
© 2014 Carnegie Mellon University

Efficient Verification of

Periodic Programs Using

Sequential Consistency and

Snapshots

Sagar Chaki, Arie Gurfinkel, Nishant Sinha
October 24, 2014

FMCAD’14, Lausanne, Switzerland

2

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-

05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded

research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS

FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM

FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic

form without requesting formal permission. Permission is required for any other use. Requests for permission

should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0001817

3

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Outline

• Context

• Periodic Programs

• Time-Bounded Verification

• Verification Condition Generation

• Hierarchical Lamport Clocks

• Locks

• Snapshotting

• Experimental Results

• Related Work

4

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Periodic Embedded Real-Time Software

Technical Name

Periodic Fixed-Priority Software with Preemptive Rate Monotonic Scheduling

Task Period

Engine control 10ms

Airbag 40ms

Braking 40ms

Cruise Control 50ms

Collision Detection 50ms

Entertainment 80ms

Domains: Avionics, Automotive

OS: OSEK, VxWorks, RTEMS

We call them periodic programs

5

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Time-Bounded Verification [FMCAD’11&’14, VMCAI’13]

Input: Periodic Program

• Collection of periodic tasks

• Execute concurrently with preemptive priority-based scheduling

• Priorities respect RMS

• Communicate through shared memory

Problem: Time-Bounded Verification

• Assertion 𝐴 violated within 𝑋 ms of a system’s execution from initial state 𝐼?

• 𝐴, 𝑋 , 𝐼 are user specified

• Time bounds map naturally to program’s functionality (e.g., air bags)

Solution: Bounded Model Checking

• Generate Verification Condition (SMT Formula over Bit-Vectors)

• Use SMT Solver to check satisfiability

Main focus of

this paper

6

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Periodic Program (PP)

An N-task periodic program PP is a set of tasks {1, …, N}

A task  is a tuple 〈𝐼, 𝑇, 𝑃, 𝐶, 𝐴〉, where

• 𝐼 is a task identifier = its priority

• 𝑇 is a task body (i.e., code)

• 𝑃 is a period

• 𝐶 is the worst-case execution time

• 𝐴 is the release time: the time at which task becomes first enabled

Semantics of PP bounded by time 𝑋 ≡ asynchronous concurrent program:

ki = 0;

while (ki < Ji && Wait(i, ki))

 Ti ();

 ki = ki + 1;

parallel

execution

w/ priorities

blocks 𝜏𝑖
until time

 𝐴𝑖 + 𝑘𝑖 × 𝑃𝑖

𝐽𝑖 =
𝑋

𝑃𝑖

7

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Periodic Program Example

𝐽1

𝐽2 𝐽3

0 2

𝜏1

𝜏2

1 3 4 5 6 7 8

Low-Priority

Task High-Priority

Task

𝝉𝟏 = 𝟏, 𝑱𝟏, 𝟖, 𝟐, 𝟎 , 𝝉𝟐= 〈𝟐, 𝑱𝟐 = 𝑱𝟑, 𝟒, 𝟏, 𝟏〉

0 2 1 3 4 5 6 7 8

Legal Execution – 𝝉𝟏

executes for 𝟐 units

0 2 1 3 4 5 6 7 8

Another Legal Execution

– 𝝉𝟏 executes for 𝟏 units

0 2 1 3 4 5 6 7 8

Illegal Execution – 𝝉𝟏

preempts 𝝉𝟐

Job1

of 𝝉𝟐

Job2

of 𝝉𝟐

8

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition

𝑽𝑪 = 𝑽𝑪𝒔𝒆𝒒 ∧ 𝑽𝑪𝒄𝒍𝒌 ∧ 𝑽𝑪𝒐𝒃𝒔

Encodes Purely Job-

local computation.

Value read/written by

each Shared Variable

access represented by

a fresh variable.

Associates each

shared variable access

with a hierarchical

Lamport Clock.

Constraints values of

Clock components

based on timing and

priority.

Connects value read at

each “read” to the value

written by most recent

“write” according to the

Lamport Clock.

9

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒔𝒆𝒒

𝐽1

𝐽2 𝐽3

0 2

𝜏1

𝜏2

1 3 4 5 6 7 8

𝑱𝟏() { 𝒙 ≔ 𝒙 + 𝟏; }

𝑱𝟐() { 𝒙 ≔ 𝒙 + 𝟏; }

𝑱𝟑() { 𝒙 ≔ 𝒙 + 𝟏; }

𝒙𝟐 = 𝒙𝟏 + 𝟏

𝒙𝟒 = 𝒙𝟑 + 𝟏

𝒙𝟔 = 𝒙𝟓 + 𝟏

∧

∧
𝑽𝑪𝒔𝒆𝒒

Same as verification condition for

sequential program except that both

reads and writes are given fresh

variables

10

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒄𝒍𝒌

• 𝝅𝒊 = 𝒑𝒓𝒊𝒐𝒓𝒊𝒕𝒚 𝒐𝒇 𝒋𝒐𝒃 𝒂𝒄𝒄𝒆𝒔𝒔𝒊𝒏𝒈 𝒙𝒊

• 𝝅𝟏 = 𝝅𝟐 = 𝟏, 𝝅𝟑 = ⋯ = 𝝅𝟔 = 𝟐

• 𝑹𝒊 = #𝒐𝒇 𝒋𝒐𝒃𝒔 𝒇𝒊𝒏𝒊𝒔𝒉𝒆𝒅 𝒃𝒆𝒇𝒐𝒓𝒆 𝒙𝒊 𝒂𝒄𝒄𝒆𝒔𝒔𝒆𝒅

• 𝑹𝟏 = 𝑹𝟑 = 𝑹𝟒 = 𝟎, 𝑹𝟐 = 𝟏, 𝑹𝟓 = 𝑹𝟔 = 𝟐

• 𝜾𝒊 = 𝒊𝒏𝒅𝒆𝒙 𝒐𝒇 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒆𝒔𝒔𝒊𝒏𝒈 𝒙𝒊 𝒊𝒏
𝒕𝒐𝒑𝒐𝒍𝒐𝒈𝒊𝒄𝒂𝒍 𝒐𝒓𝒅𝒆𝒓𝒊𝒏𝒈 𝒐𝒇 𝑪𝑭𝑮

• 𝜾𝟏 = 𝜾𝟑 = 𝜾𝟓 = 𝟏, 𝜾𝟐 = 𝜾𝟒 = 𝜾𝟔 = 𝟐

Observe: 𝒙𝒊 is accessed before 𝒙𝒋 iff

𝑹𝒊, 𝝅𝒊, 𝜾𝒊 < 𝑹𝒋, 𝝅𝒋, 𝜾𝒋

where < is lexicographic ordering

Claim/Intuition: This holds for all legal

executions, not just this one.

Therefore: Associate 𝒙𝒊 with hierarchical

Lamport clock 𝜿𝒊 = (𝑹𝒊, 𝝅𝒊, 𝜾𝒊)

𝑽𝑪𝒄𝒍𝒌

11

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒐𝒃𝒔

Let 𝑱𝒊 = job in which 𝒙𝒊 is accessed

Compute: 𝑱 ⊏ 𝑱′ if 𝑱 always completes before 𝑱′ starts

Recall 𝜿𝒊 = (𝑹𝒊, 𝝅𝒊, 𝜾𝒊). For each read 𝒙𝒊, let

𝑾𝒊 = {𝒙𝒋|𝒙𝒋 𝒊𝒔 𝒂 𝒘𝒓𝒊𝒕𝒆 ∧ ¬(𝑱𝒊 ⊏ 𝑱𝒋)}, i.e., the set of all writes that

𝒙𝒊 “may observe”

𝑽𝑪𝒐𝒃𝒔 ≡

The value of each 𝒙𝒊 accessed by a read equals the value of 𝒙𝒋

such that 𝜿𝒋 = 𝒎𝒂𝒙 𝜿𝒌 𝜿𝒌 < 𝜿𝒊 𝒂𝒏𝒅 𝒙𝒌 ∈ 𝑾𝒊 , where 𝒎𝒂𝒙{} =

initial value of 𝒙.

12

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒐𝒃𝒔

For each read 𝒙𝒊 introduce 𝜿 𝒊 = clock of write action observed

𝑽𝑪𝒐𝒃𝒔 ≡

∧𝒙𝒋∈𝑾𝒊
𝜿𝒋 < 𝜿𝒊 ⇒ 𝜿𝒋 ≤ 𝜿 𝒊

∧

(𝑽𝑪𝒐𝒃𝒔
𝟏 ∨ ∨𝒙𝒋∈𝑾𝒊

𝑽𝑪𝑶𝒃𝒔
𝟐 𝒋)

𝑽𝑪𝒐𝒃𝒔
𝟏 ≡ (∧𝒙𝒋∈𝑾𝒊

𝜿𝒋 ≥ 𝜿𝒊) ∧ (𝒙𝒊 = 𝒙𝑰𝒏𝒊𝒕)

𝑽𝑪𝑶𝒃𝒔
𝟐 𝒋 ≡ 𝜿𝒋 < 𝜿𝒊 ∧ 𝜿𝒋 = 𝜿 𝒊 ∧ 𝒙𝒊 = 𝒙𝒋

𝒙𝒊 observes

initial value 𝒙𝑰𝒏𝒊𝒕
of 𝒙

𝒙𝒊 observes 𝒙𝒋

In the paper, we handle multiple shared variables.

13

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Snapshotting: Problem
Sequence of jobs. Each job writes to

a variable multiple times.

Observe: 𝑾 𝒓𝟏 = 𝒘𝟏, 𝒘𝟐 ,𝑾 𝒓𝟐 = 𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒 ,𝑾 𝒓𝟑 = {𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓, 𝒘𝟔}, …

Result: Problem for 𝒓<𝒊 gets re-encoded (and resolved) as part of problem for 𝒓𝒊

Empirically: SMT solvers do not scale beyond small number of jobs

𝒘𝒊 = 𝒘𝒓𝒊𝒕𝒆, 𝒓𝒊 = 𝒓𝒆𝒂𝒅

Series-Parallel Structure

14

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Snapshotting: Solution
Snapshot: Atomically read and write

variable at the end of the job.

Dominates all other access in the job.

Now: 𝑾 𝒓𝟏 = 𝑾 𝒔𝟏 = 𝒘𝟏, 𝒘𝟐 ,𝑾 𝒓𝟐 = 𝑾 𝒔𝟐 = 𝒔𝟏, 𝒘𝟑, 𝒘𝟒 ,
𝑾 𝒓𝟑 = 𝑾 𝒔𝟑 = {𝒔𝟐, 𝒘𝟓, 𝒘𝟔}, …

Result: Solving 𝑽𝑪𝒐𝒃𝒔 involves fewer redundant computation

Empirically: SMT solvers scale beyond small number of jobs

Choice of variables to snapshot: (i) all variables (ii) only written by the job

𝒘𝒊 = 𝒘𝒓𝒊𝒕𝒆, 𝒓𝒊 = 𝒓𝒆𝒂𝒅
𝒔𝒊 = 𝒔𝒏𝒂𝒑𝒔𝒉𝒐𝒕

15

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒐𝒃𝒔 with Snapshotting

Input: 𝑺𝒏𝒂𝒑𝒔(𝑱) = set of variables snapshotted by 𝑱

Compute: Relation 𝑱 ↑ 𝑱′ iff 𝑱 can be preempted by 𝑱′

Let 𝚿⊏(𝑱, 𝒈) = maximal jobs less that 𝑱 that snapshot 𝒈

Let 𝚿↑ 𝑱, 𝒈 = 𝑱′ 𝑱 ↑ 𝑱′ ∧ 𝒈 ∈ 𝑺𝒏𝒂𝒑𝒔(𝑱′)}

Let 𝚿↓ 𝑱 = 𝑱′ 𝑱′ = 𝑱 ∨ 𝑱′ ↑ 𝑱}

These relations capture the series-parallel structure

𝑾𝒊 = 𝒙𝒋 𝒙𝒋 𝒊𝒔 𝒂 𝒔𝒏𝒂𝒑𝒔𝒉𝒐𝒕 ∧ 𝑱𝒋 ∈ 𝚿↑ 𝑱𝒊, 𝒈 ∪

𝒙𝒋 𝒙𝒋 𝒊𝒔 𝒂 𝒔𝒏𝒂𝒑𝒔𝒉𝒐𝒕 ∧ 𝑱𝒋 ∈ 𝚿⊏ 𝑱𝒊, 𝒈 ∪

𝒙𝒋 𝒙𝒋 𝒊𝒔 𝒂 𝒘𝒓𝒊𝒕𝒆 ∧ 𝑱𝒋 ∈ 𝚿↓ 𝑱𝒊, 𝒈

𝑽𝑪𝒐𝒃𝒔 ≡ same as before with the new definition of 𝑾𝒊

above

𝒙𝒋 𝒙𝒊

𝒙𝒋 𝒙𝒊

𝒙𝒊 𝒙𝒋

16

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Handling Locks

We handle two types of locks (both involve changing priorities)

• Each thread has a base priority = priority of task it executes

• Each PCP lock 𝑙 is associated with priority 𝜋(𝑙)

• A CPU lock is a PCP lock such that 𝜋 𝑙 = ∞

• Thread’s priority = max (its base priority, priorities of all PCP locks it holds)

Lock operation encoded by “priority-test-and-set” action (𝐽, 𝑝𝑐, 𝜋𝑡 , 𝐿𝑟 , 𝐿𝑎)

• Guard: All held locks must have priority less than 𝜋𝑡

• Command: Locks in 𝐿𝑟 are released; Locks in 𝐿𝑎 are acquired

• Encode by updating 𝑉𝐶𝑐𝑙𝑘 and 𝑉𝐶𝑜𝑏𝑠 appropriately

Note: To handle locks, we generalize VC-Gen to support operations that
read and write program state (in this case held locks) atomically

• Atomic operations handled similarly to snapshots

17

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Results (Time in seconds)

NONE=No snapshotting, ALL=Snapshot all variables,

MOD=Snapshot only modified variables,

REKH=Previous tool based on sequentialization

2GB Memory Limit

60min Time Limit

Solver=STP

18

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Results (Time in seconds)

NONE=No snapshotting, ALL=Snapshot all variables,

MOD=Snapshot only modified variables,

REKH=Previous tool based on sequentialization

2GB Memory Limit

60min Time Limit

Solver=STP

19

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Observability Sizes

𝐴𝑉𝐺𝑂𝐵𝑆(𝑃) = avg. no. of reads observing each write or snapshot
|𝑾(𝑷)| = total no. of snapshot and write variables

20

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Observability Sizes

𝐴𝑉𝐺𝑂𝐵𝑆(𝑃) = avg. no. of reads observing each write or snapshot
|𝑾(𝑷)| = total no. of snapshot and write variables

21

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Related Work and Concluding Thoughts

Generate Verification Condition
by Encoding Dataflow between
Reads and Writes Using Lamport
Clocks

• Nishant Sinha, Chao Wang:
Staged concurrent program
analysis. SIGSOFT FSE 2010:
47-56

• Jade Alglave, Daniel Kroening,
Michael Tautschnig: Partial
Orders for Efficient Bounded
Model Checking of Concurrent
Software. CAV 2013: 141-157

Generate Verification Condition
per Scheduling round using
prophecy variables, and ensure
that output of one round equals
input to the next

• Akash Lal, Thomas W. Reps:
Reducing Concurrent Analysis
Under a Context Bound to
Sequential Analysis. CAV 2008:
37-51

• Snapshotting combines both ideas

• Interplay between Logical Clocks and Prophecy Variables

• Both due to Lamport

• We encode both program variables and clocks as bit-vectors

• Clocks can be encoded as integers, but then we have a mixed theory

© 2014 Carnegie Mellon University

QUESTIONS?

23

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Contact Information Slide Format

Sagar Chaki

Principal Researcher

SSD/CSC

Telephone: +1 412-268-1436

Email: chaki@sei.cmu.edu

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web

www.sei.cmu.edu

www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

mailto:chaki@sei.cmu.edu

