p to S′; otherwise, for

each t ∈ S s.t. x ∈ VARS(t) add RSLV(p, x, t) to S′. Note

1: function WBQE1 (x ∈ Var , LDD f )
2: if (f = 1 ∨ f = 0) then return f

3: if (x 6∈ VARS(C(f))) then
4: return ITE(f, WBQE1(x, H(f)), WBQE1(x, L(f)))

5: t← WBQE1(x,DR({C(f)}, x, H(f)))
6: e← WBQE1(x,DR({¬C(f)}, x, L(f)))
7: return OR (t,e)

Fig. 8. Basic white-box QELIM.

that RSLV(p, x, t) is defined to be TRUE when x occurs in

the same phase in both p and t. Upon termination,
∧

S′ is

equivalent to ∃x � ϕ.
The key insight of white-box QELIM is to apply FM

simultaneously to every 1-path of an LDD. The main step is

simultaneous resolution. It is done by a function DR(S, x, f)
(short for DAGRESOLVE) that takes a set S of T -atoms, a

variable x, and an LDD f , and returns an LDD obtained by

adding to each 1-path π of f the resolvents of S and π on x.
DR is implemented as follows: if f is a constant, it returns

f ; otherwise, it applies one of the recurrences shown in Fig. 7.

When implemented with dynamic programming, the number

of recursive calls to DR is linear in the number of nodes in

f . However, at the end it needs to restore orderedness, which,

like in DDDs, is exponential in the size of f in the worst case.

The basic white-box algorithm WBQE1(x, f) is shown in

Fig. 8. At each iteration, the algorithm either descends to

branches of f (line 4), or removes a top-node of f whose

label contains x (lines 5–7). The algorithm terminates since

at each iteration the number of nodes labeled with an atom

containing x decreases.

Recall that variable ordering in LDDs always respects

chains of implications among T -atoms. Consider a “low

implication chain” of LDD nodes u1, . . . , un. That is,

∀1 ≤ i < n � L(ui) = ui+1 ∧ C(ui) ⇒ C(ui+1) .

Then, ∀1 ≤ i ≤ n � ¬C(un) ⇒ ¬C(ui). Let c be a T -atom

and x ∈ Var . Then,

∀1 ≤ i ≤ n � RSLV(¬C(un), x, c) ⇒ RSLV(¬C(ui), x, c) .

Let S be a set of T -atoms. Then,

RSLV({¬C(u1), . . . ,¬C(un)} ∪ S, x, c) ⇔

RSLV({¬C(un)} ∪ S, x, c) .

We use this observation in the algorithm WBQE2 (see Fig. 9)

to reduce the number of calls to DR.

Since WBQE2(x, f) uses DR, in the worst case it is

exponential in the number of nodes in f . However, in the

best case it has the same complexity as BDD QELIM.

C. Eliminating Multiple Variables

Unlike BBQE, white-box QELIM only eliminates one vari-

able at a time – this is a fundamental limitation of Fourier-

Motzkin. When eliminating multiple variables, the order in

which they are eliminated is crucial. For example, consider a

formula

x − y ≤ 1 ∧ z − x ≤ 2 ∧ w − z ≤ 3 .



DR(S, x, ITE(u, v, w)) x 6∈ VARS(u)

ITE(u,DR(S, x, v),DR(S, x,w))

DR(S, x, ITE(u, v, w)) x ∈ VARS(u)

(RSLV(S, x, u) ∧ u ∧ DR(S, x, v)) ∨ (RSLV(S, x,¬u) ∧ ¬u ∧ DR(S, x,w))

Fig. 7. Two recurrences used by DR.

1: function WBQE2 (x ∈ Var , LDD f )
2: if (f = 1 ∨ f = 0) then return f

3: if (x 6∈ VARS(C(f))) then
4: return ITE(f, WBQE2(x, H(f)), WBQE2(x, L(f)))

5: S ← ∅; K ← ∅
6: repeat
7: c← C(f); S ← S ∪ {c}
8: d← DR(S, x, H(f))
9: K ← K ∪ {WBQE2(x, d)}
10: S ← {¬c} ; c′ ← C(L(f))
11: if (IMP(c, c′)) then f ← L(f);

12: until (¬IMP(c, c′))
13: d← DR(S, x, L(f))
14: K ← K ∪ {WBQE2(x, d)}
15: return OR (K)

Fig. 9. Improved white-box QELIM.

1: function WBMVQE (V ⊆ Var , LDD f )
2: res← f
3: while (V 6= ∅) do
4: V ′ ← FINDDROPVARS(V, res)
5: if (V ′ 6= ∅) then
6: res← DRVAR(V ′, res)
7: V ← V \ V ′

8: continue

9: x← CHOOSEVAR(V, res)
10: res← WBQE2(x, res)
11: V ← V \ {x}

12: return res

Fig. 10. White-box QELIM for multiple variables.

Assume we want to eliminate x and y. There are two

elimination orders: (a) x, y, and (b) y, x. In case (a), first

x − y ≤ 1 is removed and resolved with z − x ≤ 2 to get:

z − y ≤ 3 ∧ z − x ≤ 2 ∧ w − z ≤ 3. Then, z − x ≤ 2 is

dropped, and finally z − y ≤ 3 is dropped to get: w − z ≤ 3.
In case (b), first x− y ≤ 1 , and then z − x ≤ 2 are dropped.

No resolution is needed.

This example highlights two things. First, eliminating vari-

ables that occur in fewer atoms (like y above) leads to

fewer resolutions and potentially smaller intermediate results.

Second, variables that occur in a single atom (like y above),

or, more generally, variables that occur in pure polarity in a

disjunct of a DNF, are eliminated by dropping their atoms

without any resolution steps. Since there is no resolution,

multiple such variables can be eliminated at once.

We use these observations in a multi-variable elimination

strategy called WBMVQE shown in Fig. 10. WBMVQE is

parametrized by two functions:

• FINDDROPVARS(V, f) returns the subset of variables in

V that do not need to be resolved on when they are

eliminated from an LDD f .
• CHOOSEVAR(V, f) chooses a variable in V to be elimi-

nated from an LDD f .

1: function DRVAR (V ⊆ Var , LDD f )
2: if (f = 1 ∨ f = 0) then return f

3: if (VARS(C(f)) ∩ V = ∅) then
4: return ITE(C(f), DRVAR(V, H(f)), DRVAR(V, L(f)))
5: else
6: return OR(DRVAR(V, H(f)), DRVAR(V, L(f)))

Fig. 11. Dropping variables from an LDD without resolution.

It also uses a helper function DRVAR(V, f) shown in Fig. 11

that disjunctively drops all nodes from an LDD f that are

labeled with an atom containing a variable in V .

WBMVQE iterates through two phases. First, it eliminates

all variables that do not need resolution (lines 4–8). This is

repeated until no more variables can be dropped. Second, it

eliminates a variable using WBQE2 (lines 9–10). This process

repeats until all variables are eliminated.

Note that WBMVQE is only a strategy – it must be

instantiated with an implementation of FINDDROPVARS and

CHOOSEVAR. For our experiments, we have instantiated

WBMVQE by counting the number of occurrences of variables

in V in the atoms labeling the nodes of f (i.e., the support

of f ). In our case, FINDDROPVARS returns all variables that

occur in only a single atom; CHOOSEVAR picks a variable

randomly from all variables that occur in the least number of

atoms.

V. EXPERIMENTAL RESULTS

We have implemented LDDs within CUDD. Except for

DVO, our implementation is an external library that adds,

but does not modify, CUDD. Following CUDD, we use

complemented edges which allow for constant time negation.

For DVO, we reuse all CUDD’s heuristics, but modify how

adjacent labels are swapped (see Sec. III). Fortunately, CUDD

already can group variables and sift groups simultaneously

(i.e., GROUPMOVE), but we had to change its implementation

of GROUPMOVE to sift top-down instead of bottom-up.

To evaluate our implementation, we used a benchmark

derived from 25 real C programs, including mplayer,

ff_mpeg, gzip, tcsh, and CUDD. We created the bench-

mark by compiling each program using LLVM [14] with

optimization, loop unrolling, and inlining enabled, and then

approximating the SSA control-flow graph of each function by

a UTVPI formula. In general, our approximation is unsound

since we replaced LA formulas by UTVPI. However, each

such formula is similar in structure to a bounded model-

checking problem, e.g., as in CBMC [7]. We narrowed down

the initial 10,000 formulas to our benchmark of 850 using

the criteria: (a) more than 1,000 nodes in LDD or BDD

representation, or (b) more than 2 seconds to build an LDD

or a BDD, or (c) more than 2 seconds to solve with SVO.
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These formulas range in sizes from 4KB to 700KB, and have

between 30 to 7,956 variables.

We conducted two sets of experiments to evaluate the

effect of local LDD reductions and the effectiveness of

QELIM, respectively. All experiments were done on an 8-

core 2.00GHz Xeon with 3GB of RAM. Each test-case

was limited to 300s of CPU and 512MB of RAM. The

benchmark and detailed experimental results are available at

www.sei.cmu.edu/staff/chaki/FMCAD-09.html.

Local Reductions. To measure the effect of local reductions,

we compared the sizes of LDD v.s. BDD for each test-

case using both SVO and DVO. By “BDD” we mean a

BDD constructed by abstracting all UTVPI predicates by

propositional variables. For BDDs, SVO is a syntactic variable

order where each new predicate is placed at the end of the

current order. It is the same for LDDs, except when it violates

the LDD ordering restriction: in that case, the new predicate is

inserted at an appropriate position in the order. For example,

for the formula x − y ≤ 5 ∧ y − z ≤ 0 ∧ x − y ≤ 15,
the BDD SVO is as seen in the formula, while the LDD

SVO is x − y ≤ 5, x − y ≤ 15, y − z ≤ 0. DVO means

that automatic DVO was enabled and DD manager reordered

whenever memory usage was high.

The results are summarized in the scatter plot in Fig. 12.

It shows LDD sizes (x-axis) vs. BDD sizes (y-axis). For

example, the point (325, 720) means that some test-case had

an LDD with 325 nodes and a BDD with 720 nodes. Both

axes are in log-scale. SVO and DVO experiments are marked

by diamonds and crosses, respectively. As expected, DVO

leads to significantly smaller diagrams for both BDDs and

LDDs. Interestingly, with DVO LDDs are significantly smaller

(sometimes by an order of magnitude) than BDDs, whereas

with SVO the situation is reversed. This validates our intuition

that DVO is even more significant for LDDs than for BDDs.

Quantification. To evaluate the effectiveness of our QELIM

algorithms, we measured the time to quantify out the first

4/5th syntactically appearing variables in each test-case. This

roughly corresponds to a forward-image (a.k.a. strongest post-

condition) in program analysis. We compared BBQE and 4

variants of WBMVQE (DVO is used unless stated otherwise):

TABLE I
Overall results for QELIM algorithms. All times are in seconds. Total = total
times; QE = QELIM time; TO = Timeout; MO = Memoryout. No MOs for

the Easy cases. No Total/QE for BB+DVO since it TO in most cases.

Hard (154 cases) Easy (696 cases)

Alg. Total QE TO MO Total QE TO

BBQE — — 141 0 — — 670

WB+DVO 10,953 3,329 9 0 784 219 0

WB+SVO 38,739 36,511 21 99 395 80 0

WBWB1 11,047 3,761 11 0 829 264 0

WB-DV 17,043 13,358 34 0 5,649 5,151 8
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Fig. 13. Total times for white-box QELIM.

• WB+SVO: with SVO,

• WB+DVO: with DVO,

• WB-DV: with lines 4–8 removed, and

• WBWB1: with a call to WBQE2 on line 10 replaced with

the call to WBQE1.

The overall results are summarized in Table I. We call

the 696 test-cases that are solved by WB+SVO in under 15s

easy, and the remaining 154 hard. Total is the time including

parsing, building an LDD, and QELIM; QE is the time spent in

BBQE or WBMVQE. All times are in seconds. Each failure

is normalized to 300s. Size of the final LDDs ranged from

140, 092 to 1.

BBQE performed the worst, solving only 38 cases. This

is not surprising. The average path-size in the benchmark is

1.4×10131, and, in 9 cases, it cannot even be represented with

a C double. Furthermore, enumerating all paths of an LDD

succeeds only in 155 cases.

WB+DVO and WB+SVO performed the best for hard and

easy cases, respectively. Thus, for hard cases, the extra time

spent searching for a better order pays off.

The chart in Fig. 13 shows the total time (y-axis, in log-

scale) for white-box QELIM, sorted individually in increasing

order. For harder cases, the time increases gradually with DVO

(solid and dotted series, and WBWB1, which is not shown, but

is similar to WB+DVO). However, the time jumps dramatically

for SVO (dashed series). This indicates that DVO is more

robust than SVO during QELIM. This is further illustrated

by the chart in Fig. 14 that compares WBMVQE under SVO

and DVO. In the chart, y-axis is the total time in log-scale,

and the x-axis of both series is sorted by WB+SVO time. For
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hard instances, in many cases WB+DVO is several orders of

magnitude faster than WB+SVO. Note that due to log-scale

this difference is much more significant than it appears.

The chart in Fig. 15 compares the effect of multiple-variable

elimination heuristic (lines 4–8 of WBMVQE). In the chart,

y-axis is the QELIM time in log-scale, and the x-axis of both

series is sorted by WB-DV time. From the chart, WB+DVO

almost always outperforms WB-DV, often by several orders

of magnitude. Overall, WB+DVO is about 5 times faster than

WB-DV for QELIM.

We also compared WBQE1 and WBQE2 (i.e., WB+DVO

and WBWB1). WBWB1 timed out in 2 more cases than

WB+DVO. Other than that, the two algorithms performed

similarly.

We are not aware of other tools for existential quantification

of arbitrary LA formulas. Thus, we have only compared

between our own implementations. LDDs can be used as an

SMT-solver for LA: to decide whether a formula is satisfiable

first build an LDD for the formula and then quantify out

all numeric variables. In our preliminary experiments this

approach was not competitive with current DPLL-style SMT-

solvers. We have not pursued it further.

VI. CONCLUSION

In this paper, we have tackled the problem of space-efficient

representation of LA formulas with support for Boolean op-

erations and QELIM. This problem is at the heart of many

program analysis tasks. To this end, we have extended Dif-

ference Decision Diagrams to Linear Arithmetic. Our key

contributions are: support for Dynamic Variable Ordering,

QELIM algorithms, an implementation inside CUDD, and

empirical evaluation on a large benchmark derived from real

programs.

Overall, we found that LDDs in combination with DVO

and dynamic programming-based QELIM algorithm leads to

an effective data structure for program analysis tasks.

We believe that LDDs is a good basis for a combined

predicate and numeric abstract domain, in the style of [11].

We plan to explore this direction in future work.
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