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Abstract—We verify safety properties of periodic programs,
consisting of periodically activated threads scheduled preemp-
tively based on their priorities. We develop an approach based on
generating, and solving, a provably correct verification condition
(VC). The VC is generated by adapting Lamport’s sequential
consistency to the semantics of periodic programs. Our approach
is able to handle periodic programs that synchronize via two
commonly used types of locks – priority ceiling protocol (PCP)
locks, and CPU locks. To improve the scalability of our approach,
we develop a strategy called snapshotting, which leads to VCs
containing fewer redundant sub-formulas, and are therefore
more easily solved by current SMT engines. We develop two
types of snapshotting – SS-ALL snapshots all shared variables
aggressively, while SS-MOD snapshots only modified variables.
We have implemented our approach in a tool. Experiments on a
benchmark of robot controllers indicate that SS-MOD is the best
overall strategy, and even outperforms significantly the state-of-
the art periodic program verifier prior to this work.

I. INTRODUCTION

Periodic programs (PPs) are used frequently to control
safety-critical systems. Thus, verifying safety (i.e., reachabil-
ity) properties of PPs is an important problem [1]. They are
inherently concurrent, and model checking them is difficult to
scale. In recent years, a number of projects [2], [3], [4], [5],
[6] have explored symbolic bounded model checking of multi-
threaded programs (MTPs), i.e., concurrent programs with
shared memory communication. Specifically, given a MTP P
and a safety property φ, the approach is to verify P |= φ using
two steps: (i) VCGEN: generate a verification condition (VC),
a formula V C(P, φ) that is satisfiable iff P 6|= φ; (ii) SAT:
check if V C(P, φ) is satisfiable using an SMT solver. We
call this approach “memory consistency based BMC” (BMC-
MC), since the construction of V C(P, φ) is based on a specific
memory consistency model.

A PP consists of a finite set of tasks, each executing
in its own thread. However, a PP differs from a MTP in
several verification-relevant ways. First, each task consists of
an infinite sequence of jobs, activated periodically. A task’s
thread remains inactive between the completion of a job
and the activation of the next one. Second, each task has
a priority, that is inherited by its thread. Among all active
threads, the one with the highest priority is scheduled – thus,
scheduling is deterministic. Scheduling is also preemptive,
a newly activated thread with higher priority preempts the
currently executing one. Third, each task has a worst-case-
execution-time (or, WCET) i.e., the maximum time between
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Fig. 1. (a) Example periodic program; (b) legal execution; (c,d) illegal
executions; x-axis denotes time; y-axis denotes priority of executing job.

the arrival and completion of any job of the task, assuming it
is not preempted. Finally, each task has an arrival time, i.e.,
the activation time of its first job.

Note that, even though scheduling of a PP is deterministic,
its overall behavior is non-deterministic, for two reasons. First,
WCET is only an upper-bound on execution time. Whether a
job J is preempted or not by another job J ′, depends on the ac-
tual execution time of J , which is non-deterministic. Second,
we abstract away individual statement execution times, and
only require that the job’s WCET is not exceeded. Therefore,
statements execute for a non-deterministic amount of time, and
the exact preemption location in the control flow of J at which
it is preempted by J ′ is non-deterministic.

We focus on “time-bounded verification” of PPs, i.e., veri-
fying a safety property of a PP assuming it executes for time
T . The time-bound fixes the number of jobs for each task,
and makes the verification amenable to BMC-MC. Assuming
a bound on the execution time is a useful restriction since it
occurs naturally in safety-critical systems. For example, once a
crash is perceived, an air bag must deploy within a time bound.
Figure 1(a) shows a time-bounded PP P with two tasks – τ1
and τ2 – with priorities 1 and 2, periods 8 and 4, WCETs 2
and 1, and arrival times 0 and 1, respectively, and a time bound
T = 8. Figure 1(b) shows a legal execution of P . In this paper,
we develop a BMC-MC approach for time-bounded verification
of PPs. We address two challenges – correctness and efficiency
– and perform an empirical evaluation, as discussed next.

Correctness of VCs. In current BMC-MC approaches, the
construction of V C(P, φ) is based on Lamport’s notion of
sequential consistency [7], which we call SC-MT. However,
SC-MT is imprecise for PPs, and cannot be used for VC
generation. This imprecision arises from the combination of
priority-based scheduling, WCETs, and arrival times. Consider



the PP P shown in Figure 1(a). Note that if J2 preempts J1,
then J2 must complete before J1 can resume. Recall that SC-
MT assumes a non-deterministic scheduler, i.e., any active non-
blocked thread is allowed to execute. Thus the execution in
Figure 1(c) is impossible for the P , while it is allowed by
SC-MT. Similarly, due the arrival and WCETs of τ1 and τ2, it
is impossible for J3 to preempt J1. Therefore, the execution
in Figure 1(d) is illegal for P , while it is allowed by SC-MT.

Our first contribution is a new method to construct
V C(P, φ) based on a PP-specific notion of sequential con-
sistency. A satisfying assignment to V C(P, φ) induces an
event order corresponding to a legal execution of P . Previous
works [3], [5], [6] on memory-consistency based VC gener-
ation for MTPs leverage the concept of Lamport clocks [8],
which are symbolic integer-valued timestamps associated with
each program event (i.e., an access to a shared variable). These
timestamps order program events in a sequentially consistent
logical timeline. However, they are not sufficient to capture
all legal executions of PPs. To solve this problem, we propose
hierarchical timestamps, which not only capture the program
order and the write-read ordering as before, but also take into
account the priority-based preemption semantics of PPs.

Like MTPs, PPs protect access to shared variables via
locking. However, unlike MTPs, locks in PPs are implemented
by altering thread priorities. Our second contribution to deal
with two variants of such locks – Priority Ceiling Protocol
(PCP) locks [9], and CPU locks (another variant, the Priority
Inheritance lock [9], is beyond the scope of this paper). When
a thread acquires such a lock, its priority is raised, which
disables scheduling of other threads from which the shared
resource must be protected. When a thread releases a lock,
its priority is reduced correspondingly. To encode such locks,
we introduce priority-test-and-set (PTAS) operations, which
atomically test and update the set of acquired locks. We
formalize the semantics of PTAS operations, and show how to
implement PCP and CPU locks using them. We also update
V C(P, φ) to handle PTAS operations in a provably correct
manner. Further details are presented in Section IV.

Efficiency of Encoding. As observed in the BMC-MC liter-
ature [3], [4], [5], [10], verification conditions, if constructed
naively, are intractable for even state-of-the-art SMT solvers.
An effective strategy for generating tractable VCs is to reduce
the set of writes to a shared variable g that could be “observed”
by a read of g, where a read r observes a write w if w is the
most recent write to g prior to r. For PPs, we note that the
observable write sets for reads in successive jobs contain many
common write events from previous job instances, which leads
to a severely redundant encoding. Our third contribution is
an efficient encoding scheme for PPs which reduces the size
of observation sets via the idea of snapshots.

A snapshot ss of g, at a location l inside a task τ , reads
the current value of g in τ and then writes the same value
back atomically. Thus, by introducing a new atomic read/write
pair for g at l, ss prevents the reads in τ following l from
directly observing the writes to g prior to l. Snapshotting is
useful if multiple reads following l may observe the same (or

largely similar) set of prior writes: multiple write events prior
to l are effectively merged into a single write event at l. This
reduces the large (quadratic) number of write-read data flows
into a small (linear) number of flows, improving efficiency of
the encoding. To be beneficial, snapshots must be performed
for selective shared variables and locations. We explore two
snapshotting strategies: (i) SS-ALL: all shared variables are
snapshotted at the end of every job; (ii) SS-MOD: only shared
variables that could be modified by a job are snapshotted at
its end. Further details are presented in Section V.

Empirical Evaluation. Our final contribution is an im-
plementation of our approach in a tool called LLREK, and
empirical evaluation on a benchmark comprising of PPs that
implement controllers for LEGO Mindstorms robots. Our
results indicate that both SS-MOD and SS-ALL outperform SS-
NONE, with SS-MOD being the best overall strategy. In some
cases, SS-MOD is five times faster than SS-NONE. In other
cases, SS-MOD completes verification successfully while SS-
ALL and SS-NONE run out of memory. This work is part of
an ongoing project on developing efficient software model
checkers for periodic programs. We also compared LLREK
with REKH [11], the most advanced PP verifier developed
by the project prior to LLREK. On our benchmark, LLREK
outperforms REKH significantly (in some cases by a factor of
seven), and also solves many instances for which REKH runs
out of memory. Further details are presented in Section VI.

Related Work. There is a large body of work in verification
of logical properties of both sequential and concurrent soft-
ware (see [12] for a survey). However, these techniques ab-
stract away time completely, by assuming a non-deterministic
scheduler model. In contrast, we focus on periodic programs
where scheduling is non-deterministic, and influenced by both
thread priorities and timing.

A number of projects [13], [14] verify timed properties of
systems using discrete-time [15] or real-time [16] semantics by
abstracting away data- and control-flow completely. Instead,
we focus on the verification of real implementations of peri-
odic programs, and do not abstract data- and control-flow.

Verification of multi-threaded programs via BMC-MC [3],
[4], [5], [6] has also been studied by several researchers.
However, previous methods focus on constructing VCs for
MTPs. These methods are incorrect for PPs, as argued earlier.
The purpose of snapshotting is orthogonal to that of inter-
ference abstraction (IA) [5], commonly used in BMC-MC. IA
assigns symbolic values to existing reads to decouple them
from writes, while snapshotting introduces new symbolic reads
to merge data flows arising from multiple writes on a shared
variable into a single read/write unit. Merging allows the reads
in the following program fragment to observe a single data
source as opposed to a large number, thus improving the
efficiency of the symbolic encoding significantly.

Florian et al. [1] extend the explicit-state model checker
SPIN to verify periodic programs written in PROMELA. Our
focus is on the verification of periodic programs at the source
code level using BMC-MC, which is a symbolic approach.

Time-bounded verification of PPs via sequentialization was



proposed by Chaki et al. [17], and later extended to be
compositional [11]. However, sequentialization-based methods
for MTPs [18], [19], [20] typically rely on modeling context
switches (preemptions) for thread interleavings instead of ex-
ploiting memory consistency of read/writes. Sequentialization
has also been applied iteratively to verify PPs with priority
inheritance locks [21]. It is possible to extend the approach in
this paper in a similar manner, but this requires a non-trivial
modification to the encoding. Kidd et al. [22] have applied se-
quentialization to verify PPs, by using function calls to model
preemptions. Our encoding relies on memory consistency, and
does not model preemptions explicitly. Finally, applying naive
concurrency (i.e., MTP) verification to PPs result in virtually
100% of false positives, as explored in prior work [17], [11].

The rest of the paper is organized as follows. In Section II,
we present basic concepts and notation. In Section III we
present our basic construction of V C(P, φ). In Section IV,
we show how to augment V C(P, φ) to encode PCP and CPU
locks. In Section V we present snapshotting, and its two
variants. In Section VI we present our empirical evaluation,
and in Section VII, we conclude.

II. PRELIMINARIES

We assume an universe bounded by time T . A task τ is
a 5-tuple (J, π, P, C,A) where: (i) π is its priority; (ii) P is
its period; (iii) J is a sequence of T

P jobs; (iv) C > 0 is its
WCET; and (v) A ≥ 0 is its arrival time. A periodic program
P is a finite sequence of tasks. Consider a PP P = 〈τ1, . . . , τn〉
such that τi = (Ji, πi, Pi, Ci, Ai). We write Ji,j to mean the
the j-th job of the i-th task, i.e., Ji = 〈Ji,1, . . . , Ji,|Ji|〉. We
assume that tasks have: (i) distinct and mutually disjoint jobs,
i.e., (i, j) 6= (i′, j′) =⇒ Ji,j 6= Ji′,j′ ; and (ii) distinct
priorities i 6= i′ =⇒ πi 6= πi′ . Let RT i be the response
time of τi, i.e., the time required by any job of τi to complete,
assuming maximal preemption by other tasks. Note that RT i

is statically computable via Rate-Monotonic Analysis [23]. We
assume that the first job of τi always completes before time
Pi, i.e., Ai + RT i ≤ Pi. It can be shown that RT i ≥ Ci,
which implies that RT i > 0 and Pi > 0.

Job Orderings. Let J be the set of all jobs. We define
two relations @ (finishes-before) and ↑ (may preempt) over
J to characterize the order between jobs. Each job Ji,j has a
priority π(Ji,j) = πi, arrival time A(Ji,j) = Ai+(j−1)×Pi,
and departure time D(Ji,j) = A(Ji,j) +RTi. Then:

J1 @ J2 ⇐⇒
(π(J1) ≤ π(J2) ∧D(J1) ≤ A(J2)) ∨

(π(J1) > π(J2) ∧A(J1) ≤ A(J2))
(1)

J1 ↑ J2 ⇐⇒ π(J1) < π(J2) ∧A(J1) < A(J2) < D(J1)(2)

Note that J1 @ J2 means that J1 always completes before
J2 starts, and J1 ↑ J2 means that it is possible for J1 to
be preempted by J2. Since RT i ≤ Pi, earlier jobs of a task
always finish before later jobs of the same task, i.e., ∀i ∈
[1, n] � ∀1 ≤ j < j′ ≤ |Ji| � Ji,j @ Ji,j′ . Also A(J) < D(J).

States and Events of PPs. We assume a denumerable set G
of D-valued shared variables; D contains a distinguished value
⊥. Function I : G 7→ D maps shared variables to their initial

values. Let Z be the set of integers. An action α is a 4-tuple
(J, pc, η, g) and an event ε is a pair (α, v) such that J ∈ J ,
pc ∈ Z, η ∈ {r, w}, g ∈ G and v ∈ D. Let J(α) = J(ε) = J ,
π(α) = π(ε) = π(J), η(α) = η(ε) = η, g(α) = g(ε) = g, and
v(ε) = v. Events ((J, pc, r, g), v) and ((J, pc, w, g), v) denote,
respectively, that value v is read from and written to variable
g by job J at location pc.

Action (J, .) and event ((J, .),⊥) denote start of job J . For
α = (J, .), and ε = ((J, .),⊥), J(α) = J(ε) = J , π(α) =
π(ε) = π(J), η(α) = η(ε) = .. Similarly, action (J, /) and
event ((J, /),⊥) denote termination of job J . For α = (J, /),
and ε = ((J, /),⊥), J(α) = J(ε) = J , π(α) = π(ε) = π(J),
η(α) = η(ε) = /.

Note that we use different fonts for J to denote different
things. In general, J (or Jx) denotes a specific job, J (or Jx)
denotes a set of jobs, while J(·) is a function that maps actions
and events to their corresponding jobs.

Job Alphabet and Program Order. Each job J has an
alphabet of read actions Σr(J) ⊆ {J} × Z × {r} × G,
and write actions Σw(J) ⊆ {J} × Z × {w} × G. Let
Σ(J) = Σr(J) ∪ Σw(J) ∪ {(J, .), (J, /)}. Let PO(J) be a
partial order over Σ(J), representing control flow. We write
α

J→ α′ to mean (α, α′) ∈ PO(J). Thus, ∀α ∈ Σr(J) ∪
Σw(J) � (J, .)

J→ α
J→ (J, /). Let J be a linearization of Σ(J)

consistent with PO(J), and ι(α) be the index of α in J. In
particular, ι(J, .) = 1, and ι(J, /) = |Σ(J)|.

Timed Event Sequences. The valid executions of periodic
programs are characterized by timed event sequences (TES).
Formally, a TES is a sequence 〈(ε1, t1), . . . , (εk, tk)〉 where εi
is an event, and ti is a real-valued timestamp. For TESs e1

and e2, e1 ⊕ e2 is the set of TESs obtained via their arbitrary
interleaving, and e1 � e2 is their concatenation. Operations ⊕
and � extend naturally to sets of TESs. Let PriorWr(e, i) be
the indices of events in e prior to εi that write to g(εi), i.e.,
PriorWr(e, i) = {j ∈ [1, i) | η(εj) = w ∧ g(εj) = g(εi)}.
Then, LastWr(e, i) is last value written to g(εi) prior to εi,
or I(g(εi)) if no such write exists, i.e., if PriorWr(e, i) = ∅
then LastWr(e, i) = I(g(εi)) else LastWr(e, i) = v(εm)
where m = max(PriorWr(e, i)).

Job Semantics. The semantics of J , denoted [[J ]], is a
set of TESs. Formally, 〈(ε1, t1), . . . , (εk, tk)〉 ∈ [[J ]] if: (i)
∀i ∈ [1, k] � J(εi) = J ; (ii) A(J) ≤ t1 < t2 < · · · <
tk ≤ D(J); and (iii) if ∀i ∈ [1, k] � εi = (αi, vi),
then the sequence of actions 〈α1, . . . , αk〉 respects the pro-
gram order PO(J), i.e., α1 = (J, .), αk = (J, /), and
∀i ∈ [1, k) � αi

J→ αi+1. For example, suppose the body
of job J2 from our running example is described by the
control-flow-graph shown in Figure 2(c). Then [[J2]] contains
all TESs of the form 〈(((J2, .),⊥), t1), (((J2, 1, r, g), v1),
t2), (((J2, pc, w, g), v2), t3), (((J2, /),⊥), t4)〉 such that: (i)
1 ≤ t1 < t2 < t3 < t4 ≤ 2; (ii) (v1 < 0 ∧ pc = 3 ∧ v2 =
v1 + 7) ∨ (v1 ≥ 0 ∧ pc = 2 ∧ v2 = v1 × 5).

Task Semantics. The semantics of τi, denoted [[τi]], is the
set of TESs:

⊙|Ji|
j=1[[Ji,j ]]. Thus, each execution of τi is a

concatenation of an execution from each of its jobs. The
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Fig. 2. (a) Periodic program; (b) Execution; (c) Control-Flow Graph.

semantics of P , denoted [[P]], is also a set of TESs. Formally,
e = 〈(ε1, t1), . . . , (εk, tk)〉 ∈ [[P]] if:

(a) e ∈
n⊕
i=1

[[τi]] (b) ∀i ∈ [1, k) � ti < ti+1 (3)

∀1 ≤ i < j ≤ k � ¬(J(εj) @ J(εi)) (4)
∀1 ≤ i ≤ j ≤ h ≤ k � J(εi) = J(εh) =⇒ π(εi) ≤ π(εj) (5)
∀i ∈ [1, k] � η(εi) = r =⇒ v(εi) = LastWr(e, i) (6)

Informally, (3) states that e is an interleaving of executions of
tasks in P with non-decreasing timestamps; (4) enforces job
ordering; (5) enforces priority based preemptive scheduling;
and (6) states that the last written value is always read.

III. VC GENERATION FOR PERIODIC PROGRAMS

Hierarchical Clock. The concept of a hierarchical Lamport
clock is fundamental to our VCGen algorithm. To understand
this idea, consider the PP shown in Figure 2(a). It is the same
as in Figure 1(a), except that we have added actions, with
program ordering, to the jobs. Specifically Σ(J1) = {α1, α2},
Σ(J2) = {α3, α4}, and Σ(J3) = {α5, α6}, with program
order α1

J1→ α2, α3
J2→ α4, and α5

J3→ α6. Now consider
a legal execution of the PP shown in Figure 2(b), where
∀i ∈ [1, 6] � xi = ((αi, vi), ti). Let R(e, i), be the number
of jobs ending before xi. Let ./∈ {<,>}. Then, we observe
for each (xi, xj):

1) If R(e, i) ./ R(e, j), then ti ./ tj . Example pairs are
(x4, x2) and (x2, x5).

2) If R(e, i) = R(e, j) ∧ π(αi) ./ π(αj), then ti ./ tj . An
example is (x1, x3).

3) If R(e, i) = R(e, j) ∧ π(αi) = π(αj) (note this implies
J(αi) = J(αj)), but ι(αi) ./ ι(αj), then ti ./ tj .
Example pairs are (x3, x4) and (x5, x6).

The above observations imply that, for the TES in
Figure 2(b), the ordering of xi’s by their timestamps
ti’s equals their lexicographic ordering by the tuple
(R(e, i), π(αi), ι(αi)). Thus, (R(e, i), π(αi), ι(αi)) is a logical
representation of the timestamp ti of event (αi, vi). Our key
insight is that this holds for arbitrary PPs and their legal
executions. In the rest of this section, we formalize this insight,
use it to construct the VC for an arbitrary PP, and prove its
correctness.

VCGen for Jobs. We assume that for any job J , there
exists a bit-vector logic formula VC (J) over the set of
predicates En(J) = {En(α) | α ∈ Σ(J)}, and terms V (J) =
{V (α) | α ∈ Σr(J) ∪ Σw(J)} such that the following holds.

Fact 1 (Job Verification Condition). For any {α1, . . . , αk} ⊆
Σ(J), and sequence 〈v1, . . . , vk〉 ∈ Dk, the formula VC (J)∧∧k
i=1(En(αi) ∧ V (αi) = vi) is satisfiable iff ∀A(J) ≤ t1 <
· · · < tk ≤ D(J) � 〈((α1, v1), t1), . . . , ((αk, vk), tk)〉 ∈ [[J ]].

Thus, every satisfying assignment of VC (J) ∧∧k
i=1(En(αi) ∧ V (αi) = vi) corresponds to a legal

execution of J . If J is a C function – without unbounded
loops, recursion and dynamic memory – VC (J) can be
constructed polynomially [24]. The VC of P is also a
bit-vector formula, and consists of three sub-VCs: (i) VC seq

captures the thread local behavior of each task; (ii) VC clk

orders events into a total order along a logical timeline;
and (iii) VC obs relates the read and write events on shared
variables so that they are sequentially consistent. Formally,

V C(P) = VC seq ∧VC clk ∧VC obs , where (7)

VC seq =
∧
J∈J

VC (J) (8)

and VC clk and VC obs are presented below. In the following,
Σr denotes

⋃
J∈J Σr(J), Σw denotes

⋃
J∈J Σw(J), and Σ

denotes
⋃
J∈J Σ(J). All terms have bit-vector type.

The Clock VC: VC clk . For each α ∈ Σ, let term R(α)
denote the round of α. Following our intuition, we write κ(α)
to mean (R(α), π(α), ι(α)), i.e., the symbolic timestamp of
α. During VC construction, we can now use the predicate
κ(·) to order events in a periodic program, akin to the
way happens-before predicate is used for non-periodic, multi-
threaded programs [7].

For each job J , we introduce two terms: SR(J) and ER(J),
to represent, respectively, the earliest (i.e., start) and latest (i.e.,
end) round of J’s execution, in which any action in Σ(J) may
occur. Then, VC clk is a conjunction of the following:

(a)
∧
J∈J

∧
α∈Σ(J)(SR(J) ≤ R(α) ≤ ER(J))

(b)
∧
J1@J2

ER(J1) < SR(J2)
(9)∧

J1↑J2

∧
α∈Σ(J1)

R(α) ≤ SR(J2) ∨R(α) > ER(J2) (10)

Informally, (9)(a) asserts that actions respect starting and
ending rounds; (9)(b) asserts that if J1 finishes before J2 starts
then the ending round of J1 must be less than the starting
round of J2; (10) asserts that if J1 could be preempted by
J2, then it cannot execute while J2 is active.

The Observation VC: VC obs . For a read action αr ∈ Σr,
let W(αr) be the set of write actions that αr may observe,
i.e., the set of writes to variable g(αr) belonging to jobs that
do not start after J(αr) ends. Formally:

W(αr) = {αw ∈ Σw | g(αw) = g(αr) ∧ ¬(J(αr) @ J(αw))}
(11)

For each αr ∈ Σr, we introduce three additional variables
R̃(αr), π̃(αr), and ι̃(αr). In essence, (R̃(αr), π̃(αr), ι̃(αr))



denotes the symbolic clock of the write action observed by
αr, and is denoted by κ̃(αr). Let α ≺ α′ denote α happens
before α′, i.e., α ≺ α′ = En(α)∧κ(α) < κ(α′). Then VC obs

is a conjunction of the following for each read action αr ∈ Σr:

En(αr)⇒

 ∧
αw∈W(αr)

αw ≺ αr ⇒ κ(αw) ≤ κ̃(αr)

 (12)

En(αr)⇒

VC 1
obs ∨

∨
αw∈W(αr)

VC 2
obs(αw)

 , where (13)

VC 1
obs =

 ∧
α∈W(αr)

α 6≺ αr

 ∧ (I(g(αr)) = V (αr)) (14)

VC 2
obs(α) = α ≺ αr ∧ κ(α) = κ̃(αr) ∧V (α) = V (αr) (15)

Note that (12) asserts that write action observed by αr must
have executed prior to αr and no later than any write action to
the same shared variable; (13)–(15) asserts that αr reads the
value written by the write action its observes. Thus, VC obs is
essentially an encoding of (6).

Correctness. The correctness of V C(P) is expressed by
Theorem 1, which states essentially that every satisfying
assignment of V C(P) ∧

∧k
i=1(En(αi) ∧ V (αi) = vi) cor-

responds to a legal execution of P . For brevity, we defer the
proof of Theorem 1 to Appendix B.

Theorem 1. For any set of actions {α1, . . . , αk} ⊆ Σ, and
sequence of values 〈v1, . . . , vk〉 ∈ Dk, the formula V C(P) ∧∧k
i=1(En(αi) ∧ V (αi) = vi) is satisfiable iff ∃t1, . . . , tk �
〈((α1, v1), t1), . . . , ((αk, vk), tk)〉 ∈ [[P]].

Constructing V C(P, φ). To check a property φ for P , let
us assume that P is augmented with an action α(φ) such
that P |= φ iff no TES in [[P]] contains the event (α(φ), v)
for some value v. Then, from Theorem 1, P |= φ ⇐⇒
V C(P) ∧ En(α(φ)) is unsatisfiable. Thus, V C(P, φ) =
V C(P) ∧ En(α(φ)).

IV. HANDLING LOCKS

In this section, we extend VC generation to handle acquiring
and releasing of locks. We consider PPs with two kinds of
locks – priority ceiling protocol (PCP) locks and CPU locks.
Each PCP lock l is associated with a priority level π(l).
Acquiring l disables scheduling any task whose priority is less
than π(l). Thus, a job is executed iff it is active and its priority
is higher than all other active jobs, as well as those of all
PCP locks held. A CPU lock disables scheduling altogether.
In the rest, we only deal with PCP locks since a CPU lock is
equivalent to a PCP lock l such that π(l) is greater than the
largest task priority.

To formalize PCP locks, we introduce atomic priority-test-
and-set (PTAS) actions. Let L be the set of all PCP locks. For
L ⊆ L, let π(L) = {π(l) | l ∈ L}. Formally, a PTAS action
is a 5-tuple (J, pc, πt, Lr, La) such that J ∈ J , pc ∈ Z,
πt is a priority value, Lr ⊆ L, and La ⊆ L. A PTAS
event ε is a pair (α,Lh) such that α is a PTAS action, and

Lh ⊆ L. Informally, Lh denotes the set of locks held after ε
occurs. PTAS actions restrict the set of legal executions of a
PP. Specifically, whenever, a PTAS action (J, pc, πt, Lr, La)
appears on an execution, the following holds: (i) test: all
currently held PCP locks have priority less than πt; and (ii)
set: locks in Lr are released, locks in La are acquired.

Modeling Locks. Let Σp(J) be the set of PTAS actions in
Σ(J). Formally, Σp(J) = {sched(J)} ∪

⋃
l∈L(lock(J, l) ∪

unlock(J, l)), where: sched(J) = (J, 0, π(J), ∅, ∅),
lock(J, l) ⊆ {(J, pc,max(π(L)) + 1, ∅, {l}) | pc ∈ Z}, and
unlock(J, l) ⊆ {(J, pc,max(π(L)) + 1, {l}, ∅) | pc ∈ Z}.
Action sched(J) denotes the scheduling of J for the first time.
Actions in lock(J, l) and unlock(J, l) are used, respectively,
to acquire and release lock l. Program order PO(J) satisfies:

∀α ∈ Σ(J) \ {sched(J), (J, .)} � (J, .) J→ sched(J)
J→ α

(16)
Note that this means on any execution of J , sched(J)

appears before every other action in Σ(J), except for
(J, .). Every TES e ∈ [[P]] also satisfies the following
condition. Let there be k PTAS events in e, and ε̃i =
((J i, pci, πit, L

i
r, L

i
a), Lih) be the i-th PTAS event in e. Then:

L1
h = L1

a

∧
∀i ∈ (1, k] � Lih = Li−1

h \ Lir ∪ Lia(17)

∀i ∈ (1, k] �max(π(Li−1
h )) < πit (18)

Note that (16)–(18) imply that J is scheduled only if the
priority of J is higher than all PCP locks held. The CPU
lock has priority max({π(J) | J ∈ J }) + 1.

Updated Construction of V C(P). Let Σp =
⋃
J∈J Σp(J).

When constructing VC seq , we treat each α ∈ Σp as a
NOP. The construction of VC clk uses the augmented Σ(J)
containing the additional PTAS actions. The construction of
VC obs is updated as follows. For each α ∈ Σp, we add the
following terms: R(α), R̃(α), π̃(α), ι̃(α), and V (α). Their
meaning is the same as for other events, except that V (α)
now represents the set of PCP locks held after α occurs. Also,
we define W(α), i.e., the set of actions that α may observe,
to contain all other PTAS actions belonging to jobs that do
not start after J(α) finishes. Formally:

W(α) = {α′ ∈ Σp | α′ 6= α ∧ ¬(J(α) @ J(α′))} (19)

Then VC obs contains the following additional constraints for
each α = (J, pc, πt, Lr, La) ∈ Σp:

En(α) =⇒

 ∧
α′∈W(α)

α′ ≺ α =⇒ κ(α′) ≤ κ̃(α)

 (20)

En(α) =⇒

VC 3
obs ∨

∨
α′∈W(α)

VC 4
obs(α′)

 , where (21)

VC 3
obs =

 ∧
α′∈W(α)

α′ 6≺ α

 ∧ (V (α) = π(La)) (22)

VC 4
obs(α′) =

 α′ ≺ α ∧ κ(α′) = κ̃(α)∧
max(π(V (α′))) < πt∧

V (α) = V (α′) \ Lr ∪ La

 (23)
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Fig. 3. Example periodic program to illustrate snapshotting.

Note that (20)–(23) assert that the PTAS action observed by α
must be the last PTAS action that executed prior to α; (21)–
(23) further asserts the semantics of PTAS actions is respected.
Thus, (20)–(23) encode (18). We claim that Theorem 1 is
valid even for the new V C(P). The proof of this claim is
in Appendix B.

V. SNAPSHOTTING SHARED VARIABLES

In this section, we present snapshotting of shared vari-
ables. To understand what snapshotting is, and why it is
important, consider the PP in Figure 3. It consists of 1
task τ1 with 5 jobs J1, . . . , J5. Consider initially only the
read and write actions r1, . . . , r5, w1, . . . , w10, and for each
read, the set of writes it may observe. Then, we have:
W(r1) = {w1, w2},W(r2) = {w1, . . . , w4}, . . . ,W(r5) =
{w1, . . . , w10}. In general, W(ri) = {w1, . . . , w2×i}. Recall
– from (12)–(15) – that VC obs encodes, for each ri, the
most recent write in W(ri) prior to ri. However, since
W(ri−1) ⊆ W(ri), the problem for ri−1 (and indeed for all
j < i) is re-encoded (and resolved by the SMT solver) as part
of the problem for ri.

Snapshotting eliminates much of this redundant encoding
and solving. Semantically, a snapshot of shared variable g in
job J appears after every write to g in the program order of J ,
and atomically reads the value of g and writes the same value
back to g. In Figure 3, these actions are shown as s1, . . . , s5

1.
A snapshot dominates every other write to g in its job, and
therefore eliminates them from being observed by future reads.
At the same time, it may observe these writes, and snapshots
in other jobs. With the snapshots added to Figure 3, we now
have: W(s1) = W(r1) = {w1, w2},W(s2) = W(r2) =
{s1, w3, w4}, . . . ,W(s5) = W(r5) = {s4, w9, w10}. Note
how the problem for ri is solved only once (for si), and
then the solution for si is reused for all j > i. Empirically,
snapshotting leads to significantly improved (see Section VI)
verification time.

Formalism. We define a function Snaps : J 7→ 2G.
Informally, Snaps(J) is the set of shared variables snapshotted
by job J . The alphabet Σ(J) of J is augmented with snapshot
actions: Σs(J) = {(J, s, g) | g ∈ Snaps(J)}. Let Σs(J) =
〈α1
s, . . . , α

k
s 〉. The program order PO(J) is augmented with:

∀α ∈ Σ(J)\(Σs(J)∪{(J, /)})�α J→ α1
s . . .

J→ . . . αks
J→ (J, /)

(24)
Thus, every execution in [[J ]] snapshots all variables in

Snaps(J), and snapshot events appear after all other events,

1For simplicity, we view a snapshot as either a read or a write, based on
the context.

except for (J, /). Both reads and snapshots observe the last
written values. Formally (6) is replaced by:

∀i ∈ [1, k] � η(εi) ∈ {r, s} =⇒ v(εi) = LastWr(e, i) (25)

Updated Construction of V C(P). Let Σs be the set of
snapshot actions, i.e., Σs =

⋃
J∈J Σs(J). When constructing

VC seq , we treat each α ∈ Σs as a NOP. The construction
of VC clk uses the augmented Σ(J) containing the additional
snapshot actions. The construction of VC obs is updated as
follows. For every action αr ∈ Σr∪Σs, we defineW(αr), i.e.,
the set of actions that αr may observe, as follows. For every
job J , and shared variable g, let Ψ@(J, g) be the maximal set
of g-snapshotting jobs less than J according to the @ order,
i.e.,
Ψ@(J, g) = {J ′ ∈ J | g ∈ Snaps(J ′) ∧ J ′ @ J

∧
∀J ′′ ∈ J � g ∈ Snaps(J ′′) ∧ J ′′ @ J =⇒ ¬(J ′ @ J ′′)} (26)

Let Ψ↑(J, g) be the set of jobs that can preempt J and also
snapshot g, and Ψ↓(J) be the set of jobs that can be preempted
by J , and J itself, i.e.,

Ψ↑(J, g) = {J ′ ∈ J | g ∈ Snaps(J ′) ∧ J ↑ J ′} (27)
Ψ↓(J) = {J ′ ∈ J | J ′ = J ∨ J ′ ↑ J} (28)

Let αr = (J, η, g). Then W(αr) consists of: (i) snapshots
by jobs in Ψ@(J, g) and Ψ↑(J, g); and (ii) writes by jobs in
Ψ↓(J). Formally:

W(αr) = {(J ′, s, g) | J ′ ∈ Ψ@(J, g) ∪Ψ↑(J, g)}
⋃

{(J ′, w, g) | J ′ ∈ Ψ↓(J)} (29)

Finally, VC obs contains the constraints defined in (12)–(15)
for each αr ∈ Σr ∪ Σs. Note that this means that a read or
snapshot action αr observes the last write or snapshot action
to g(αr) that executed prior to αr. We claim that Theorem 1
also holds for the new V C(P). The proof of this claim is in
Appendix B.

We have implemented two variants of snapshotting – SS-
ALL and SS-MOD – which differ in the set of variables
snapshotted. For SS-ALL, all shared variables are snapshotted
at the end of each job, i.e., Snaps(J) = G. For SS-MOD,
only shared variables that are written by a job are snapshotted
by it, i.e., Snaps(J) = {g | (J,w, g) ∈ Σ(J)}. We denote by
SS-NONE the strategy of no snapshotting, presented in earlier
sections. Next, we evaluate snapshotting empirically.

VI. EMPIRICAL VALIDATION

We implemented our approach in a tool called LLREK, on
top of UFO [25] and LLVM [26]. The input to LLREK is a
PP P written in C, with jobs implemented via C functions,
and periods, priorities etc. specified via macros. The safety
property φ is expressed as an assertion in the job code. LLREK
constructs the verification condition V C(P, φ), as described
earlier, and solves it using STP [27]. All experiments were
performed on a machine running at 2.9GHz with a memory
limit of 2GB and a time limit of 60 minutes. Our tools and
benchmark are available at http://www.contrib.andrew.cmu.
edu/∼schaki/misc/llrek.tgz.



Name Time (in seconds) SAT Vars (in 1000s) SAT Clauses (in 1000s) AVGOBS(P) |W (P)|
NONE ALL MOD REKH NONE ALL MOD REKH NONE ALL MOD REKH NONE ALL MOD NONE ALL MOD

nxt.bug1:H1 33 9 7 18 612 234 223 698 3252 1029 985 2642 25.6 2.9 2.9 298 455 416
nxt.bug2:H1 32 10 7 31 642 250 235 710 3394 1091 1030 2684 26.5 3.1 3.2 310 492 429
nxt.ok1:H1 19 7 8 17 612 234 223 698 3252 1030 986 2642 25.6 2.9 2.9 298 455 416
nxt.ok2:H1 20 7 6 29 611 234 223 699 3246 1029 985 2645 25.4 3.0 2.9 298 454 415
nxt.ok3:H1 30 8 6 31 642 250 235 709 3394 1091 1030 2675 26.5 3.1 3.2 310 492 429

aso.bug1:H1 29 9 9 34 636 274 249 737 3346 1198 1090 2796 26.0 3.6 3.6 304 512 427
aso.bug2:H1 28 10 9 32 646 277 251 734 3399 1211 1100 2780 26.4 3.7 3.7 308 516 431
aso.bug3:H1 29 13 11 80 690 305 270 958 3608 1324 1171 3660 25.5 3.6 3.5 355 615 504
aso.bug4:H1 32 17 9 66 649 306 265 891 3412 1357 1168 3396 26.5 4.6 4.4 309 543 434
aso.ok1:H1 32 11 10 32 658 286 261 726 3458 1255 1148 2746 27.1 4.1 4.2 311 519 434
aso.ok2:H1 38 29 17 67 651 307 265 893 3421 1360 1170 3406 26.5 4.6 4.4 311 545 436
nxt.bug1:H4 * 119 74 * * 1096 1046 * * 4897 4681 10696 99.5 3.0 3.0 1192 1835 1676
nxt.bug2:H4 * 172 92 * * 1177 1105 * * 5214 4916 10877 102.9 3.1 3.2 1240 1989 1731
nxt.ok1:H4 * 89 49 * * 1096 1046 * * 4898 4682 10696 99.5 3.0 3.0 1192 1835 1676
nxt.ok2:H4 * 125 49 * * 1096 1046 * * 4897 4682 10708 99.3 3.0 3.0 1192 1834 1675
nxt.ok3:H4 * 358 133 * * 1177 1105 * * 5213 4916 10830 102.9 3.1 3.2 1240 1989 1731

aso.bug1:H4 * 128 92 * * 1301 1177 * * 5773 5231 11394 99.9 3.6 3.6 1216 2072 1723
aso.bug2:H4 * 147 74 * * 1316 1189 * * 5840 5283 11316 101.6 3.7 3.7 1232 2088 1739
aso.bug3:H4 * 209 136 * * 1452 1280 * * 6408 5647 * 98.3 3.6 3.5 1420 2490 2034
aso.bug4:H4 * 329 152 * * 1465 1261 * * 6579 5645 * 100.4 4.6 4.4 1236 2199 1751
aso.ok1:H4 * 270 210 * * 1359 1237 * * 6061 5523 11151 103.2 4.1 4.2 1244 2100 1751
aso.ok2:H4 * * 1312 * * 1469 1264 * * 6597 5659 * 100.1 4.6 4.4 1244 2207 1759
ctm.bug2 36 29 21 105 656 429 336 719 3253 1822 1448 2801 17.9 4.1 4.5 512 1052 683
ctm.bug3 * 124 59 258 * 705 554 1098 * 3066 2439 4389 26.6 4.1 4.5 768 1588 1033
ctm.ok1 23 37 21 122 668 434 341 730 3309 1839 1466 2845 18.6 4.1 4.6 512 1052 684
ctm.ok2 28 26 17 111 657 431 338 724 3261 1829 1455 2823 18.1 4.1 4.5 512 1052 683
ctm.ok3 * 116 53 275 * 714 567 1124 * 3106 2497 4485 27.9 4.1 4.5 780 1600 1057
ctm.ok4 * 320 143 395 * 959 760 1410 * 4184 3356 5713 36.4 4.2 4.7 1040 2140 1400

TABLE I
EXPERIMENTAL RESULTS; * = MEMORYOUT OR TIMEOUT; VARS = # OF SAT VARIABLES; CLAUSES = # OF SAT CLAUSES; BEST NUMBERS ARE IN BOLD.

Benchmark. Our benchmark consist of a set of PPs
for controlling two LEGO Mindstorms robots – a two-
wheel self-balancing robot (http://lejos-osek.sourceforge.net/
nxtway gs.htm), and a metal-stamping robot (http://www.cs.
cmu.edu/∼soonhok/blog/building-a-lego-turing-machine). The
self-balancing robot controllers come in two variants. Some
– named nxt.* in our tables – have three periodic tasks:
a Balancer, with period of 4ms, that keeps the robot
upright and monitors the bluetooth link for user commands,
an Obstacle, with a period of 48ms, that monitors a sonar
sensor for obstacles, and a 96ms Background task that prints
debug information on an LCD screen. Others – named aso.*
– have the functionality for monitoring bluetooth refactored
out into the Background task.

The Turing Machine examples are named ctm.* and
have four periodic tasks – Controller, TapeMover,
Reader, and Writer in order of ascending priority. The
Controller task has 500ms period and 440ms WCET. The
other three tasks each have 250ms period and 10ms WCET
respectively. The Controller task looks up a transition
table, determines next operations to execute, and gives com-
mands to the other tasks. The TapeMover task moves the
tape to the left (or right). The Reader task moves the read
head back and forth by rotating the read motor and reads the
current bit of the tape. The Writer task rotates the write
lever to flip a bit. In each case, we have safety properties
(whose violations lead to potential collisions between the robot
and an obstacle, or between different arms of the robot etc.)
encoded as assertions, and both buggy and safe versions –
named *.bug* and *.ok* – of the controller w.r.t. these
assertions.

Evaluation of Snapshotting. Our first set of experiments

were aimed at evaluating the three snapshotting strategies –
SS-NONE, SS-ALL, SS-MOD. Our results are show in Table I.
The first column shows the experiment name. For the nxt.*
and aso.* example, Hk indicates that the time-bound T was
set to equal k hyper-periods (i.e., T = k× 96) of the PP. The
next three columns show the verification time Time, and the
number of variables Vars and clauses Clauses of the final
SAT formula solved by STP after simplifying and bit-blasting
the SMT formula – for each snapshotting strategy.

These results indicate that SS-MOD is the best overall
strategy. In all but one instance, it is the fastest. Sometimes it
is more than twice as fast as the next best strategy SS-ALL.
The worst choice is SS-NONE which runs out of memory in
many instances, while both SS-ALL and SS-MOD complete
successfully. These trends are mirrored when we consider
Vars and Clauses , suggesting that snapshotting effectively
eliminates a lot of redundancy in the SMT formulas generated
by SS-NONE, with SS-MOD producing the most compact SAT
formula overall. Next, we present a more direct quantitative
evaluation of the effectiveness of snapshotting.

Observation Set Redundancy. Let W (P) be the set of output
(write or snapshot) actions in a PP P . For each w ∈ W (P),
let Obs(w) be the set of input (read or snapshot) actions
that may observe w. Thus, Obs(w) = {α | w ∈ W(α)}. Let
AVGOBS(P) be the mean of the set {|Obs(w)| | w ∈W (P)}.
A smaller value of AVGOBS(P) indicates lower redundancy
in the observation sets of P . Here, redundancy means that a
single output action may be observed by multiple input actions.
Table I shows the values of AVGOBS(P) and |W (P)| for
each P in our benchmark and for each snapshotting strategy.
As expected, AVGOBS(P) is much smaller for SS-MOD and
SS-ALL compared to SS-NONE (sometimes by a factor of



over 30), indicating that snapshotting reduces redundancy in
observation sets significantly. Both SS-MOD and SS-ALL have
similar values of AVGOBS(P). However, |W (P)| is smaller
for SS-MOD since it snapshots more selectively. This leads to
better overall performance of SS-MOD compared to SS-ALL.

Comparison with REKH. We also compare LLREK with
REKH [11]. REKH constructs a sequential (but non-
deterministic) C program that is semantically equivalent to
P , and verifies it using CBMC [28] 4.5. Internally, CBMC
constructs a verification condition and solves it using a SAT
solver. Thus, REKH and LLREK are similar – both generate
and solve verification conditions. However, they construct VCs
differently: LLREK generates it directly based on sequential
consistency and snapshotting, while REKH generates a C
program using rounds and prophecy variables (following Lal
and Reps [29]), from which the VC is constructed by CBMC.
The results for REKH are also presented in Table I. They
indicate that SS-ALL and SS-MOD perform better than REKH,
sometimes by a factor of over seven, and often complete
verification when REKH runs out of memory. Thus, LLREK
is a clear and significant improvement over REKH.

VII. CONCLUSION

We addressed the problem of verifying safety properties
of PPs. Our solution is based on the BMC-MC paradigm and
consists of two steps: (i) generate a provably correct VC; (ii)
solve the VC using a SMT engine. We generate the VC by
adapting Lamport’s sequential consistency to the semantics
of PPs. Moreover, we handle PPs that synchronize via two
commonly used types of locks – PCP locks, and CPU locks. To
improve scalability, we develop a strategy called snapshotting,
aimed at generating VCs with fewer redundant sub-formulas.
We develop two snapshotting strategies – SS-ALL snapshots
all shared variables, while SS-MOD only snapshots modified
variables. We have implemented our approach in a tool called
LLREK. Experiments indicate that snapshotting improves ef-
fectiveness of verification significantly. In particular, SS-MOD
is the best strategy, and it even outperforms the state-of-art
verifier for PPs. An important direction for future work is to
handle additional synchronization primitives, such as priority-
inheritance locks [9], and to relax the restriction of a time
bound.
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APPENDIX A
USEFULNESS OF SNAPSHOTS

The following lemma formally shows the usefulness of
snapshots when the observation sets of multiple reads is
the same, by reducing the number of data flow edges from
quadratic to linear.

Lemma 1. Given a set of reads R = {R1, R2, . . . , Rk}, and
writes W = {W1, . . . ,Wn}, suppose that the observation set
Wold(Ri) = W for each Ri. Suppose we introduce a single
snapshot S, with read S.r and write S.w, such that W(S.r)
= W and for each read Ri, W(Ri) = {S.w}. Then, the total
number of data flow edges E:
• without snapshotting, |E| =

∑
1≤i≤k |Wold(Ri)| = k×n.

• with snapshotting, |E| = W(S.r) +
∑

1≤i≤k |W(Ri)| =
n+ k.

It is easy to see that ∀k ≥ 3 and n ≥ 2, k × n > n + k.
Therefore, snapshotting reduces the data flow edges and hence
improves the efficiency of symbolic encoding if, in one or
more tasks, at least 3 reads simultaneously observe a set of at
least 2 writes.

APPENDIX B
PROOF OF THEOREM 1

Proof. For the forward implication, let σ be any assignment
such that:

σ |= V C(P) ∧
k∧
i=1

(En(αi) ∧V (αi) = vi) (30)

as follows: i ∈ [1, k] �~κ(αi) = (σ(R(αi)), π(αi), ι(αi)). It can
be shown (see Lemma 2) that ~κ is injective. Without loss of
generality, we assume that ~κ(α1) < · · · < ~κ(αk) where < is
lexicographic. For i ∈ [1, k], let Ji = J(αi), Ai = A(Ji), and
Di = D(Ji). First we show (see Lemma 3) that it possible to
create timestamps t1, . . . , tk such that:

∀i ∈ [1, k] �Ai ≤ ti ≤ Di (31)
t1 < · · · < tk (32)

Consider the TES e = 〈(ε1, t1), . . . , (εk, tk)〉, where εi =
(αi, σ(V (αi))). We show that e satisfies (3), (4), (5), (17)–
(18), and (25). It satisfies (3)(a) because of (30), Fact 1
and (31). It satisfies (3)(b) due to (32). It satisfies (4) because
of Lemma 4, (5) because of Lemma 5, (17)–(18) because of
Lemma 6, and (25) because of Lemma 7. Therefore e ∈ [[P]].

For the reverse implication, consider any TES e =
〈(ε1, t1), . . . , (εk, tk)〉 ∈ [[P]]. For i ∈ [1, k], let εi = (αi, vi),
and let X = 〈α1, . . . , αk〉. Note that, for each job J , the
definition of [[P]] implies that {(J, .), (J, /)} ⊆ X . Construct
an assignment σ as follows:

∀α ∈ Σ � σ(En(α)) = true ⇐⇒ α ∈ X (33)
∀i ∈ [1, k] � σ(V (αi)) = vi (34)
∀i ∈ [1, k] � σ(R(αi)) = R(e, i) (35)
∀α ∈ Σ \X � σ(R(α)) = σ(R(J(α), .)) (36)
∀J ∈ J � σ(SR(J)) = σ(R(J, .))
∀J ∈ J � σ(ER(J)) = σ(R(J, /))

(37)

Let there be l PTAS events in e, and let ε̃i = (α̃i, vi) be the
i-th PTAS event. Then:

σ(R̃(α̃1)) = 0 ∧ σ(π̃(α̃1)) = 0 ∧ σ(ι̃(α̃1)) = 0 (38)

and for all i ∈ (1, l]:

σ(R̃(α̃i)) = σ(R(α̃i−1))∧
σ(π̃(α̃i)) = π(α̃i−1)∧
σ(ι̃(α̃i)) = ι(α̃i−i)

(39)

Finally, for each αi ∈ X ∩ (Σr ∪ Σs), if PriorWr(e, i) = ∅,
then:

σ(R̃(αi)) = 0 ∧ σ(π̃(αi)) = 0 ∧ σ(ι̃(αi)) = 0 (40)

Otherwise, let m = max(PriorWr(e, i)). Then:

σ(R̃(αi)) = σ(R(αm))∧
σ(π̃(αi)) = π(αm)∧
σ(ι̃(αi)) = ι(αm)

(41)

From (33) and (34), we know that:

σ |=
k∧
i=1

(En(αi) ∧V (αi) = vi) (42)

From (3)(a), Fact 1, and (8), we know that:

σ |= VC seq (43)

Finally, σ |= VC clk due to Lemma 8, and σ |= VC obs due to
Lemma 9. This completes the proof.

Lemma 2. The mapping ~κ is injective.

Proof. By contradiction. Without loss of generality, suppose
there exists 1 ≤ i < j ≤ k, such that ~κ(αi) = ~κ(αj). By
definition of ~κ, since π(αi) = π(αj) ∧ ι(αi) = ι(αj), but
αi 6= αj , we know that Ji 6= Jj but they belong to the same
task. Then, there are only two possible cases:

Case 1: Ji @ Jj : But then, from (9)(a), we know that
σ(R(αi)) ≤ σ(ER(Ji)) and σ(SR(Jj)) ≤ σ(R(αj)). But
also from (9)(b), we know that σ(ER(Ji)) < σ(SR(Jj)),
which implies that σ(R(αi)) < σ(R(αj)), and contradicts
σ(R(αi)) = σ(R(αj)).

Case 2: Jj @ Ji: We obtain a contradiction as in Case 1
above, by swapping αi with αj , and Ji with Jj .

Lemma 3. It is possible to create timestamps t1, . . . , tk such
that the following hold:

∀i ∈ [1, k] �Ai ≤ ti ≤ Di (44)
t1 < · · · < tk (45)

Proof. We first show that there exists timestamps t̃1, . . . , t̃k
such that:

∀i ∈ [1, k] �Ai ≤ t̃i < Di (46)
t̃1 ≤ · · · ≤ t̃k (47)

For i ∈ [1, k], define Y (i) to be the set of jobs whose actions
have occurred up to αi in X , i.e., Y (i) =

⋃i
j=1{Jj}. Now



define t̃i to be the maximum arrival time over all jobs in Y (i),
i.e., t̃i = max({A(J) | J ∈ Y (i)}).

Since Y (i) is monotonic over i, and max(·) is also mono-
tonic over its argument, we know that t̃1 ≤ · · · ≤ t̃k.
Since Y (i) always contains Ji, we also know that ∀i ∈
[1, k] � Ai ≤ t̃i. Now we show, by contradiction, that
∀i ∈ [1, k] � ∀J ∈ Y (i) � A(J) < D(Ji). Suppose ∃i ∈
[1, k] � ∃j ≤ i � D(Ji) ≤ A(Jj). From (1), we know that
Ji @ Jj . Therefore from (9)(a) and (9)(b), we know that
σ(R(αi)) ≤ σ(ER(Ji)) < σ(SR(Jj)) ≤ σ(R(αj)). But this
implies ~κ(αi) < ~κ(αj), which contradicts j ≤ i.

Now we construct a strictly increasing sequence of times-
tamps t1, . . . , tk as follows. Define δ = mini∈[1,k]

(Di−t̃i)
k+1 .

Note that δ > 0 since ∀i ∈ [1, k] � t̃i < Di. Now define
ti = t̃i + i× δ. Then, ∀1 ≤ i < j ≤ k, we have:

Ai ≤ t̃i < ti (48)
t̃i ≤ t̃j ∧ (i× δ < j × δ) =⇒
t̃i + (i× δ) < t̃j + (j × δ) =⇒ ti < tj

(49)

δ <
Di − t̃i

i
=⇒ t̃i + (i× δ) < Di =⇒ ti < Di (50)

Lemma 4. e satisfies (4).

Proof. By contradiction. Suppose ∃1 ≤ i < j ≤ k �
J(εj) @ J(εi). Since σ satisfies (9)(a) and (9)(b), we have
σ(R(αj)) ≤ σ(ER(Jj)) < σ(SR(Ji)) ≤ σ(R(αi)), which
implies ~κ(αj) < ~κ(αi), and contradicts ~κ(αi) < ~κ(αj).

Lemma 5. e satisfies (5).

Proof. By contradiction. Suppose ∃1 ≤ i ≤ j ≤ h ≤ k � Ji =
Jh ∧ π(εi) > π(εj). From the definition of ~κ and the fact that
~κ(αi) < ~κ(αj), we know that σ(R(αi)) < σ(R(αj)). Since
π(εi) > π(εj), we know that Ji 6= Jj . Again by definition
of ~κ, since ~κ(αj) < ~κ(αh), we have σ(R(αj)) ≤ σ(R(αh)).
Since π(εi) > π(εj), we know that ¬(Ji ↑ Jj). Therefore, we
have three cases:

Case 1: Ji @ Jj : From (9)(a), we have σ(SR(Jj)) ≤
σ(R(αj)), and σ(R(αh)) ≤ σ(ER(Jh)) = σ(ER(Ji)).
Hence, σ(SR(Jj)) ≤ σ(ER(Ji)), which contradicts (9)(b).

Case 2: Jj @ Ji: From (9)(a), we have σ(SR(Ji)) ≤
σ(R(αi)), and σ(R(αj)) ≤ σ(ER(Jj)). Hence, σ(SR(Ji)) <
σ(ER(Jj)), which contradicts (9)(b).

Case 3: Jj ↑ Ji: But we know that σ(R(αj)) >
σ(SR(Ji)) ∧ σ(R(αj)) ≤ σ(ER(Ji)), which contra-
dicts (10).

Lemma 6. e satisfies (17)–(18).

Proof. Let there be l PTAS events in e, and let ε̃i =
((J i, pci, πit, L

i
r, L

i
a), Lih) be the i-th PTAS event in e. Us-

ing (20)–(23), and induction, we can prove our result.

Lemma 7. e satisfies (25).

Proof. For i ∈ [1, k], define PriorObs(e, i) to be the positions
less than i of actions in X that also belong to W(αi), i.e.,

PriorObs(e, i) = {j ∈ [1, i) | αj ∈ W(αi)}

We prove by induction on i that, for i ∈ [1, k], if η(αi) ∈
{r, s}, then Ω1(i) ∨ Ω2(i) ∨ Ω3(i) holds, where:

Ω1(i) ≡ PriorWr(e, i) = ∅ ∧ PriorObs(e, i) = ∅∧
vi = I(g(αi))

Ω2(i) ≡ PriorWr(e, i) = ∅ ∧ vi = vm′ = I(g(αi)),
where m′ = max(PriorObs(e, i))

Ω3(i) ≡ vi = vm = vm′ ,
where m = max(PriorWr(e, i))
and m′ = max(PriorObs(e, i))

Case Base: i = 1: In this case, we have PriorWr(e, 1) =
PriorObs(e, 1) = ∅. If η(α1) 6∈ {r, s}, the result holds
trivially. Otherwise, from (14)–(15), we have VC 1

obs ∧∀αw ∈
W(α1) � ¬VC 2

obs(αw). Therefore, from (13), v1 = I(g(α1)).
Hence, Ω1(1) holds.

Case Induction: Suppose η(αi) ∈ {r, s}. We consider two
cases:

Case 1: PriorWr(e, i) = ∅: We have two sub-cases:
Case 1.1: PriorObs(e, i) = ∅: In this case, by the same

argument as the base case, we know that Ω1(i) holds.
Case 1.2: m′ = max(PriorObs(e, i)): Note that m′ < i,

PriorWr(e,m′) = ∅, and g(αm′) = g(αi). Note that since
PriorWr(e, i) = ∅, we have η(αm′) = s. By the inductive
hypothesis, vm′ = I(g(αi)). We can show, from (14)–(15),
that VC 2

obs(αm′) holds, and thus vi = vm′ = I(g(αi)).
Hence, Ω2(i) holds.

Case 2: m = max(PriorWr(e, i)): First, we show that
PriorObs(e, i) 6= ∅ ∧m ≤ m′ = max(PriorObs(e, i)) < i.
Note that η(αm) = w. If Jm = Ji ∨ Jm ↑ Ji, then
from (28), we can show that Jm ∈ Ψ↓(Ji). Therefore
αm ∈ W(αi), which implies PriorObs(e, i) 6= ∅∧m ≤ m′ =
max(PriorObs(e, i)) < i. Otherwise, from (26)–(27), we
know that Jm @ Ji ∨ Ji ↑ Jm. In this case, we can show
that ∃j ∈ (m, i) � αj = (Jm, s, g(αi)) ∈ W(αi). So again,
PriorObs(e, i) 6= ∅∧m < j ≤ m′ = max(PriorObs(e, i)) <
i. If m′ = m, then trivially, vm′ = vm. Otherwise, η(αm′) =
s, and m = max(PriorWr(e,m′)). Since m′ < i, then by
the inductive hypothesis, vm′ = vm. Also, we can show,
from (14)–(15), that VC 2

obs(αm′) holds, and thus vi = vm =
vm′ . Thus, Ω3(i) holds.

Now consider any αi such that η(αi) ∈ {r, s}. Then,
Ω1(i) ∨ Ω2(i) ∨ Ω3(i) holds. Therefore, vi = LastWr(e, i),
which is what we want.

Lemma 8. σ |= VC clk .

Proof. Note that R(e, i) is monotonic in i, i.e., ∀1 ≤ i < j ≤
k � R(e, i) ≤ R(e, j).

Let J be any job, and α ∈ Σ(J) be any action. If α ∈ X ,
then due to the definition of [[J ]], α appears no earlier than
(J, .) and no later than (J, /) in X . Therefore, from (35), (37),
and the monotonicity of R(e, i), we know that σ(SR(J)) ≤
σ(R(α)) ≤ σ(ER(J)). If α 6∈ X , then from (36), we know



that σ(SR(J)) = σ(R(α)) ≤ σ(ER(J)). Thus, σ satisfies
(9)(a).

Let J1 @ J2. Then, from (4), we know that (J1, /)
appears before (J2, .) in X . Since J1 does not end be-
fore (J1, /), but it does end before (J2, .), from (35), we
have σ(R(J1, /)) < σ(R(J2, .)). Then, from (37), we have
σ(ER(J1)) < σ(SR(J2)). Thus, σ satisfies (9)(b).

We prove that σ satisfies (10) by contradiction. Let J1 ↑
J2, α ∈ Σ(J1), and σ(SR(J2)) < σ(R(α)) ≤ σ(ER(J2)).
Therefore, from (35), (37), and the monotonicity of R(e, i),
(J2, .) appears before α, and α appears before (J2, /) on e.
From the definition of ↑, we know that π(J1) < π(J2). But
this contradicts (5).

Lemma 9. σ |= VC obs .

Proof. We first show that σ satisfies (12)–(13) for each αr ∈
Σr ∪ Σs. If σ(En(αr)) = false, then (12)–(13) are satisfied
trivially. Otherwise, for i ∈ [1, k], recall the definitions of
PriorObs(e, i), Ω1(i), Ω2(i), and Ω3(i) from Lemma 7.

PriorObs(e, i) = {j ∈ [1, i) | αj ∈ W(αi)}
Ω1(i) ≡ PriorWr(e, i) = ∅∧

PriorObs(e, i) = ∅∧
vi = I(g(αi))

Ω2(i) ≡ PriorWr(e, i) = ∅∧
vi = vm′ = I(g(αi)),
where m′ = max(PriorObs(e, i))

Ω3(i) ≡ vi = vm = vm′ ,
where m = max(PriorWr(e, i))
and m′ = max(PriorObs(e, i))

We show by the induction on i that if η(αi) ∈ {r, s}, then
Ω1(i) ∨ Ω2(i) ∨ Ω3(i) holds.

Case Base: i = 1: In this case, we have PriorWr(e, 1) =
PriorObs(e, 1) = ∅. If η(α1) 6∈ {r, s}, the result holds
trivially. Otherwise, since e satisfies (6), v1 = I(g(α1)).
Hence, Ω1(1) holds.

Case Induction: Suppose η(αi) ∈ {r, s}. We consider two
cases:

Case 1: PriorWr(e, i) = ∅: We have two sub-cases:
Case 1.1: PriorObs(e, i) = ∅: In this case, by the same

argument as the base case, we know that Ω1(i) holds.
Case 1.2: m′ = max(PriorObs(e, i)): Note that m′ < i,

PriorWr(e,m′) = ∅, and g(αm′) = g(αi). Note that since
PriorWr(e, i) = ∅, we have η(αm′) = s. By the inductive
hypothesis, vm′ = I(g(αi)). Again, since e satisfies (6), we
know that vi = I(g(αi)). Therefore, vi = vm′ = I(g(αi)).
Thus, Ω2(i) holds.

Case 2: m = max(PriorWr(e, i)): First, we show that
PriorObs(e, i) 6= ∅ ∧m ≤ m′ = max(PriorObs(e, i)) < i.
Note that η(αm) = w. If Jm = Ji ∨ Jm ↑ Ji, then
from (28), we can show that Jm ∈ Ψ↓(Ji). Therefore
αm ∈ W(αi), which implies PriorObs(e, i) 6= ∅∧m ≤ m′ =
max(PriorObs(e, i)) < i. Otherwise, from (26)–(27), we
know that Jm @ Ji ∨ Ji ↑ Jm. In this case, we can show
that ∃j ∈ (m, i) � αj = (Jm, s, g(αi)) ∈ W(αi). So again,
PriorObs(e, i) 6= ∅∧m < j ≤ m′ = max(PriorObs(e, i)) <

i. If m′ = m, then trivially, vm′ = vm. Otherwise, η(αm′) =
s, and m = max(PriorWr(e,m′)). Since m′ < i, then by the
inductive hypothesis, vm′ = vm. Also, since e satisfies (6), we
know that vi = vm. Therefore, vi = vm = vm′ . Thus, Ω3(i)
holds.

Now consider any αi such that η(αi) ∈ {r, s}. Then,
Ω1(i)∨Ω2(i)∨Ω3(i) holds. Therefore, σ satisfies (13), which
is what we want. Also, σ satisfies (12) due to (40) and (41).

We now show that σ satisfies (20)–(21) for each α ∈ Σp.
If σ(En(α)) = false, then (20)–(21) are satisfied trivially.
Otherwise, let there be l PTAS events in e, and for i ∈ [1, l],
let ε̃i = (α̃i, vi) be the i-th PTAS event in e. If α = α̃1,
then VC 3

obs is satisfied, otherwise if α = α̃i where i > 1,
then VC 4

obs(α′) is satisfied where α′ = α̃i−1. Note that,
from (4), we know that ¬(J(α̃i) @ J(α̃i−1)). Also, trivially,
α̃i 6= α̃i−1. Therefore, from (19), α̃i−1 ∈ W(α̃i). Therefore, σ
satisfies (21). Finally, σ satisfies (20) due to (38) and (39).


