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Periodic Embedded Real-Time Software 

Technical Name 

Periodic Fixed-Priority Software with Preemptive Rate Monotonic Scheduling 

Task Period 

Engine control 10ms 

Airbag 40ms 

Braking 40ms 

Cruise Control 50ms 

Collision Detection 50ms 

Entertainment 80ms 

Domains: Avionics, Automotive 

OS: OSEK, VxWorks, RTEMS 

We call them periodic programs 
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Time-Bounded Verification [FMCAD’11&’14, VMCAI’13] 

Input: Periodic Program 

• Collection of periodic tasks 

• Execute concurrently with preemptive priority-based scheduling 

• Priorities respect RMS  

• Communicate through shared memory 

 

Problem: Time-Bounded Verification 

• Assertion 𝐴 violated within 𝑋 ms of a system’s execution from initial state 𝐼? 

• 𝐴, 𝑋 , 𝐼 are user specified 

• Time bounds map naturally to program’s functionality (e.g., air bags) 

 

Solution: Bounded Model Checking 

• Generate Verification Condition (SMT Formula over Bit-Vectors) 

• Use SMT Solver to check satisfiability 

 
Main focus of 

this paper 
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Periodic Program (PP) 

An N-task periodic program PP is a set of tasks {1, …, N} 

A task  is a tuple 〈𝐼, 𝑇, 𝑃, 𝐶, 𝐴〉, where 

• 𝐼 is a task identifier = its priority 

• 𝑇 is a task body (i.e., code) 

• 𝑃 is a period 

• 𝐶 is the worst-case execution time 

• 𝐴 is the release time: the time at which task becomes first enabled 

 

Semantics of PP bounded by time 𝑋 ≡ asynchronous concurrent program: 

 

ki = 0; 

while (ki < Ji && Wait(i, ki)) 

  Ti (); 

  ki = ki + 1; 

parallel  

execution  

w/ priorities 

blocks 𝜏𝑖 
until time 

 𝐴𝑖 + 𝑘𝑖 × 𝑃𝑖 

𝐽𝑖 = 
𝑋

𝑃𝑖
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Periodic Program Example 

𝐽1 

𝐽2 𝐽3 

0 2 

𝜏1 

𝜏2 

1 3 4 5 6 7 8 

Low-Priority  

Task High-Priority  

Task 

𝝉𝟏 = 𝟏, 𝑱𝟏, 𝟖, 𝟐, 𝟎 ,   𝝉𝟐= 〈𝟐, 𝑱𝟐 = 𝑱𝟑, 𝟒, 𝟏, 𝟏〉 

0 2 1 3 4 5 6 7 8 

Legal Execution – 𝝉𝟏 

executes for 𝟐 units 

0 2 1 3 4 5 6 7 8 

Another Legal Execution 

– 𝝉𝟏 executes for 𝟏 units 

0 2 1 3 4 5 6 7 8 

Illegal Execution – 𝝉𝟏 

preempts 𝝉𝟐 

Job1  

of 𝝉𝟐 

Job2  

of 𝝉𝟐 
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Verification Condition 

𝑽𝑪 = 𝑽𝑪𝒔𝒆𝒒 ∧ 𝑽𝑪𝒄𝒍𝒌 ∧ 𝑽𝑪𝒐𝒃𝒔 

Encodes Purely Job-

local computation. 

Value read/written by 

each  Shared Variable 

access represented by 

a fresh variable. 

Associates each 

shared variable access 

with a hierarchical 

Lamport Clock. 

Constraints values of 

Clock components 

based on timing and 

priority. 

Connects value read at 

each “read” to the value 

written by most recent 

“write” according to the 

Lamport Clock. 



9 

Efficient Verification of Periodic Programs 

Sagar Chaki, October 24, 2014 

© 2014 Carnegie Mellon University 

Verification Condition 𝑽𝑪𝒔𝒆𝒒 

𝐽1 

𝐽2 𝐽3 

0 2 

𝜏1 

𝜏2 

1 3 4 5 6 7 8 

𝑱𝟏() { 𝒙 ≔ 𝒙 + 𝟏; } 

𝑱𝟐() { 𝒙 ≔ 𝒙 + 𝟏; } 

𝑱𝟑() { 𝒙 ≔ 𝒙 + 𝟏; } 

𝒙𝟐 = 𝒙𝟏 + 𝟏 

𝒙𝟒 = 𝒙𝟑 + 𝟏 

𝒙𝟔 = 𝒙𝟓 + 𝟏 

∧ 

∧ 
𝑽𝑪𝒔𝒆𝒒 

Same as verification condition for 

sequential program except that both 

reads and writes are given fresh 

variables 
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Verification Condition 𝑽𝑪𝒄𝒍𝒌 

• 𝝅𝒊 = 𝒑𝒓𝒊𝒐𝒓𝒊𝒕𝒚 𝒐𝒇 𝒋𝒐𝒃 𝒂𝒄𝒄𝒆𝒔𝒔𝒊𝒏𝒈 𝒙𝒊 

• 𝝅𝟏 = 𝝅𝟐 = 𝟏, 𝝅𝟑 = ⋯ = 𝝅𝟔 = 𝟐 

• 𝑹𝒊 = #𝒐𝒇 𝒋𝒐𝒃𝒔 𝒇𝒊𝒏𝒊𝒔𝒉𝒆𝒅 𝒃𝒆𝒇𝒐𝒓𝒆 𝒙𝒊 𝒂𝒄𝒄𝒆𝒔𝒔𝒆𝒅 

• 𝑹𝟏 = 𝑹𝟑 = 𝑹𝟒 = 𝟎, 𝑹𝟐 = 𝟏, 𝑹𝟓 = 𝑹𝟔 = 𝟐 

• 𝜾𝒊 = 𝒊𝒏𝒅𝒆𝒙 𝒐𝒇 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒆𝒔𝒔𝒊𝒏𝒈 𝒙𝒊 𝒊𝒏 
𝒕𝒐𝒑𝒐𝒍𝒐𝒈𝒊𝒄𝒂𝒍 𝒐𝒓𝒅𝒆𝒓𝒊𝒏𝒈 𝒐𝒇 𝑪𝑭𝑮 

• 𝜾𝟏 = 𝜾𝟑 = 𝜾𝟓 = 𝟏, 𝜾𝟐 = 𝜾𝟒 = 𝜾𝟔 = 𝟐 

Observe: 𝒙𝒊 is accessed before 𝒙𝒋 iff 

𝑹𝒊, 𝝅𝒊, 𝜾𝒊 < 𝑹𝒋, 𝝅𝒋, 𝜾𝒋  

where < is lexicographic ordering 

Claim/Intuition: This holds for all legal 

executions, not just this one. 

Therefore: Associate 𝒙𝒊 with hierarchical 

Lamport clock 𝜿𝒊 = (𝑹𝒊, 𝝅𝒊, 𝜾𝒊) 

𝑽𝑪𝒄𝒍𝒌 
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Verification Condition 𝑽𝑪𝒐𝒃𝒔 

Let 𝑱𝒊 = job in which 𝒙𝒊 is accessed 

Compute: 𝑱 ⊏ 𝑱′ if 𝑱 always completes before 𝑱′ starts 

Recall 𝜿𝒊 = (𝑹𝒊, 𝝅𝒊, 𝜾𝒊). For each read 𝒙𝒊, let 

𝑾𝒊 = {𝒙𝒋|𝒙𝒋 𝒊𝒔 𝒂 𝒘𝒓𝒊𝒕𝒆 ∧ ¬(𝑱𝒊 ⊏ 𝑱𝒋)}, i.e., the set of all writes that 

𝒙𝒊 “may observe” 

 
𝑽𝑪𝒐𝒃𝒔 ≡ 

The value of each 𝒙𝒊 accessed by a read equals the value of 𝒙𝒋 

such that 𝜿𝒋 = 𝒎𝒂𝒙 𝜿𝒌 𝜿𝒌 < 𝜿𝒊 𝒂𝒏𝒅 𝒙𝒌 ∈ 𝑾𝒊 , where 𝒎𝒂𝒙{} = 

initial value of 𝒙. 
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Verification Condition 𝑽𝑪𝒐𝒃𝒔 

For each read 𝒙𝒊 introduce 𝜿 𝒊 = clock of write action observed 

 

𝑽𝑪𝒐𝒃𝒔 ≡ 

∧𝒙𝒋∈𝑾𝒊
𝜿𝒋 < 𝜿𝒊 ⇒ 𝜿𝒋 ≤ 𝜿 𝒊 

∧ 

( 𝑽𝑪𝒐𝒃𝒔
𝟏  ∨    ∨𝒙𝒋∈𝑾𝒊

𝑽𝑪𝑶𝒃𝒔
𝟐 𝒋 ) 

 

𝑽𝑪𝒐𝒃𝒔
𝟏 ≡ (∧𝒙𝒋∈𝑾𝒊

𝜿𝒋 ≥ 𝜿𝒊)  ∧   (𝒙𝒊 = 𝒙𝑰𝒏𝒊𝒕) 

 

𝑽𝑪𝑶𝒃𝒔
𝟐 𝒋 ≡ 𝜿𝒋 < 𝜿𝒊 ∧ 𝜿𝒋 = 𝜿 𝒊 ∧ 𝒙𝒊 = 𝒙𝒋 

𝒙𝒊 observes 

initial value 𝒙𝑰𝒏𝒊𝒕 
of 𝒙 

𝒙𝒊 observes 𝒙𝒋 

In the paper, we handle multiple shared variables. 
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Snapshotting: Problem 
Sequence of jobs. Each job writes to 

a variable multiple times. 

Observe: 𝑾 𝒓𝟏 = 𝒘𝟏, 𝒘𝟐 ,𝑾 𝒓𝟐 = 𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒 ,𝑾 𝒓𝟑 = {𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓, 𝒘𝟔}, … 

Result: Problem for 𝒓<𝒊 gets re-encoded (and resolved) as part of problem for 𝒓𝒊 

Empirically: SMT solvers do not scale beyond small number of jobs 

𝒘𝒊 = 𝒘𝒓𝒊𝒕𝒆, 𝒓𝒊 = 𝒓𝒆𝒂𝒅 

Series-Parallel Structure 
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Snapshotting: Solution 
Snapshot: Atomically read and write 

variable at the end of the job. 

Dominates all other access in the job. 

Now: 𝑾 𝒓𝟏 = 𝑾 𝒔𝟏 = 𝒘𝟏, 𝒘𝟐 ,𝑾 𝒓𝟐 = 𝑾 𝒔𝟐 = 𝒔𝟏, 𝒘𝟑, 𝒘𝟒 , 
𝑾 𝒓𝟑 = 𝑾 𝒔𝟑 = {𝒔𝟐, 𝒘𝟓, 𝒘𝟔}, … 

Result: Solving 𝑽𝑪𝒐𝒃𝒔 involves fewer redundant computation  

Empirically: SMT solvers scale beyond small number of jobs 

Choice of variables to snapshot: (i) all variables (ii) only written by the job 

𝒘𝒊 = 𝒘𝒓𝒊𝒕𝒆, 𝒓𝒊 = 𝒓𝒆𝒂𝒅 
𝒔𝒊 = 𝒔𝒏𝒂𝒑𝒔𝒉𝒐𝒕 
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Verification Condition 𝑽𝑪𝒐𝒃𝒔 with Snapshotting 

Input: 𝑺𝒏𝒂𝒑𝒔(𝑱) = set of variables snapshotted by 𝑱 

Compute: Relation 𝑱 ↑ 𝑱′ iff 𝑱 can be preempted by 𝑱′ 

Let 𝚿⊏(𝑱, 𝒈) = maximal jobs less that 𝑱 that snapshot 𝒈 

Let 𝚿↑ 𝑱, 𝒈 = 𝑱′  𝑱 ↑ 𝑱′ ∧ 𝒈 ∈ 𝑺𝒏𝒂𝒑𝒔(𝑱′)} 

Let 𝚿↓ 𝑱 = 𝑱′  𝑱′ = 𝑱 ∨ 𝑱′ ↑ 𝑱} 

These relations capture the series-parallel structure 

 
𝑾𝒊 = 𝒙𝒋  𝒙𝒋 𝒊𝒔 𝒂 𝒔𝒏𝒂𝒑𝒔𝒉𝒐𝒕 ∧ 𝑱𝒋 ∈ 𝚿↑ 𝑱𝒊, 𝒈 ∪ 

𝒙𝒋  𝒙𝒋 𝒊𝒔 𝒂 𝒔𝒏𝒂𝒑𝒔𝒉𝒐𝒕 ∧ 𝑱𝒋 ∈ 𝚿⊏ 𝑱𝒊, 𝒈 ∪ 

𝒙𝒋  𝒙𝒋 𝒊𝒔 𝒂 𝒘𝒓𝒊𝒕𝒆 ∧ 𝑱𝒋 ∈ 𝚿↓ 𝑱𝒊, 𝒈  

 

𝑽𝑪𝒐𝒃𝒔 ≡ same as before with the new definition of 𝑾𝒊 

above 

𝒙𝒋 𝒙𝒊 

𝒙𝒋 𝒙𝒊 

𝒙𝒊 𝒙𝒋 
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Handling Locks 

We handle two types of locks (both involve changing priorities) 

• Each thread has a base priority = priority of task it executes 

• Each PCP lock 𝑙 is associated with priority 𝜋(𝑙) 

• A CPU lock is a PCP lock such that 𝜋 𝑙 = ∞ 

• Thread’s priority = max (its base priority, priorities of all PCP locks it holds) 

 

Lock operation encoded by “priority-test-and-set” action (𝐽, 𝑝𝑐, 𝜋𝑡 , 𝐿𝑟 , 𝐿𝑎) 

• Guard: All held locks must have priority less than 𝜋𝑡 

• Command: Locks in 𝐿𝑟 are released; Locks in 𝐿𝑎 are acquired 

• Encode by updating 𝑉𝐶𝑐𝑙𝑘 and 𝑉𝐶𝑜𝑏𝑠 appropriately 

 

Note: To handle locks, we generalize VC-Gen to support operations that 
read and write program state (in this case held locks) atomically 

• Atomic operations handled similarly to snapshots 
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Results (Time in seconds) 

NONE=No snapshotting, ALL=Snapshot all variables, 

MOD=Snapshot only modified variables, 

REKH=Previous tool based on sequentialization 

2GB Memory Limit 

60min Time Limit 

Solver=STP 
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Observability Sizes 

𝐴𝑉𝐺𝑂𝐵𝑆(𝑃) = avg. no. of reads observing each write or snapshot 
|𝑾(𝑷)| = total no. of snapshot and write variables 
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Related Work and Concluding Thoughts 

Generate Verification Condition 
by Encoding Dataflow between 
Reads and Writes Using Lamport 
Clocks 

• Nishant Sinha, Chao Wang: 
Staged concurrent program 
analysis. SIGSOFT FSE 2010: 
47-56 

• Jade Alglave, Daniel Kroening, 
Michael Tautschnig: Partial 
Orders for Efficient Bounded 
Model Checking of Concurrent 
Software. CAV 2013: 141-157 

Generate Verification Condition 
per Scheduling round using 
prophecy variables, and ensure 
that output of one round equals 
input to the next 

• Akash Lal, Thomas W. Reps: 
Reducing Concurrent Analysis 
Under a Context Bound to 
Sequential Analysis. CAV 2008: 
37-51 

• Snapshotting combines both ideas 

• Interplay between Logical Clocks and Prophecy Variables 

• Both due to Lamport 

• We encode both program variables and clocks as bit-vectors 

• Clocks can be encoded as integers, but then we have a mixed theory 
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QUESTIONS? 
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