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Abstract—Periodic real-time programs are ubiquitous: they
control robots, radars, medical equipment, etc. They consist of
a set of tasks, each of which executes (in a separate thread) a
specific job, periodically. A common synchronization mechanism
for such programs is via Priority Inheritance Protocol (PIP) locks.
PIP locks have low programming overhead, but cause deadlocks
if used incorrectly. We address the problem of verifying safety
and deadlock freedom of such programs. Our approach is based
on sequentialization – converting the periodic program to an
equivalent (non-deterministic) sequential program, and verifying
it with a model checker. Our algorithm, called PIPVERIF,
is iterative and optimal – it terminates after sequentializing
with the smallest number of rounds required to either find a
counterexample, or prove the program safe and deadlock-free.
We implemented PIPVERIF and validated it on a number of
examples derived from a robot controller.

I. INTRODUCTION

Periodic programs are widely used to control safety-critical

systems. They consist of multiple tasks, each performing a

specific job (typically, by invoking a function) periodically.

Each task runs in its own thread of execution. Thus, peri-

odic programs are inherently concurrent. They have, how-

ever, unique characteristics. First, the arrival and maximum

processing times of jobs are known a priory. Second, each

thread has a unique and – other than the issue of locks

discussed below – fixed priority. Hence both the inherent

non-determinism of job arrival and the complexity of the

scheduling policy (e.g., one that depends on a job’s time in

the queue) that characterize general concurrent software, are

absent for periodic programs. Periodic programs are designed

to be correct only under these restrictions. Therefore, verifying

them against a completely non-deterministic scheduler (as

common with general concurrent software) is too imprecise.

To address this challenge, we developed [1][2] an approach

for time-bounded verification of periodic programs. Our ap-

proach leverages the restrictions on scheduling and job arrival

mentioned above. Given a periodic program C and a time

bound t, we verify that C does not violate a safety property ϕ

when executed for time t from an initial state I . We assume

that t, ϕ and I are user-specified. Our scheduler model is not

completely non-deterministic. It preserves relative ordering of

jobs and priorities, while abstracting away concrete time. It

is thus sound for properties that depend only event ordering,

and not the exact times at which events occur. Note that

restricting execution time (as opposed to, say, number of

context switches [3]) is more natural for a periodic program

since time maps directly to the program’s execution state. For

example, the software that deploys an airbag in a car completes

in a fixed amount of time, and therefore, during verification,

we are interested in bugs that occur within that time limit only.

Periodic programs use locks for synchronization. However,

such locks must prevent priority inversion [4], whereby a

thread is blocked by another with lower priority. A priority

inversion almost caused the failure of the 1997 PathFinder

mission [5]. To this end, several locking protocols have been

proposed in literature [4]. Real-time operating systems [6]

typically support two versions – the Priority Ceiling Protocol

(PCP) lock and the Priority Inheritance Protocol (PIP) lock.

Both types of locks prevent priority inversion. The PCP lock

eliminates deadlocks as well, but requires additional program-

ming effort. In contrast, the PIP lock is easier to use but

leads to deadlock if used incorrectly. In earlier work [1][2] we

explored the time-bounded verification of periodic programs

with PCP locks. In this paper, we deal with PIP locks.

We use the sequentialization paradigm proposed by Lal and

Reps [7], and build on our earlier work on sequentializing

periodic programs without PIP locks [2]. In [2], every ex-

ecution of the periodic program is partitioned logically into

rounds. During sequentialization, we first fix the total number

of rounds. Next, each job (i.e., the periodic execution of a

task) is scheduled, i.e., assigned a starting and an ending

round. Jobs are then executed in order of increasing priority

and starting time. Before executing each statement, a job

non-deterministically context switches, i.e., jumps to a higher

round, thereby modeling preemption. Finally, constraints are

used to ensure that jobs are appropriately scheduled (e.g., a job

never starts while another with higher priority is executing),

properly preempted (e.g., a job never preempts another with

higher priority), and that rounds are consistent (the value of

each shared variable at the end of a round equals its value at

the beginning of the next round).

In the context of periodic programs with PIP locks, existing

sequentialization approaches [7][2] are inadequate for several

reasons. First, the priority of a thread changes dynamically.

More importantly, due to priority inheritance, it is possible for

the priority of a thread to change even while the thread itself is

suspended. Second, an exact bound on the number of rounds

needed to account for all possible executions cannot be deter-

mined efficiently. Finally, periodic programs with PIP locks



can deadlock. However, the existing sequentialization-based

deadlock detection algorithm for concurrent programs [8]

do not work with priorities, because it requires that every

deadlock have a wait-free counterexample. This is not true

when priorities are involved (see Sec. IV for more details).

Against this background, we make the following contributions.

First, we present an iterative algorithm, called PIPVERIF,

for verifying a time-bounded periodic program with PIP

locks. PIPVERIF maintains a number R of rounds, starting

with R = the total number of jobs. In each iteration, it

first checks for counterexamples to safety with R rounds. If

such a counterexample, is detected, PIPVERIF terminates with

UNSAFE. Otherwise, it checks for the presence of executions

with more than R rounds. If there are no such executions,

PIPVERIF terminates with SAFE. Otherwise, it increments R

and continues with the next iteration. PIPVERIF is optimal

– it terminates with the smallest R required to either find a

counterexample, or prove the program safe.

Second, we extend PIPVERIF to detect deadlocks. To this

end, the sequential program that we generate maintains the

transitive closure of the Task-Resource Graph (TRG) [9] in

an incremental manner. A node of the TRG represents either

a task or a PIP lock. An edge from a task t to a lock l means

that the currently executing job of t is blocked trying to acquire

l. Similarly, an edge from a lock l to a task t means that l is

held by the currently executing job of t. Detecting a deadlock

state is equivalent to detecting that the TRG is cyclic.

Finally, we implement PIPVERIF by extending REKH [2].

We validate our tool, called REKPIP, on a set of examples

derived from the controller of a LEGO Mindstorms robot.

In each case, REKPIP produces the correct result, either

proving the program SAFE, producing a counterexample for a

user-specified safety property, or detecting a deadlock. These

results indicate that our approach is feasible. Our tools and

benchmarks are available at http://www.andrew.cmu.edu/user/

arieg/Rek/start-rekpip.cde.tar.gz.

It is important to note that assuming a nondeterministic

scheduler, as done by virtually the entire literature on concur-

rent program verification, makes these verification methods

inherently incomplete even when the execution is bounded,

simply because in the real system the scheduler is not nonde-

terministic. The current line of work is therefore the first to

present, to the best of our knowledge, a sound and complete

– relative to the time-bound, and for properties that only

depend on the ordering of events – verification method for

a (particular type of) a concurrent program. It is also the

first empirically validated verification method for periodic

programs with PIP locks. Given the popularity of such systems

and their criticality, preventing deadlocks and guaranteeing

their safety properties is no doubt an important problem.

The rest of this paper is organized as follows. In Section II,

we present basic concepts and definitions. In Section III, we

present PIPVERIF in details. In Section IV, we survey related

work. Finally, we present our implementation, benchmarks,

and results in Section V, and conclude in Section VI.

II. PRELIMINARIES

A task τ is a tuple 〈I, T, P, C,A〉, where I is the priority, T

– a bounded procedure (i.e., no unbounded loops or recursion)

called the task body, P – the period, C – the worst case

execution time (WCET) of T , and A, called the release time, is

the time at which the task is first enabled1. A periodic program

(PP) is a set of tasks. In this paper, we consider a N -task

PP C = {τ0, . . . , τN−1}, where τi = 〈Ii, Ti, Pi, Ci, Ai〉. We

assume that: (i) for simplicity, Ii = i; (ii) execution times are

positive, i.e., Ci > 0; (iii) priorities are rate-monotonic [10]

and distinct – tasks with smaller period have higher priority;

and (iv) C is schedulable. Let RTi be the response time of τi
(i.e., the maximum time taken by any job of τi to complete)

computed via Rate Monotonic Schedulability [11] analysis.

Bounding Time and Jobs. We verify C assuming that it

executes for one “hyper-period” H [11], where H is the least

common multiple of {P0, . . . , PN−1}. We refer to the resulting

time-bounded program as CH. We also assume that the first

job of each task finishes before its period, i.e.,

∀0 ≤ i < N � Ai +RTi ≤ Pi . (1)

Under this restriction, the number of jobs of task τi that

executes in CH is:Ji = H
Pi

. The semantics of CH is the

asynchronous concurrent program:

‖N−1

i=0
ki :=0;while(ki < Ji∧WAIT(τi, ki)) (Ti ;ki :=ki+1) .

(2)

where ‖ is preemptive priority-sensitive interleaving (the CPU

is always given to the enabled task with the highest priority,

preempting the currently executing task if necessary), ki ∈ N

is a counter and WAIT(τi, ki) returns FALSE if the current time

is greater than Ai + ki × Pi, and otherwise blocks until time

Ai + ki × Pi and then returns TRUE. In the rest of the paper,

for simplicity and brevity, we write C to mean CH.

Synchronization. We assume that tasks synchronize via

priority inheritance protocol (PIP) locks [4]. Trying to acquire

a PIP lock l involves one of two possibilities. If l is available,

it is taken and execution proceeds normally. If the lock is

unavailable, the current thread (executing, e.g., task τ ) is

blocked and the (suspended) thread holding l inherits τ ’s

priority and hence resumes execution. The resumed thread

drops back to its previous (i.e., prior to resumption) priority

as soon as it releases l, and goes back to being suspended.

Note that PIP locks cause blocking, and therefore deadlocks,

if used improperly.

Example 1: Consider the task set in Fig. 1(a). A partial

schedule (up to time 9) for these values is shown in Fig. 1(b).

At time 0, τ0 starts and acquires l1. At time 1, τ1 preempts τ0
and acquires l2. At time 2, τ2 preempts τ1. At time 3, τ2 tries to

acquire lock l2 and gets blocked. At this point, τ1 inherits τ2’s

priority (i.e., 2) and resumes execution. At time 4, τ1 tries to

acquire lock l1 and gets blocked. At this point, τ0 inherits τ1’s

priority (i.e., 2) and resumes execution. At time 5, τ0 releases

lock l1. The inherited priority of τ0 drops back to its previous

1We assume that time is given in some fixed unit (e.g., milliseconds).



(a)

Task Ii Ai Ci Pi

τ2 2 2 2 10

τ1 1 1 4 20

τ0 0 0 3 40

(b)

0

1

lock(1)

lock(2)

2

lock(2) lock(1) unlock(1) unlock(2)

0 1 2 3 4 5 6 7 8 9

0

1

1 10 2

Fig. 1. (a) Three tasks from Example 1; (b) A schedule of the three tasks.

priority, viz., 0, and it is preempted by τ1 which grabs lock

l1. At time 6, τ1 releases lock l2. The inherited priority of τ1
drops to 1, and it is preempted by τ2 which grabs lock l2.

At time 7, τ2 releases lock l2 and terminates, and τ1 resumes

execution. At time 8, τ1 releases lock l1 and terminates, and

τ0 resumes execution. At time 9, τ0 terminates.

We write J(τ, k) to denote the k-th job (i.e., the job at the

k-th position) of task τ . Thus, the set of all jobs of C is:

J =
⋃

0≤i<N

{J(τi, k) | 0 ≤ k < Ji} . (3)

Job Ordering. Consider a job j = J(τi, ki). Recall that
Ai, Pi and RTi are, respectively, the release time, period,

and response time of τi. Then, the arrival time of j is A(j) =
Ai+ki×Pi, and the departure time of j isD(j) = A(j)+RTi.

Since we assume that RT > 0, we know that A(j) < D(j).
Let π(j) = i, i.e., the priority of τi. We define three ordering

relations (developed in our earlier work [2]) on jobs.

Definition 1: The relations ⊳, ↑ and ⊏ are defined as:

j1 ⊳ j2 ⇐⇒ (π(j1) ≤ π(j2) ∧D(j1) ≤ A(j2)) ∨

(π(j1) > π(j2) ∧A(j1) ≤ A(j2))

j1 ↑ j2 ⇐⇒ π(j1) < π(j2) ∧A(j1) < A(j2) < D(j1)

j1 ⊏ j2 ⇐⇒ (A(j1) < A(j2)) ∨

(A(j1) = A(j2) ∧ π(j1) > π(j2))

Note that j1 ⊏ j2 means that either j1 always completes

before j2, or it is possible for j1 to be preempted by j2. Also,

⊏ is a total strict ordering since it is a lexicographic ordering

by (arrival time, -priority).

Execution. Let x • y be the concatenation of x and y. An

execution ρ is a finite sequence of actions where an action is

either a job getting blocked (b), or an assertion being violated

(a). Note that, for any k ≥ 0, bk is the set of executions with

k blocks and bk • a is the set of executions that end with

assertion violations and have k blocks. The semantics of a

periodic program C, denoted by [[C]], is a set of executions.

Let ˚[[C]] be the prefix-closure of [[C]], i.e.,

˚[[C]] = {x | ∃y ∈ {b, a}∗ � x • y ∈ [[C]]}

We say that C is unsafe iff ∃k ≥ 0 � bk • a ∈ [[C]].

Algorithm 1 The overall verification algorithm. Function

VERIFROUNDS(C, R) returns UNSAFE if C has a counterexam-

ple (CEX) with R rounds, INCROUNDS if C has no R round

CEXs, but has legal executions with more than R rounds, and

SAFE otherwise, i.e., if C has no CEXs with R or more rounds.

1: function PIPVERIF(C)
2: R := |J|
3: loop

4: x:= VERIFROUNDS(C, R)

5: if x = INCROUNDS then R :=R+ 1
6: else return x

7: function VERIFROUNDS(C, R)

8: if [[Sa(C, R)]] 6= ∅ then return UNSAFE

9: if [[Sb(C, R)]] 6= ∅ then return INCROUNDS

10: else return SAFE

III. JOB-BOUNDED VERIFICATION

Our verification algorithm PIPVERIF uses the idea that any

execution ρ of C is partitioned into scheduling rounds as

follows: (a) ρ begins in round 0, and (b) a round ends and a

new one begins every time a job ends (i.e., the last instruction

of some task body is executed) or gets blocked when trying

to acquire a lock.

Example 2: The bounded execution in Fig. 1(b) is parti-

tioned into 5 rounds as follows: round 0 is the time interval

[0, 3] – when τ2 gets blocked trying to acquire lock l2, round 1

is [3, 4] – when τ1 gets blocked trying to acquire lock l1,

round 2 is [4, 7] – the end of the first job of τ2, round 3 is

[7, 8], and round 4 is [8, 9].
Since the number of rounds that an execution is partitioned

into depends on the number of times a job gets blocked,

different executions have different number of rounds. More

specifically, the execution bk or bk•a has exactly |J|+k rounds.

For soundness, PIPVERIF must therefore use a sufficiently

large number of rounds during sequentialization. To this end,

PIPVERIF starts with a small number of rounds (specifically,

|J|) and iteratively increases it till either a real error is detected,
or we prove that all executions have been accounted for.

Algorithm 1 shows the pseudo-code of PIPVERIF. Note that,

in each iteration, it invokes VERIFROUNDS(C, R) to check if:

1) C has a counterexample with R rounds – in this case

VERIFROUNDS(C, R) returns UNSAFE.

2) C has no counterexample with R rounds, but has legal

executions with more than R rounds – in this case

VERIFROUNDS(C, R) returns INCROUNDS.

3) C has no legal executions with more than R rounds – in

this case VERIFROUNDS(C, R) returns SAFE.

Correctness of PIPVERIF. PIPVERIF is correct because

it explores all legal executions of the program and only

terminates when a real counterexample is detected (i.e., if

VERIFROUNDS(C, R) returns UNSAFE) or when it proves

that no more legal executions remain to be explored (i.e., if

VERIFROUNDS(C, R) returns SAFE).



A. How VERIFROUNDS Works

Recall that VERIFROUNDS(C, R) must satisfy the following

specification:

• if bR−|J|•a ∈ [[C]] then VERIFROUNDS(C, R) = UNSAFE

• else if ∀k > R − |J| � {bk, bk • a} ∩ [[C]] = ∅ then

VERIFROUNDS(C, R) = SAFE

• else VERIFROUNDS(C, R) = INCROUNDS

Consider the pseudo-code of VERIFROUNDS (see Alg. 1).

First (line 8), it checks if bR−|J| • a ∈ [[C]]. To this end, it

constructs a sequential program Sa(C, R) such that:

[[Sa(C, R)]] = ∅ ⇐⇒ bR−|J| • a 6∈ [[C]] (4)

It then checks if [[Sa(C, R)]] = ∅ using a model checker for

sequential programs. Next, to prove that:

∀k > R− |J| � {bk, bk • a} ∩ [[C]] = ∅

it relies on the following observation:

∀k > R− |J| � {bk, bk • a} ∩ [[C]] = ∅ ⇐⇒ bR+1−|J| 6∈ ˚[[C]]

Therefore (line 9), it constructs a sequential program Sb(C, R)
such that:

[[Sb(C, R)]] = ∅ ⇐⇒ bR+1−|J| 6∈ ˚[[C]] (5)

and checks whether [[Sb(C, R)]] = ∅ via a model checker

for sequential programs. Finally, if both the previous checks

fail, it returns SAFE (line 10). In terms of complexity, the

construction of Sa(C, R) and Sb(C, R) are each polynomial

in the size of C. The complexity of the subsequent model

checking depends on the tool used (e.g., NP for CBMC).

B. Constructing Sa(C, R)

Sa(C, R) reduces the bounded concurrent execution of C
into a sequential execution with R rounds. Initially, jobs are

allocated (or scheduled) to rounds. Then, jobs are executed

sequentially, in the order ⊏ defined by Defn. 1. For each global

variable g, we guess the initial value of g at the beginning of

each round at the start of Sa(C, R). At the end of Sa(C, R),
we ensure that the guessed value of g at the beginning of

each round equals its final value at the end of the previous

round. In addition, Sa(C, R) encodes the inherited priority of

jobs and an exception mechanism to detect assertion violations

and deadlocks. We now describe these in more detail.

Inherited Priority. Every job j = J(τ, k) has a static

base priority πb(j), which is the priority of the corresponding

task τ . In addition, j also has an inherited priority πi(j),
which changes dynamically as locks are acquired and released.

Specifically, at any instant, πi(j) is the maximum of πb(j), and
the inherited priorities of all jobs that are blocked on a lock

held by j. Note that πi(j) is a global property – it depends

not only on the state of j but also on the states of other jobs.

The scheduler always executes the non-blocked job with the

highest (possibly inherited) priority. Thus, Sa(C, R) must keep

track of the inherited priorities of jobs to encode PIP locks.

Task-Resource Graph. To compute the inherited priorities

of jobs, Sa(C, R) encodes the transitive closure of the “task

resource graph” [9] (TRG) of the program. The TRG Γ is a

dynamic data structure. Its nodes are either tasks or PIP locks.

However, its edges depend on the program’s execution state.

Specifically, an edge from a task t to a lock l means that

the currently executing job of t is blocked trying to acquire l.

Similarly, an edge from a lock l to a task t means that l is held

by the currently executing job of t. Since a job can be blocked

on at most one lock at a time, and since a PIP lock can be held

by at most one job at a time, a periodic program falls under

the category of Single-Resource Model [9] system. For such

systems, it is known that Γ is a forest, unless the program’s

execution state has (two or more) deadlocked tasks [9].

The value of πi(j) is computed from Γ as follows. Let Γ∗

denote the transitive closure of Γ, i.e., (x, y) ∈ Γ∗ iff there is

a path from x to y in Γ. Then,

πi(j) = MAX({πb(j
′) | (j′, j) ∈ Γ∗}) .

Thus, if j = J(τ, k), then πi(j) is the maximum of the

priorities of all tasks that reach τ (including τ itself) in Γ∗.

Sa(C, R) uses this fact to maintain Γ∗ in an online manner

– updating it as soon as Γ changes – and compute πi(j)
on demand.

Detecting Assertion Violations. In order to model program

termination due to an assertion violation, Sa(C, R) uses an

exception mechanism. We use a distinguished global flag to

indicate the occurrence of an assertion violation. The flag

is initially set to FALSE. Whenever an assertion violation is

detected, the corresponding job sets a global flag and exits.

All jobs starting (or resuming) in the future check the flag,

find it to be set, and also exit. Finally, the flag is used to

ensure that Sa(C, R) only has a legal execution if C has an

execution with an assertion violation.

Detecting Deadlocks. A deadlock occurs in C iff its TRG

Γ becomes cyclic [9]. More specifically, the deadlocked tasks

are exactly the ones whose nodes belong to a cycle in Γ.
Therefore, Sa(C, R) looks for cycles in Γ whenever a job gets

blocked trying to acquire a lock. Since Sa(C, R) maintains Γ∗

in an online manner, a cycle created in Γ by the addition of

an edge is detected in constant time. If a cycle is detected,

Sa(C, R) uses the exception mechanism described above to

indicate an error and abort program execution.

C. Construction of Sa(C, R)

The structure of Sa(C, R) is given by the pseudo-code in

Alg. 2 and Alg. 3. Note that α(e) terminates all executions

where e evaluates to false. We first describe the global vari-

ables of Sa(C, R), followed by its functions.

Global Variables of Sa(C, R). Recall that Sa(C, R) exe-

cutes the jobs of C in the order ⊏ defined by Defn. 1. Each job

j is assigned a starting and an ending round during scheduling

– these are stored in start[j] and end[j], respectively. Variable
rnd stores the current round in which a job is executing.

Variable B[r] indicates whether a job running at round r is

allowed to block. Variable e[r] indicates if an exception has

been thrown in round r. Variable P[r] indicates the priority

at which the system is executing at round r – this equals the



Algorithm 2 The structure of Sa(C, R). Notation: T = set of all tasks; L = set of all PIP locks; J = set of all jobs; G = set

of global variables of C; ig = initial value of g according to C; ‘∗’ = non-deterministic value; α() = assume().

var rnd, start[ ], end[ ], B[ ], e[ ], ve[ ], P[ ], vP[ ], S[ ][ ], vS[ ][ ], T[ ][ ][ ], vT[ ][ ][ ], L[ ][ ][ ], vL[ ][ ][ ] ∀g ∈ G � var g[ ], vg[ ]
1: function MAIN( )

2: INITGLOBS(); HYPPER(); CHECKASSUMPS()

3: function INITGLOBS( )

4: e[0] := 0; ∀l ∈ L � S[l][0] :=−1
5: ∀t1 ∈ T, t2 ∈ T � T[t1][t2][0] := 0
6: ∀t ∈ T, l ∈ L � L[t][l][0] := 0
7: ∀g ∈ G � g[0] := ig
8: ∀r ∈ [1, R) � e[r] := ve[r] := ∗; P[r] := vP[r] := ∗
9: ∀l ∈ L, r ∈ [1, R) � S[l][r] := vS[l][r] := ∗

10: ∀t1, t2 ∈ T, r ∈ [1, R) � T[t1][t2][r] := vT[t1][t2][r] := ∗
11: ∀t ∈ T, l ∈ L, r ∈ [1, R) � L[t][l][r] := vL[t][l][r] := ∗
12: ∀g ∈ G, r ∈ [1, R) � g[r] := vg[r] := ∗

13: function HYPPER( )

14: SCHEDULEJOBS()

let j0 ⊏ j1 ⊏ . . . j|J|−1 be the job ordering from Defn. 1

15: RUNJOB(j0); . . . ; RUNJOB(j|J|−1)

16: function RUNJOB(Job j)

17: rnd := start[j]; o := P[rnd]; P[rnd] := πb(j)
18: if e[rnd] = 0 then T̂ (j)

19: CS(j); P[rnd] := o; α(rnd = end[j])

20: function T̂ (Job j)

let σ ≡ if e[rnd] = 1 then return

T̂ is obtained from Tt by replacing each ‘lock(l)’ with:

21: CS(j);σ; LOCK(l, j);σ
22: each ‘unlock(l)’ with: CS(j);σ; UNLOCK(l, j)

each ‘assert(x)’ with:

23: CS(j);σ; if ¬x then ABORT(j); return

and each statement ‘st’ with:

24: CS(j);σ; st[g ← g[rnd]]

25: function CHECKASSUMPS( )

26: for r ∈ [0, R− 1) do //let r′ = r + 1
27: α(e[r] = e[r′]); α(P[r] = vP[r

′])
28: ∀l ∈ L � α(S[l][r] = vS[l][r

′])
29: ∀t1 ∈ T, t2 ∈ T � α(T[t1][t2][r] = vT[t1][t2][r

′])
30: ∀t ∈ T, l ∈ L � α(L[t][l][r] = vL[t][l][r

′])
31: ∀g ∈ G � α(g[r] = vg[r

′])

32: ∀r ∈ [0, R) � α(B[r] = 0);α(e[R − 1] = 1)

33: function ABORT(Job j = J(τ, k))
34: e[rnd] := 1
35: ∀l ∈ L � S[l][rnd] = τ =⇒ UNLOCK(l, j)

(possibly inherited) priority of the currently executing job. For

each global variable g of C, variable g[r] indicates its value in
round r. The prophecy variables ve[r], vP[r] and vg[r] indicate
the guessed initial values of e[r], P[r] and g[r], respectively.
The values of e[r], P[r] and g[r] are updated by the jobs

executing in round r only.

Arrays S, T and L encode the state of the PIP locks and the

transitive closure Γ∗ of the TRG. Specifically, S[l][r] is the

priority of the task holding lock l at round r. If l is free at

round r, then S[l][r] = −1. Since a task’s priority equals its id,

we use a task and its priority interchangably. For every pair of

tasks (t1, t2), T[t1][t2][r] = 1 iff (t1, t2) ∈ Γ∗ at round r. For

every task t and lock l, L[t][l][r] = 1 iff (t, l) ∈ Γ∗ at round r.

Prophecy variables vS[l][r], vT[t1][t2][r] and vL[t][l][r] record
the guessed initial values of S[l][r], T[t1][t2][r] and L[t][l][r],
respectively. The values of S[l][r], T[t1][t2][r] and L[t][l][r] are
updated by jobs executing in round r only.

Functions of Sa(C, R). The top-level function is MAIN (see

Alg. 2). It initializes all global variables by invoking INIT-

GLOBS (line 2), schedules and executes all jobs by invoking

HYPPER (line 2), and finally ensures that only legal executions

that terminate with an assertion violation or deadlock are

allowed by invoking CHECKASSUMPS (line 2).

INITGLOBS (see Alg. 2) initializes all global variables at

each round. In particular, for round 0, all globals are initialized

(lines 4–7) to their values at the start of the execution of C.
For the remaining rounds, they are initialized (lines 8–12) to

non-deterministic guessed values. The guessed values are also

recorded in the corresponding prophecy variables.

HYPPER (see Alg. 2) first creates a legal schedule for all

jobs by invoking SCHEDULEJOBS (line 14) and then executes

each job j (line 15) – in the order ⊏ defined by Defn. 1 – by

invoking RUNJOB(j).

In SCHEDULEJOBS (see Alg. 3), line 2 initializes B to allow

jobs to block in all rounds; line 2 also initializes start and end

to non-deterministic values; line 3 ensures that start[j] and
end[j] are sequential and within legal bounds; line 4 ensures

that jobs are properly separated; line 5 ensures that jobs are

well-nested – if j2 preempts j1, then it finishes before j1; and

line 6 disables job blocks in all rounds in which a job has

been scheduled to end.

RUNJOB(j) (see Alg. 2) sets rnd to the round at which j is

scheduled to start (line 17), saves the current system priority

and then updates it to the base priority of j (line 17), executes

a modified version of j but only if no exception has been

thrown (line 18), restores the system priority and ensures that

j terminates at the appropriate round (line 19).

T̂ (j) (see Alg. 2) is identical to the body of j’s task, except

that it invokes functions LOCK and UNLOCK (shown in Alg. 3)

to model the acquiring and releasing of PIP locks (lines 21–

22), models assertion violations by invoking ABORT (line 23),

and uses variable g[rnd] instead of g (line 24). In addition,

T̂ (j) increases the value of rnd non-deterministically (by

invoking function CS) to model preemption by higher priority

jobs prior to each statement. Finally, whenever the value of

rnd increases, T̂ (j) checks if an exception has been thrown

and terminates the job in this case (using the statement σ).

Note that rnd can increase only after a call to CS or LOCK.

CHECKASSUMPS (see Alg. 2) ensures that the final value

of each global variable at each round is equal to its prophesied



Algorithm 3 The structure of Sa(C, R) continued from Alg. 2.

1: function SCHEDULEJOBS( )

2: ∀r ∈ [0, R) � B[r] := 1; ∀j ∈ J � start[j] = ∗; end[j] = ∗
// Jobs are sequential

3: ∀i ∈ [0, N) � ∀k ∈ [0, Ji) � α(0 ≤ start[J(i, k)] ≤ end[J(i, k)] < R)
// Jobs are well-separated

4: ∀j1 ⊳ j2� α(end[j1] < start[j2]); ∀j1 ↑ j2� α(start[j1] ≤ start[j2])
// Jobs are well-nested

5: ∀j1 ↑ j2� α(start[j2] ≤ end[j1]⇒ (start[j2] ≤ end[j2] < end[j1]))
6: ∀j ∈ J � B[end[j]] = 0

7: function UNLOCK(int l,Job J(τ, k))
8: S[l][rnd] :=−1; DELLOCKTASK(l, τ)

9: function ADDLOCKTASK(int l,Task τ )

10: ∀t ∈ T \ {τ} � T[t][τ ][rnd] := (L[t][l][rnd] = 1) ? 1 : T[t][τ ][rnd]

11: function DELLOCKTASK(int l,Task τ )

12: ∀t ∈ T \ {τ} � T[t][τ ][rnd] := (L[t][l][rnd] = 1) ? 0 : T[t][τ ][rnd]

13: function ADDTASKLOCK(int l,Task τ )

14: let c(t) ≡ (t = τ ∨ T[t][τ ][rnd] = 1)
15: ∀t ∈ T � L[t][l][rnd] := c(t) ? 1 : L[t][l][rnd]
16: s := S[l][rnd]; ∀t ∈ T � T[t][s][rnd] := c(t) ? 1 : T[t][s][rnd]

17: function CS(Job j = J(τ, k))
18: if (∗) then return

19: o := rnd ; rnd := ∗; α(o < rnd ≤ end[j])
20: α(P[rnd] = INHERPRIO(τ))

21: function INHERPRIO(Task τ )

22: return

MAX({τ} ∪ {t | T[t][τ ][rnd] = 1})

23: function UNBLOCK(int l,Job j)

24: α(B[rnd] = 1); B[rnd] := 0
25: o := rnd ; rnd := ∗
26: α(o < rnd ≤ end[j])
27: α(P[o] = P[rnd]); α(S[l][rnd] = −1)

28: function LOCK(int l,Job j = J(τ, k))
29: if S[l][rnd] = −1 then

30: S[l][rnd] = τ

31: ADDLOCKTASK(l, τ)
32: else

33: if T[S[l][rnd]][τ ][rnd] then
34: ABORT(j); return

35: ADDTASKLOCK(l, τ)
36: UNBLOCK(l, j); DELTASKLOCK(l, τ)
37: if e[rnd] = 1 then return

38: S[l][rnd] = τ

39: ADDLOCKTASK(l, τ)

40: function DELTASKLOCK(int l,Task τ )

41: let c(t) ≡ (t = τ ∨ T[t][τ ][rnd] = 1)

42:
∀t ∈ T � L[t][l][rnd]:=

c(t) ? 0 : L[t][l][rnd]

initial value at the next round (lines 26–31), all rounds have

been exhausted by either a job termination or a job block

(line 32), and an exception has been thrown (line 32). Line 32

is critical to ensure the property of Sa(C, R) given by (4).

ABORT(j) (see Alg. 2) sets the error flag (line 34) and

releases all locks held by j (line 35). To release a lock, it

invokes UNLOCK (see Alg. 3) which sets the owner of the

lock to -1 (line 8) and then removes the edge in the TRG

from the current task to the lock (line 8) via DELLOCKTASK.

DELLOCKTASK (see Alg. 3) updates Γ∗ by removing an

edge in Γ from a lock to a task. In contrast, ADDLOCKTASK

(see Alg. 3) updates Γ∗ by adding an edge in Γ from

a lock to a task. Similarly, functions ADDTASKLOCK and

DELTASKLOCK (see Alg. 3) update Γ∗ by, respectively, adding

and removing an edge from a task to a lock.

INHERPRIO(τ ) (see Alg. 3) returns the inherited priority of

the current job task τ at round rnd. It is invoked by CS (see

Alg. 3) to ensure (line 20) that whenever a job is preempted,

it only resumes at a round where the system priority equals

its inherited priority. In addition, CS ensures (line 19) that a

job always resumes in a round permitted by the schedule.

LOCK (see Alg. 3) acquires a lock. If the lock is available

(line 29) it updates its owner to the current task (line 30) and

adds an edge in the TRG (line 31). However, if the lock is held

(line 32), it (i) checks for deadlock and aborts if necessary

(lines 33–34); (ii) adds an edge in the TRG from the task

to lock (line 35); (iii) preempts the task and resumes it in a

future round where the lock is available by invoking UNBLOCK

(line 36); (iv) deletes the TRG edge from the task to the lock

(line 36); (v) checks if an exception has been thrown and

aborts if necessary (line 37); (vi) updates the owner of the

lock to the current task (line 38); and (vii) adds a TRG edge

from the lock to the task (line 39).

UNBLOCK (see Alg. 3) resumes a blocked job in a future

round. It ensures that the current round is available for

blocking and makes it unavailable for blocking in the future

(line 24), and updates the round to a value that is allowed by

the schedule (lines 25–26), where the system priority is the

same as the current system priority (line 27), and where the

lock is available (line 27).

D. Construction of Sb(C, R)

Recall that Sb(C, R) must have the property defined by (5).

The structure of Sb(C, R) is similar to Sa(C, R). The only

difference is in T̂ (j) and LOCK, which are shown in Alg. 4.

Specifically, in Sb(C, R): (i) T̂ (j) assumes that assertions are

never violated (line 4), and (ii) LOCK assumes that whenever

a job blocks, then there is no deadlock (line 10), and aborts

if there are no available rounds for job blocking (line 11).

IV. RELATED WORK

Several projects use sequentialization [3][8][12] to verify

concurrent software. All these approaches assume a non-

deterministic scheduler, which is an over-approximation for

periodic programs. Of these, our sequentialization is closest

to that of Lal and Reps [7] – scheduling is implemented



Algorithm 4 The structure of Sb(C, R). We only show func-

tions that are different from Sa(C, R).

1: function T̂ (Job j)

let σ be the statement if e[rnd] = 1 then return

T̂ is obtained from Tt by replacing each ‘lock(l)’ with:

2: CS(j);σ; LOCK(l, j);σ
3: each ‘unlock(l)’ with: CS(j);σ; UNLOCK(l, j)
4: each ‘assert(x)’ with: CS(j);σ;α(x)
5: and each statement ‘st’ with: CS(j);σ; st[g ← g[rnd]]

6: function LOCK(int l,Job j = J(τ, k))
7: if S[l][rnd] = −1 then

8: S[l][rnd] = τ ; ADDLOCKTASK(l, τ)
9: else

10: α(¬T[S[l][rnd]][τ ][rnd])
11: if ∀r ∈ [0, R) � ¬B[r] then ABORT(j); return

12: ADDTASKLOCK(l, τ); UNBLOCK(l, j)
13: DELTASKLOCK(l, τ)
14: if e[rnd] = 1 then return

15: S[l][rnd] = τ ; ADDLOCKTASK(l, τ)

via prophecy variables instead of function calls. Furthermore,

our approach limits verification via execution time, instead of

context switches [3][8] or some other means.

Kidd et al. [13] also propose to verify real-time software

using sequentialization. They model preemptions using func-

tion calls, and do not present any tools or experimental results.

Their encoding, while useful for obtaining theoretical results,

is too imprecise from a practical verification perspective, since

it only uses priorities to limit possible preemptions. Indeed,

we have shown [2] that the use of job ordering relations (see

Defn. 1) eliminates false warnings compared to an approach

that uses priorities only. In contrast, we use prophecy variables,

following Lal and Reps [7], limit preemptions using job

orderings, and validate our approach empirically.

This paper also extends our earlier work on verifying

periodic programs [1][2] by handling PIP locks, executions

with blockings, and deadlock detection. This requires a more

sophisticated sequentialization (e.g., one that encodes the task

resource graph), as well as an iterative algorithm to minimize

the number of sequentialization rounds.

Lindstrom et al. [14] have used JavaPathfinder to model

check real-time Java programs. Their approach is based on

discrete event simulation, and does not: (a) rely on WCET,

and (b) consider all possible execution times in the range

[0,WCET]. Thus, it is not comparable directly to our approach.

Deadlock detection via sequentialization, explored by Rabi-

novitz and Grumberg [8], assumes that every deadlock has a

wait-free counterexample, i.e., an execution where no thread

blocks (except at the end where it deadlocks). This is true if

the scheduler is non-deterministic (their situation) but not for

periodic programs (this work) where priorities are involved.

Task resource graphs have been used for deadlock detection

via runtime analysis [15][16] of concurrent software. However,

these projects assume a non-deterministic scheduler, and do

File T J Rn Vars Cls SAT Result

nxt.bug1a.c 29 15 15 1.4M 4.3M 26 UNSAFE

nxt.bug1b.c 58 15 15 2.5M 7.5M 54 UNSAFE

nxt.bug1c.c 61 15 15 2.6M 8.1M 57 UNSAFE

nxt.ok1.c 746 15 17 2.9M 9.0M 714 SAFE

aso.bug1a.c 73 15 15 2.7M 8.3M 68 UNSAFE

aso.bug1b.c 64 15 15 2.6M 8.0M 59 UNSAFE

aso.bug1c.c 33 15 15 1.7M 5.1M 29 UNSAFE

aso.ok1.c 4148 15 19 3.5M 10.9M 4,088 SAFE

aso.bug2a.c 43 15 15 1.6M 4.9M 39 UNSAFE

aso.bug3a.c 48 15 15 1.7M 5.1M 45 UNSAFE

aso.bug3b.c 35 15 15 1.5M 4.6M 32 UNSAFE

aso.bug3c.c 55 15 15 1.6M 4.9M 52 UNSAFE

aso.ok3.c 879 15 16 1.8M 5.5M 866 SAFE

aso.bug4a.c 63 15 15 2.0M 6.1M 58 UNSAFE

aso.bug4b.c 908 15 16 2.1M 6.4M 898 UNSAFE

aso.ok4.c 3047 15 17 2.2M 6.7M 3,027 SAFE

TABLE I
EXPERIMENTAL RESULTS. T = TOTAL TIME (SEC); J = # OF JOBS; RN = #

OF ROUNDS AT COMPLETION; VARS = MAX # OF SAT VARIABLES (IN
MILLIONS) PRODUCED BY CBMC; CLS = MAX # OF SAT CLAUSES (IN
MILLIONS) PRODUCED BY CBMC; SAT = TOTAL TIME USED BY SAT

SOLVER.

not use sequentialization. In addition, some of them [16] over-

approximate the TRG and report false deadlocks.

V. EXPERIMENTS

Our implementation of PIPVERIF, called REKPIP, builds on

REKH [2] . The input to REKPIP is a C program containing

the task bodies, and annotations to specify priorities, periods,

and WCETs. REKPIP uses CIL [17] for sequentialization,

and CBMC [18] to verify the resulting C programs. As in

other work [7], REKPIP only allows preemption before access

of global variables, without losing soundness. We validated

REKPIP on several examples derived from the controller of a

LEGO Mindstorms robot2. All our experiments were done on a

Core-i7 machine with four cores (each running at 2.7GHz) and

8GB of RAM. We know of no tool that is comparable directly

with REKPIP. Hence, the main purpose of our experiments is

to evaluate the feasibility of our approach.

The Controller. The robot controller consists of three tasks

(τ0, τ1, τ2) with priorities (0, 1, 2), periods (48, 24, 4), and

WCETs (12, 12, 1), respectively. All tasks arrive at time zero.

The system is schedulable, the hyper-period H is 48, and there

are 15 jobs in C. The controller must guarantee that when

an obstacle is detected, the robot must move backward and

not turn, even if the human operator indicates otherwise. This

property, called NOCOLLISION, is expressed by an assertion

in the controller code. The assertion involves shared variables

accessed by multiple tasks. Hence, appropriate mutual exclu-

sion mechanisms must be used to ensure NOCOLLISION.

The Benchmark. The benchmark consists of a set of

examples derived from the controller described above. Exam-

ple nxt.ok1.c is derived from the original version of the

controller – τ2 balances and controls the motion (i.e., speed

and direction) of the robot, and receives user commands via

bluetooth, τ1 detects obstacles using a sonar sensor, and τ0
prints log messages. Task τ0 does not access shared variables

2See http://lejos-osek.sourceforge.net/nxtway gs.htm for more details.



related to NOCOLLISION, while τ1 and τ2 ensure NOCOL-

LISION by using a PIP lock to protect access to the shared

variables. The nxt.bug1* examples are buggy variations of

nxt.ok1.c that use the PIP lock inappropriately.

The aso.* examples are derived from a modified version

of the controller that we constructed by refactoring out the

functionality that receives bluetooth commands from τ2 to τ0.

Example aso.ok1.c uses a single PIP lock to protect the

shared variables and ensure NOCOLLISION. The aso.bug1*
series of examples are buggy variations of aso.ok1.c that

fail to use the PIP lock appropriately.

Example aso.bug2a.c tries to ensure NOCOLLISION

without requiring the highest priority τ2 to do any locking

or unlocking (thereby ensuring that τ2 never blocks). Unfor-

tunately, aso.bug2a.c is buggy. In contrast, aso.ok3.c

achieves this goal successfully by combining of a PIP lock

and a transaction-based protocol. The aso.bug3* series of

examples are buggy variations of aso.ok3.c that use either

the PIP lock, or the transaction-based protocol inappropriately.

Example aso.ok4.c improves on aso.ok4.c by us-

ing two PIP locks for more fine-grained locking. Examples

aso.bug4a.a and aso.bug4b.c are buggy variations of

aso.ok4.c. The former performs the fine-grained locking

incorrectly (one of the tasks releases a lock prematurely),

while the latter has a deadlock (tasks τ0 and τ1 attempt to

acquire the two PIP locks in opposite order).

Results. Table I summarizes our results. PIPVERIF pro-

duces the correct result for all examples. For nxt.bug1*.c,

columns Rnds and Jobs are always equal, i.e., counterex-

amples are detected in the first iteration of PIPVERIF. For

nxt.ok1.c, two extra rounds are required to prove safety

since there are executions with two blockings between (differ-

ent jobs of) τ1 and τ2 via the PIP lock.

For aso.bug1*.c, aso.bug2*.c and aso.bug3*.c,

counterexamples are also detected in the first iteration of

PIPVERIF. However, for aso.ok1.c and aso.ok3.c,

PIPVERIF goes through several iterations, and only proves

safety at rounds greater than the number of jobs. In particular,

aso.ok1.c requires four extra rounds, while aso.ok3.c

requires only one extra round.

For aso.bug4b.c, the deadlock is detected using one

extra round. This is because any execution leading to a

deadlock must have at least one job blocking. Suppose that

two PIP locks are L0 and L1, τ0 acquires them in the order

(L0, L1) and τ1 acquires them in the opposite order. Then

for a deadlock to occur, the following situation must occur

– τ0 gets L0, τ0 is preempted by τ1, τ1 gets L1, τ1 tries to

get L0 but is blocked, τ0 inherits τ1’s priority and resumes

execution, τ0 tries to get L1, and we have a deadlock.

In general, verifying an nxt.* example is faster than

verifying a aso.* example. We believe that this is due to

the factoring out of complex functionality into a separate task

(i.e., thread), which results in increased complexity and a

larger statespace. The success of REKPIP on these benchmarks

indicates that our approach is effective, and advances the state-

of-the-art in verifying periodic programs with PIP locks.

VI. CONCLUSION

We presented an iterative algorithm to verify safety and

deadlock freedom of periodic programs. Our algorithm is

based on sequentialization – reducing the verification of a

concurrent program to that of verifying an equivalent (non-

deterministic) sequential program. It extends earlier work in

this area by handling synchronization via Priority Inheritance

Protocol (PIP) locks, and being able to detect deadlocks.

It is also optimal in the sense that it terminates with the

minimum number of (sequentialization) rounds needed to

prove a periodic program safe, or find a counterexample.

Empirical validation of our algorithm indicates its feasibility.
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