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Abstract This paper presents automatedand compositionalprocedure to solve the substitutability problem in
the context of evolving software systems. Our solution Gbates two techniques for checking correctness of soft-
ware upgrades: 1) a technique based on simultaneous userefaod under- approximations obtained via existential
and universal abstractions; 2)dgnamicassume-guarantee reasoning algorithm — previously gegecamponent
assumptions are reused and altered on-the-fly to prove rodis the global safety properties on the updated system.

When upgrades are found to be non-substitutable, our solgéoerates constructive feedback to developers showing
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how to improve the components. The substitutability appindeas been implemented and validated in tlienEoRT

reasoning framework, and we report encouraging resultsandustrial benchmark.

1 Introduction

Correctness of computer software is critical in today’'®infation society, especially for software that runs on com-
puters embedded in our transportation and communicatioasitnucture. Errors in complex software systems have
caused large-scale economic losses in the past. Softwgss éspecially in multi-threaded systems, are notoriously
difficult to detect and fix. Therefore, it is necessary to eg@utomated formal verification methods to validate and

debug critical software systems.

Programs in imperative languages like C or C++ are execiuneebly-line in what is called ¢hread of control
It is tempting to hope that a line-by-line inspection of tloele, following this thread of control, will uncover all the
flaws in a program. The problem is that complex systems havey reaftware components running in parallel, so
there are many different threads of control that run sinmgltausly. While one of these threads may be executing some
statement in its program, another thread, with exactly #mesprogram, may be executing an entirely different line
of code concurrently. Consequently, in the presence ofiptellthreads, any combination of program lines that the

threads can execute must be considered.

The stateof the program is the location of the control in each thread e values of the program variables.
To discover flaws, the possible states of the program muskplered. To illustrate the large number of states that
concurrency can cause, consider the small program in Figuténas one variablg, which is initialized with zero. It
has two threads (A and B) of control and only four lines of codtal. The first line in both threads simply idles until
X becomes zero. The second line sete 1 or 2, respectively. We assume that each program stepris@tDespite its
tiny size, the program has 10 reachable states. The explosibe number of reachable states is due to the different
combinations of program locations in the two threads A andiis, a manual search for errors in large concurrent

programs is infeasible.
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Model checkings an automated technique for the exploration of all theestaf a system [20, 22]. Introduced in
1981, itis now a standard verification technigue in the harévindustry. It has been successfully used to find bugs in

circuitry that would have been hard to find by inspection alon

Thread A Thread B
1 while(x!=0) skip; 1 while(x!=0) skip;
2  x=1; 2  X=2;
3 3

Fig. 1 A Small Program with Two Threads of Control

The use of model checking has lead to major enhancements ielthbility and robustness of software. The basic
idea of software model checking [12,44] is to explore all sketes of the software system systematically. The states
are checked for errors. Such an error may be division by zerace condition or a violated assertion. Once such an
erroneous state is found, it is reported to the programngatier with a counterexample (i.e., an error trace), which
demonstrates the flaw. In practice, counterexamples ayehedpful for understanding the nature of errors and fixing

them.

However, the effectiveness of the model checking of suctesysis severely constrained by the state space explo-
sion problem (by the sheer number of states a program car).détimere are too many states, it becomes impossible

to explore all of them, even on a powerful computer.

Much of the research in this area is therefore targeted atcied the state space of the model used for veri-
fication. One principal method in state space reduction @fveoe systems isibstraction Abstraction techniques
reduce the program state space by generating a smaller sigite$ in a way that preserves the relevant behaviors of
the system. Manual abstractions of large software systemsne considerable expertise and are error prone. Indus-
trial applications of model checking therefore favor ausad ways to compute the abstract model. One such method,
calledpredicate abstractiof32, 25], has proven to be particularly successful wheniagpb large software programs.

We have exploited predicate abstraction while developiaglation to the problem of establishing the correctness of
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evolving systems. We describe predicate abstraction itid®e2 and its application to verification of evolving softwa
in Section 4.

The other principal approach in reducing the state spadeeoférifiable model isompositional reasoningCom-
positional reasoning partitions verification into checksralividual modules, while the global correctness of the
composed system is established by constructing a proahetitiat exploits the modular structure of the system.
We used theassume-guarantegtyle of compositional reasoning to support verificatioreedlving systems [47,41,
49]. We describe the assume-guarantee reasoning paradajitsapplication to verification of evolving software in
Section 5.

In this article, we focus on a particular model checking jpeol) namely verification of evolving software. Software
systems evolve throughout the product life-cycle. For gxamany software module (or component) is inevitably
transformed as designs take shape, requirements changeyugs are discovered and fixed. In general such evolution
results in the removal of previous behaviors from the conepoand addition of new ones. Since the behavior of the
updated software component has no direct correlation toofhigs older counterpart, substituting it directly candea
to two kinds of problems. First, the removal of behaviors lg@d to unavailability of previously provided services.
Second, the addition of new behaviors can lead to violatfaiaibal correctness properties that were previously being
respected. Although software evolution may involve botargding the component decomposition of the system as
well as communication structure between components, theaph presented in this work focuses on assemblies in
which both the decomposition and the communication streatemain the same.

In this context, thesubstitutabilityproblem can be defined as the verification of the following tniteria: (i) any
updated portiorof a software system must continue to providesaltvicesoffered by its earlier counterpart, and (ii)
previously established systerarrectness propertienust remain valid for the new version of the software systEme.
above two criteria correspond to changes due to additiomemdval of behaviors or services of software components
respectively; we believe that they are sufficient to modelkrgd variety of software upgrades.

Model checking can be used at each stage of a system’s erotatsolve both the above problems. Conventionally,
model checking is applied to the entire system after evedate irrespective of the degree of modification involved.

The amount of time and effort required to verify an entiretsyscan be prohibitive and repeating the exercise after
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each (even minor) system update is therefore impractinathik article we present amutomatedframework that
localizesthe necessary verification effort to only modified system gonents, and thereby reduces dramatically the
effort to check substitutability after every system updilete that our framework is general enough to handle changes

in the environment if the environment can also be modeledcasrgonent.

In our framework a component is essentially a C program conicating with other components via blocking
message passing. An assembly is a collection of such camtlyrexecuting and mutually interacting components.
We define the notion of a component’s behavior precisely lai¢ for now let us denote the set of behaviors of a

componentC by Behv(C'). Given two component§’ andC” we writeC' < C’ to meanBehv(C') C Behv(C").

Suppose we are given an assembly of componénts:{C1,...,C,}, and a safety property (e.g., the system
can enter an error state upon execution). Now supposerthiiple components i€ are upgraded. In other words,
consider an index s&t C {1,...,n} such that for each € 7 there is anewcomponenC; to be used in place of its
old versionC;. Our goal is to check the substitutabilityéf for C; in C for everyi € 7 with respect to the property

. This article presents a framework that achieves this gpalkforming the following two tasks:

Containment. Verify, for eachi e Z, that every behavior af}; is also a behavior of}, i.e.,C; < C;. If C; 4 C,,
we also construct a sef; of behaviors inBehwv(C;) \ Behw(C,) which is used subsequently for providing feedback
to the assembly designer. Note that the upgrade may invblveemoval of behaviors designated as errant,/3ay
In this case, we check’; \ B = C, since behaviors oB are clearly absent irf;. In general,B should contain

the set of behaviors that have been intentionally removeddi or otherwise), so that they do not occur as spurious

counterexamples in the containment check.

Compatibility. Let us denote by’ the assembly obtained frothby replacing the old compone@y; with its new
versionCZf for eachi € Z. In general, it is not the case that for each 7, C{ < C;. Therefore, the new assemlily
may have more behaviors than the old asser@bltenceC’ might violatey even thougit did not. Thus, our second
task is to verify thatC’ satisfies the safety property (which would imply that the new components can be safely

integrated).
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Note that checking compatibility is non-trivial becauseeitjuires the verification of a concurrent system where
multiple components might have been modified. Moreoves,tdsk is complicated by the fact that our goal is to focus
on the components that have been modified.

The component substitutability framework is defined by thiéofving new algorithms: 1) a technique based on
simultaneous use of over- and under- approximations aidaia existential and universal abstractions for the con-
tainment check of the substitutable components; dyrmamicassume-guarantee algorithm developed for the com-
patibility check. The algorithm is based on an automatedrassguarantee reasoning approach for a fixed system
assembly, developed by Cobleigh et al. [23] which is based combination of learning algorithms for regular lan-
guages with model checking. This paper, in contrast, pepadynamicassume-guarantee reasoning procedure for
evolving systems. The procedure is dynamic, in the sengéttlearns appropriate environment assumptions for the
new components bseusingthe environment assumptions for their older versions.

In summary, the developed component substitutability &éaork has several advantageous features:

— It allows multiplecomponents to be upgraded simultaneously. This is cruicieésnodifications in different com-
ponents often interact non-trivially to maintain overaistem safety and integrity. Hence such modifications must
be analyzed jointly.

— It identifies features of an old component which are abseit$ impdated version. It subsequently generates feed-
back to localize the modifications required to add the mgsgatures back.

— Itis completely automated and usmamicassume-guarantee style reasoning to scale to large seftysiems.

— It allows new components to have more behaviors than theicalinterparts in order to be replaceable. €kia
behaviors are critical since they provide vendors with tbeilfiility to implement new features into the product
upgrades. Our framework verifies if these new behaviors dgintate previously established global specifications

of a component assembly.

We have implemented the substitutability check as part ef@GbMFORT [40] reasoning framework. For the
compatibility check, we experimented with an industriahtiemark and report encouraging results in Section 6.
The article is organized as follows: Section 2 provides sbawkground on model checking, abstraction and com-

positional reasoning. Section 3 defines the notation useddhout the article and presents thielearning algorithm
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that forms the basis of the compatibility analysis. Se&idrd describe the problem of verification of evolving sys-
tems and present a detailed description of the containmrehtampatibility algorithms that we have developed to
overcome difficulties in the verification of evolving progra. Section 7 provides an overview of related work, and

Section 8 summarizes the contributions of this article.

2 Overview of the Model Checking Approach

In formal verification, a system is modeled mathematicalhyd its specification (also calledcéaim or propertyin
model checking) is described in a formal language. Modetkimg [20] is an automated formal verification technique
which checks whether a system satisfies a desired claimghrao exhaustive search of all possible executions of
the system. The exhaustive nature of model checking adeeks issue of inadequate coverage that is typically a
drawback of testing.

Model checking is a technique for verifying finite-state coment systems. One benefit of this restriction to finite-
state systems is that verification can be performed autoailgti Given sufficient resources, model checking always

terminates with a “yes” or “no” answer. Moreover, it can belemented by efficient algorithms.

2.1 The Process of Model Checking

Model checking involves the following steps:

1. The system is modeled using the description language @fdehchecker, producing a moded.
2. The claim to check is defined using the specification laggus the model checker, producing a temporal logic
formula¢.

3. The model checker automatically checks whethef= ¢ (i.e., whetherM satisfiesp).

The model checker explores all system executions captyréldebmodel and outputs “yes” if the claim holds in
the model (/) and “no” otherwise. When the claim is not satisfied, the matheicker produces eounterexample

consisting of a system behavior that causes the failure.ulhtesexample defines an execution trace that violates the
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claim. Counterexamples are one of the most useful featdm@®del checking, as they allow users to understand why

a claim is not satisfied.

2.2 Model Checking Software

Applying model checking to software, as opposed to hardwareomplicated by several factors, ranging from the
difficulty of modeling computer systems (due to the compiegi programming languages as compared to hardware
description languages) to difficulties in specifying meagul claims for software using the usual temporal logic
formalism of model checking. The most significant limitatid(however, is thetate space explosigeroblem (which
applies to both hardware and software), whereby the contpleikmodel checking becomes prohibitive.

State space explosion results from the fact that the siZeeoftate transition system is exponential in the number
of variables and concurrent units in the system. When thesyist composed of several concurrent units, its combined
description may lead to an exponential explosion as welé Stiate space explosion problem is the subject of most
model checking research.

The following state space reduction techniques are comyng®d during verification of software:

— Abstraction: A smaller abstract system is constructed such that the dialds for the original system if it holds
for the abstract system.

— Counterexample-guided abstraction refinementAbstracted systems are refined iteratively using inforomati
extracted from counterexamples until an error is found ds fproven that the system satisfies the verification
claim.

— Compositional reasoning:Verification is partitioned into checks of individual mods| while the global correct-
ness of the composed system is established by constructimgexctness proof that exploits the modular structure

of the system.

2.2.1 Abstraction. Abstraction is one of the principal techniques for redudimg complexity of a verification prob-

lem [19,42,18,8]. Abstraction techniques reduce the stpee by mapping the set of actual system states to an
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abstract set of states that preserve the behavior of thalaststem. Abstractions are usually performed in an infor-
mal, manual manner and require considerable expertisdidate abstraction [32,25] is one of the most popular and
widely applied methods for the systematic abstraction sfeayis. It maps concrete data types to abstract data types
through predicates over the concrete data. However, thpatational cost of the predicate abstraction procedure may
be too high, making generation of a full set of predicatesafdarge system infeasible. In practice, the number of
computed predicates is bounded [8,12], and model checkiggaranteed to deliver sound results within this bound.
The bound limit is increased when errors (if any) are founthimithe bound and fixed. Moreover, in many cases,
software systems are first rendered finite by restrictingatsées to finite domains and then abstraction techniques are

used to obtain smaller models.

The abstract program is created using existential abgiraft9]. This method defines the transition relation of
the abstract program so it is guaranteed to be a consereareapproximation of the original program, with respect
to the set of given predicates. This ensures that if a claildshfor the abstract over-approximate system, it must
also hold for the original system. The use of a conservatdgtraction, as opposed to an exact abstraction, produces
considerable reductions in the state space. The drawbable abnservative abstraction is that when model checking
of the abstract program fails, it may produce a countereXathgt does not correspond to a concrete counterexample.
Such a counterexample is usually callgalirious[18]. When a spurious counterexample is encountered, theaabs

model is refined (e.g., by adjusting the set of predicated) that the counterexample is eliminated.

2.2.2 Counterexample-Guided Abstraction Refinement (FGAThe abstraction refinement process has been auto-
mated by the CEGAR paradigm [42,18,9,26]. The CEGAR franmkigoshown in Figure 2.2.2: one starts by comput-
ing a coarse abstraction (for example, an abstraction of @@-@m) and model checking it. If an error trace reported
by the model checker is spurious, the error trace is usediterhe abstract program, and the process repeated until
no spurious error traces can be found. In short, the CEGARdwork consists of the abstract-verify-refine steps and

the actual details vary based on the abstraction and refimee®hniques used.

The steps of the CEGAR procedure are described below in thtextoof predicate abstraction.
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C Prog Predicate Abstract Model Model @ true

Abstraction Checkin
Specy @ d

Counterexample
CSputrious | o false +
i ounterexampie .
Prgdlcate p Spurious?
Refinement counterexample

Fig. 2 The CEGAR Framework

Program abstraction: Given a set of predicates, a finite-state model is extracimu the code of a software
system, and the abstract transition system is constructed.

Verification: A model checking algorithm is run to check whether the modeht=d by applying predicate ab-
straction satisfies the desired behavioral claintf the claim holds, the model checker reports success (rue),

and the CEGAR loop terminates. Otherwise, the model cheziteacts a counterexample, and the computation
proceeds to the next step.

Counterexample validation: The counterexample is examined to determine whether itis@s. This examina-
tion is done by simulating the (concrete) program using thetract counterexample as a guide, to find out if the
counterexample represents an actual program behavibislistthe case, the bug is reportedi false, and the
CEGAR loop terminates. Otherwise, the CEGAR loop proceedse next step.

Predicate refinement: The set of predicates is changed to eliminate the detectaibsg counterexample and
possibly other spurious behaviors introduced by predieatraction. Given the updated set of predicates, the

CEGAR loop proceeds to Step 1.

The efficiency of this process depends on the efficiency ofptisgram abstraction, verification and predicate

refinement procedures. While program abstraction focuse®ostructing the transition relation of the abstract pro-

gram, the focus of predicate refinement is to define efficestitiques for choosing the set of predicates in a way that

eliminates spurious counterexamples.
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2.2.3 Compositional ReasoningCompositional reasoning [21,42,4,46, 28] allows modek&hey to scale to large
systems by using a “divide and conquer” approach that etsptbe modular structure of hardware and software
systems. More specifically, the verification claim for a eystis first decomposed into a set of local claims, one for
each system module. These local claims are then verifiedatefya The compositional approach establishes whether
for given systems\/; and M» and a claimTl’, the composed system satisfiEqwritten My | My = T). A naive
compositional approach proceeds by executing the follgwieps: (1)\/; = T and (2)M- = T and concludes by
proving that)M; || M, = T'. Although this rule is sound in theory, it is often not usefupractice. Usually, bott/;

and M, behave likel" only under a suitable environment. To solve this problera,dbmpositional principle can be
strengthened to amssume-guarantgerinciple [47,41,49,1]: in order to chedW = T, it suffices to check that both
M, || A = T andM, = A hold. This technique uses a local specificatibras the constraining environment (also
called anassumptiopfor M;. In general, for a system composed of multiple modules,massguarantee reasoning
tries to prove that each system componghtsatisfies a corresponding specification compoféntnder a suitable
constraining environmend; and that the environment indeed satisfies the constrhinRecently, an approach was
proposed by Cobleigh et al. [23] to automate assume-guegaatasoning with the help of using learning algorithms
for regular languages to compute these environment asgmsp®he proposed compatibility check is based on this

automated assume-guarantee reasoning procedure.

3 Notation and Background

In this section we present some basic definitions. Xdie a sequence. Letdenote the concatenation operator over
sequencesand letX™* denote zero or more applications©bver X as usual. As a special case, the empty sequence
A denotes zero applications efover X. For any two sets{ andY, we denote the sgtrey | x € X Ay € Y} by

X o Y. In the following, we use the terms sequence &adeinterchangeably.

Definition 1 (Finite Automaton) A finite automaton (FA) is a 5-tupl@, Init, X, T', F) where (i) is a finite set of
states, (i) InitC @ is the set of initial states, (i} is a finite alphabet of actions, (i) C @ x X' x @ is the transition

relation, and (V)F' C @ is a set of accepting states.
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For any FAM = (Q, Init, X, T, F), we writes —— s’ to mean(s, a, s') € T. We define the function as follows:
Ya € X.Vs € Q.0(a,s) = {s'|s = s'}. We extend’ to operate on strings and sets of states in the natural manner
foranyo € X* and@’ C @, §(o, Q') denotes the set of statesof reached by simulating on M starting from any
seq’.

Thelanguageaccepted by a FAZ, denoted byl.(M), is defined as followsL (M) = {o € X* | §(o, Init) N F #

0}. An element ofL (M) is said to be a trace aff.

Definition 2 (Deterministic and Complete Finite Automaton) A FA M = (Q,Init, ¥, T, F) is said to be a de-
terministic FA, or DFA, if[lnit} = 1 andVa € Y .Vs € Q. |d(a,s)] < 1. Also, M is said to be complete if

Va e X.¥s € Q.|0(a,s)| > 1.

Thus, for a complete DFA, we have the following: € X' .Vs € Q. |6(«a, s)| = 1. Unless otherwise mentioned,
all DFA we consider in the rest of this paper are also compleitewell-known that a language is regular if and only if
it is accepted by some FA (or DFA, since FA and DFA have the saenepting power). Also, every regular language
is accepted by a unique (up to isomorphism) minimum DFA. Gary FAM, its complemenf\/ is defined to bel/’
where M’ is the DFA obtained frond/ by the subset construction [39].

We now define a notion of asynchronous parallel compositetween FAs which is based on the notion of com-

position defined for CSP [51].

Definition 3 (Parallel Composition) Given two FAM; = (@1, Inity, X1, Ty, Fy) and My = (Q2, Inite, X, Ts, Fy),
their parallel compositionV/; || M, is the FA(Q1 x Qs, Inity; x Inity, 3y U X5, T, Fy x Fy) such thatvsy, s} €
Q1. V52,55 € Qa, (s1,52) — (s, s5) ifand only if :

(@) a€XiANad Xy Nsy — s A(sy=sh)or

(b) a€XyAag X ANsy—shA(s;=sh)or

() a€(XiNXy)AVie{l,2}s — s
Given a string, we write M || ¢t to denote the composition @f with the automaton representationtof

Definition 4 (Language Containment)For any FAM; and M, (with alphabetsy; and Xs respectively, wheréls C

Y1), we write M, < M- to meanL (M, || Ms) = (). A counterexample td/; < M, is a stringo € L(M; || Mo>).



Verification of Evolving Software via Component Substitutability Analysis 13

If M, < Ms, then we sometimes also say thids is an abstraction of/;. We now define the notion of weakest

assumptions. We assume that a safety property can be refgeéses a FA in the usual way [31].

Definition 5 (Weakest Assumption [31])For any FAM and any safety property expressed as afAhe weakest
(i.e., maximal w.r.t. the language-containment preorg@rassumption FA, denoted B¥’4, is defined as follows: (i)

M || WA % pand (i) forany FAE, M || E % ¢ iff E < WA.

Lemma 1 (Existence and Uniqueness of Weakest Assumptio@iven a FAM and a property FAp, the weakest

assumptioniWA exists and can be represented by a FA accepting the langl@bk|| %).

Proof. The proof follows from the construction given in [31].
The following lemma shows that we can check if a given traisdén L( WA) without constructingiWA directly by

checking ifM || t < ¢ holds.

Lemma 2 Let WA be the weakest assumption automata for component automatand specification automatan

Given atrace, if M || t X ¢, thent € L(WA).

Proof. It follows from the definition of weakest assumptions (cf.fiDiion 5) that for all assumptions such that
M || A= ¢, L(A) C L(WA) holds. LetM; be the automaton representationtoBinceM | M; < ¢ holds, it

follows thatL(Af,) C L(WA). SinceL(M,) = {t}, t € L(WA).

3.1 L* algorithm

The L* algorithm for learning DFAs was developed by Angluin [6] dater improved by Rivest and Schapire [50].
In this paper, we use the improved versionigfdue to Rivest and Schapire. The algorithm learns an unknegunar

languagd/, over an alphabe¥, by generating the minimum DFA that accepts

3.1.1 Preliminaries. LetU be an unknown regular language over some alphabet

Definition 6 (Prefix Closed)A setX C Y* is said to prefix-closed if for each € X, all the prefixes of: are also in

X.
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In the rest of this section, we present the carealgorithm. We begin with the notion of a minimally adequate

teacher.

3.1.2 Minimally Adequate Teacherln order to learn an unknown langualge L* interacts with an oracle, also known

as aminimally adequate teachedM AT, for U. The teacher can provide answers to the following two kirfdgieries:

1. MembershipGiven a tracer € X*, MAT returnsTtrRUEiff o € L(U).
2. Candidate Given a DFAD, MAT returnsTRUE iff L(D) = U. If MAT returnsrALSE, it also returns a coun-

terexample tracer which either lies inL(D) \ U or U \ L(D).

3.1.3 Observation Table. The L* algorithm constructs iteratively a minimal DFR such thatZ(D) = U. To this

goal, it maintains an observation table data strucfure (S, E, T'), where:

— S C X*is a prefix-closed set of traces,
— E C XY* is a set of experiment traces, used to distinguish stat®s and,

—T:(SU(SeX)) x E— {0,1}is afunction such that:
Vse (SU(SeX)).Vec E.T(s,e)=1=se0ecU

Intuitively, one can think off” as a two-dimensional table. The rowsDfre labeled with the elements §fJ (S e
X’) while the columns are labeled with elementsifFinally T denotes the table entries. In other words, the entry
corresponding to row and columre is simply7T'(s, e). The value ofl'(s,¢) is 1 if s e ¢ € U, otherwiseT (s, e) is 0.
Figure 5(left) shows an example of an observation table.

Table Congruence We define an equivalence relatienas follows: fors, s’ € (SU S e X), s = §'iff Ve € E,

T(s,e) =T(s',e). Also, foralls € (SU S e X)), we denote the set of traces equivalent tuy [s], where

)

[s]={s€e(SUSeX)|s=s"}

Well-formed Table. An observation tabl€ is said to bevell-formedif for all s, s’ € S, s £ s’. The L* algorithm

always keepg” well-formed.

1 We omit the notion otonsistencysually used while presenting &f [7] since a well-formed table is consistent by definition.
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Algorithm CloseTable

1: forever do

2: if(Vte SeX.3s€ S.s=t)retun;
3: findt € Se X suchthatVs € S.s #t;
4: S:=SU{th

5: UpdateT" using membership queries;

Fig. 3 Pseudo-code for algorith@loseTable

Table Closure. The observation tabl@ is said to be closed if for eache S e X, there is as’ € S, so that
t = s'. Given any observation tabig, we assume that a proceduCéseTablemakes it closed. Figure 3.1.3 shows
the pseudo-code for the procedure. In words, the procetknagively selects somec S e X so that for alls € S,
s # t. Then, it addg to S and updates the functichi by asking membership queries for extensions ofi each
alphabet symbol. The procedu@oseTableterminates with a closed table when no suatan be found. In each
iteration the size of5 increases by one. Lemma 5 (described below) shows that tdwegureCloseTable cannot
increase the size ¢ indefinitely and must terminate in finite number of steps.

DFA Construction. Given a closed tabl&, L* obtains a DFAD = (Q, qo, X, A, F'), as follows:

— Q ={[s] | s € S}, where a state € @ corresponds to the equivalence clasof a traces € S,
- q =\,
- A= {([SLCL, [5.0‘]) | 5 € 570‘ € 2}
—F={[s]|s€ SAT(s,\) =1}.
Suppose that a procedure callstkDFA implements this construction. Note thBt is both deterministic and

complete.

3.1.4 TheL* Algorithm. Figure 4 shows the pseudo-code for the algorithm. Recall that denotes any empty

sequencelL* starts with atabl@ = (S, E,T) such thatS = E = {\} and in each iteration proceeds as follows.
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Algorithm L*
1. S:=FE:={)\}

2: forever do

3: CloseTablg);

4: M := MKDFA (7);

5: if (IsCandidate(M)) returnlM;

6: let CE be the counterexample returnedlsZandidate;
7 Obtain adistinguishing suffix from CE

8: E:=FEU{e};

Fig. 4 Pseudo-code for algorithh™.

1. Itfirst updated using theCloseTableprocedure until/” is closed.

2. NextL* builds a candidate DFA from the closed table (usingkDFA procedure) and makes a candidate query
with D.

3. Ifthe MAT returnsTRUE to the candidate query,* returnsD as the result and stops.

4. Otherwise, a counterexampl&” is obtained. Now.* constructs a new experimentrom CFE using the algorithm
proposed by Rivest and Schapire [50] and adidsE. The new experimernt(also known as distinguishing suffix
has the property that it causes the observation t@ble be no longer closed, and thereby forces the number of

rows of 7 to increase strictly in the next iteration 6f.

Example 1Consider Figure 5. On the left is an observation tgsleF’, T') where S and E correspond to rows and
columns respectively arifl corresponds to the table entries. Hefe= {«, 8}. From this table we see théty, « e

a} C U. Ontherightis the corresponding candidate DFA. The stgtesds; of the DFA correspond to the elements
A anda of S respectively. The statg is marked initial since it corresponds to wokd The states; is marked final

since the table entry’(«, A) = 1. Finally, the transitions are determined as describeddrptocedurdkDFA . O
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Fig. 5 An Observation Table and the Corresponding Candidate DFA

3.1.5 Results oi.*. In order to make our presentation more self-contained, we prove some results about the
L* algorithm and the proceduré&doseTableand MkDFA . We use these results to prove the correctness of a new

dynamicversion of theL* algorithm that we propose later in this paper (cf. Sectidn13.

Lemma 3 The L* algorithm always maintains a well-formed table.

Proof. Consider the pseudo-code bf in Figure 4. Given an observation talife= (S, E,T), the setS is updated
only in line 3 by theCloseTableprocedure. Hence, we need to show tGkise Tablealways maintains a well-formed
table at each iteration.

We proceed by induction. Note that at the first iteration effth loop (first call toCloseTablg, S only has a single
element and hence the table is well-formed. Assume thaniha bbservation tablé to CloseTableis well-formed
at kt" iteration ¢ > 1). The procedure€loseTable(cf. Figure 3.1.3) only adds a new elemerib S (line 4) if for
all s € S, s £ t (line 3). Therefore, all the elements fU {¢} are non-equivalent and the resultant table is also

well-formed.

The following lemma is crucial for proving termination éf. It essentially provides an upper bound on the size

of S.
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Lemmad4Llet7 = (S, E,T) be a well-formed observation table. Liétbe an unknown regular language andbe

the number of states in the minimum DFAsuch thatL(M) = U. Then the size of the trace setannot exceed.

Proof. Let § denote the transition relation @ff (A extended to words) (cf. proceduldkDFA ) and g, denote the
initial state fori/.

The proof is by contradiction. Suppose that the siz8 ekceeds:. Then by the pigeon-hole principle, there exist
two elements; ands, of S such thati (s, {qo}) = d(s2,{q0}) = ¢ (say), i.e.,s; ands, must reach the same state
q in M. SinceM is the minimum DFA forU, we know that the states @ff correspond to equivalence classes of the
Nerode congruence [39] fér. Sinces; andss reach the same state M (same Nerode equivalence class), it follows

that
Vee€ X* s10ec U iff so0ecU 1)

But, 7 is well-formed and hence, # s». Therefore there exists somesz E, such thafl'(s; e e) # T(sy e €), i.€.,

s1ee € U andsy e e € U or vice versa. Together with (1), we reach a contradiction.

The following lemma shows that the proced@mseTablecannot increase the size Sfindefinitely and must

terminate in finite number of steps.

Lemma 5 The procedureCloseTablealways terminates with a closed table. Moreover, the pracednaintains a

well-formed observation tabl& = (S, E, T)) at each iteration.

Proof. It follows from the pseudo-code (Figure 3.1.3) that the prhaeCloseTablekeeps adding new elements to
S until 7 is closed. Since the size ¢f is bounded by the number of states in the minimum DFA for thienown
languagd/ (Lemma 4),CloseTableterminates with a closed table in finite number of steps.lid¥es from Lemma 3

that the procedure always maintains a well-formed table.

The following lemma shows that tHdkDFA procedure always constructs a candidate DFA starting fravela

formed and closed observation table.
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Lemma 6 Given a well-formed and closed observation table as an injet proceduredMlkDFA always terminates

with a candidate DFAD as a result.

Proof. Since the input tabl& is well-formed, the states dp are uniquely defined by the elementssfMoreover, the
initial state is unique by definition and the final states ae#i-defined. Since the table is closed, the transition ielat

of D is also well-defined. Hence, the candidate DFA is well-define

Theorem 1 Given an unknown regular languadé, the algorithmZ* always terminates with a DFA/ such that

L(M)=U.

Proof. The fact thatZ.* algorithm terminates with the correct resit (L (M) = U) is obvious since it stops only after

a candidate query has passed. To prove that it terminatadfiites to show that there can only be a finite number of
failed candidate queries and therefore only a finite numbéertions of the top-level loop (Figure 4, line 2). It has
been shown [50] that for each failed candidate query, thegahoreCloseTablemust add at least one elementdan

the next iteration of the top-level loop. However, the siz&'as bounded (cf. Lemma 4) and hence the loop executes

only a finite number of times.

4 Containment Analysis

Recall that the containment step verifies for eaehZ, thatC; < CZ i.e., every behavior of’; is also a behavior of
C;. If C; 4 C;, we also generate a counterexample behavidtetw (C;) \ Behw(C;) which is subsequently provided
as user feedback. This containment check is performed astelépn Figure 6 for each modified component:K
refers to the counterexample generated during the verditahase). For eache Z, the containment check proceeds

as follows:

1. Abstraction. Construct finite modeld/ and M’ such that the following condition81 andC2 hold:

(C1)C; <M (C2) M < C, 2)
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VALIDATION 2 | Check:CE ¢C|

Yes=CE € C\C

Fig. 6 The containment phase of the substitutability framework.

Here M is anover-approximatiorof C; and can be constructed by standard predicate abstract®dniB is
constructed fromj’; via a modified predicate abstraction which producesrater-approximatiorf its input C com-
ponent. We now describe the details of the abstraction steps

Suppose that’; consists of a set of C statememt8nt = {st1, ..., sty }. LetV be the set of variables in thg;.

A valuation of all the variables in a program correspondsdorecrete state of the given program. We denote it.by

Predicates are functions that map a concrete stateS into a Boolean value. L = {7y, ..., 7 } be the set of
predicates over the given program. On evaluating the seteofigates irP in a particular concrete state we obtain
a vector of Boolean values whereb[i| = ;(v). The Boolean vectob represents an abstract state. We represent
this predicate evaluation using an abstraction functioh = (7). Also, theconcretizatiorfunction+ is defined as

follows:

v(0) ={v]b=a(v)}

“May” Predicate Abstraction: Over-approximation. This step corresponds to the standard predicate abstrac-
tion [12]. Each statement (or basic block) in C; is associated with a transition relati@{z, v'). Here,v and ¢’

represent a concrete state before and after executiin, oéspectively. Given the set of predicafésnd associated



Verification of Evolving Software via Component Substitutability Analysis 21
vector of Boolean variabldsas before, we compute an abstract transition relaiidn b') [19] as follows:
T(b,b') = 30,9 . T(0,7) ANb=a(d) AV = () ©))

T is the existential abstraction [19] @F (with respect to the abstraction functiai and is also referred to as itsay
abstractioﬁfmay [52]. In practice, we compute this abstraction using thekestprecondition (WP) transformer [29]

on predicates irP along with an automated theorem prover [33] as follows:
T(b,b') = v(b) A WP(St,~(b)) is satisfiable 4)

whereWP(St, ¢) denotes the weakest precondition expression for formuwléh respect to statemest and~y is the

concretization function as defined above. By the definitibweakest preconditions, we have
v € WP(St,y(t))) = W' . T(0,0") A € y(V)

Note that Equation 3 is equivalent to Equation 4 since:

T(b,0)=30.30 . T(0,0") Nb= () ANV = ()
=F.(0eyb) AW . T(0,0) A €~())
=30. (v € y(b) Ao € WP(St,v(V)))
= ~(b) AN WP(St,~(b)) is satisfiable
Note that even though we are checking software consistingeeéral communicating program components,
it is sufficient to use standard weakest preconditions fouestial programs, since the abstraction is performed
component-wise.
“Must” Predicate Abstraction: Under-approximation. The modified predicate abstraction constructs an under-
approximation of the concrete system via universaimuist[52] abstraction. Given a statemesit in the modified

componenC; and its associated transition relatiifo, v') as before, we compute its must abstraction with respect

to predicate$ as follows:

T(b,b)=Yv.b=a(d) = 3 .T(0,0)Ab =av) 5)
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We useT),.: to denote the above relation. Note that,.; contains a transition from an abstract stat® b’ iff
for every concrete state corresponding td, there exists a concrete transition to a stdteorresponding té’ [52].
Further, it has been shown [52] that the concrete transigtation’T” simulates the abstract transition relatibn,,.;.
Henceq), . is an under-approximation @f. Again, in practice, we computémst using the WP transformer on the

predicates together with a theorem prover [36] in the follmway:
T(b,0) = (v(b) = WP(St,y(b'))) (6)

Note that Equation 5 is equivalent to Equation 6 since:

T0,)= (Vo.b=a(t) = I .T(0,0") AV = at'))
= (V0.0 €y(b) = W .T®,0) AV €~())
= (Vo.0 € v(b) = © € WP(St,y(¥)))

= (y(b) = WPR(St,~(V)))

At the end of the abstraction phase, we obthiras an over-approximation 6t; and M/’ as an under-approximation
of CL as defined in Equation 2. The containment check now prodedtis next stage involving verification.

2. Verification. Verify if M < M’ (or alternativelyM \ B < M’ if the upgrade involved some bug fix and the bug
was defined as a finite automat®). If so then from(C1) and(C2) (cf. Abstraction ) above we know thaf’; < C7
and we terminate with success. Otherwise we obtain a caxasmpleCE.

3. Validation and Refinement 1.Check thatCF is a real behavior of’;. This step is done in a manner similar
to the counterexample validation techniques employed fiwaoce model checkers based on CEGAR [8,38,12]. If
CFE is a real behavior of’;, we proceed to Step 4. Otherwise we refine made{i.e., remove the spuriouSFE) by
constructing a new set of predicat®$ and repeat from Step 2. The procedure for refining the maddias been
presented elsewhere [12] in detail, and we do not descrheré further.

4. Validation and Refinement 2.Check thatCE is not a real behavior of;. The operations involved in this

check are the same as those used for the validation checlefin3StThe only difference is that we complement the
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final result, since in this step we are interested in checkihgtherCE is not a real behavior ole, while in Step 3,
we were interested in checking wheth@F is a real behavior of’;.

If CE is not a real behavior af/;, we know thatCE € Behv(C;) \ Behv(C;). We addCE to the user feedback
step and stop. Otherwise we enlayg (i.e., addCFE) by constructing a new set of predicatesand repeat from
Step 2. The procedure for enlarging the matiElhas been presented elsewhere [36] in detail, and we do nailokes
it here further.

Figure 6 depicts the individual steps of this containmeetckh Similar to ordinary abstraction-refinement proce-
dures for programs, the containment check may not termipetause a sufficient set of predicates is never found.

Otherwise, the check terminates either with a successfultréall behaviors of’; are verified to be present '(ﬁ;) or

returns an actual diagnostic behavi@l as feedback to the developers. The following theorem prihissesult.

Theorem 2 (Correctness of Containment Check)Jpon termination, if the Containment Check is succesdfiel t

C; < C; holds. Otherwise, a witness counterexam@le € C; \ C; is returned.

Proof. The containment check terminates either when the verifinatheck (Step 2) succeeds or both the Valida-
tion and Refinement checks (Steps 3 and 4) fail. Note thatcdt igarationC; < M; andM! < (Jl If the verification
step (Step 2) succeeds, then it follows thé&t < M/, and henc&; < M; < M/ < C,. ThereforeC; < C; holds.
Otherwise, suppose that both the Validation and Refinenteaggs (Steps 3 and 4) fail. Then, from Step 3 we know
that CE e C;, and from Step 4 we know thatE ¢ C;. Hence, we have a counterexampl€ € C;\ € C; which is

returned by the containment check.

4.1 Feedback

Recall that for somé € Z, if our containment check detects th@t £ Cl it also computes a séf; of erroneous
behaviors. Intuitively, each element &f represents a behavior 6f, that is not a behavior (Ifz We now present our
process of generating feedback frof In the rest of this section, we writ€, ¢, and F to meanC;, CL andF;,

respectively.
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Consider any behavior in 7. Recall thatr is a trace of an automata obtained by predicate abstraction@f
By simulatingm on M, we construct a sequenéep(w) = (o, ..., ay) Of states and actions @f corresponding to
the tracer.

We also know thatr represents an actual behavior@fut not an actual behavior ¢f . Thus, there is a prefix
Pref () of 7 such thatPref () represents a behavior 6f . However, no extension dfref () is a valid behavior
of C'. Note thatPref () can be constructed by simulatingon C'. Let us denote the suffix of after Pref(m) by
Suff (). Since Pref () is an actual behavior af’, we can also construct a representationfoef () in terms of
the statements and predicate valuation§'ofLet us denote this representation Byp' (Pref (r)).

As our feedback, for each € F, we compute the following representatiorf®ep( Pref (7)), Rep(Suff (r)),
and Rep’(Pref ()). Such feedback allows us to identify the exact divergendetd = beyond which it ceases to
correspond to any concrete behaviotdf Since the feedback refers to a program statement, it allews understand
at the source code level whg is able to matchr completely, buiC” is forced to diverge fromr beyond Pref ().

This understanding makes it easier to modifyso that the missing behaviarcan be added back to it.

5 Compatibility Analysis

The compatibility check is aimed at ensuring that the upegdasl/stem satisfies global safety specifications. Our com-
patibility check procedure involves two key paradigms:ayic regular-set learning and assume-guarantee reasoning

We first present these two techniques and then describeutein the compatibility algorithm.

5.1 Dynamic Regular-Set Learning

Central to our compatibility check procedure is a réymamicalgorithm to learn regular languages. Our algorithm is
based on thé.* algorithm described in Section 3. In this section we firsspra a dynamic version of the* learning

algorithm and then describe how it can be applied for checkampatibility.

5.1.1 Dynamid.*. Normally L* initializes with.S = E = {\}. This can be a drawback in cases where a previously

learned candidate (and hence a table) exists and we wisktartrkearning using information from the previous table.
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In the following discussion, we show that if* begins with any non-empty valid table, it must terminatehvitie
correct result (Theorem 3). In particular, this theoremvadl us to perform our compatibility check dynamically by

restartingL* with any previously computed table by revalidating it ir&tef starting from an empty tabfe.
Definition 7 (Agreement) An observation tabl@ = (S, F, T') is said to agree with a regular languadé iff:
V(s,e) e (SUSeX )X FE . T(s,e)=1=se0ecU

Definition 8 (Validity) Recall the notion of a well-formed observation table fromt®a 3.1.3. An observation table
T = (S,E,T) is said to be valid for a languagf iff 7 is well-formed and agrees witti. Moreover, we say that a

candidate automaton derived from a taldleis valid for a languagé’ if 7 is valid for U.
Theorem 3 L* terminates with a correct result for any unknown languégstarting from any valid table fot/.

Proof. It was shown earlier (cf. Theorem 1) that for a given unknoamguagel/, the L* algorithm terminates if

it is able to perform a finite number of candidate queries.réfuee, it remains to show that starting from a valid
observation table, the algorithm must be able to perforrmaidate query in a finite number of steps. Note that each
iteration of theL* algorithm involves executing th€loseTableandMkDFA procedures before making a candidate
query (cf. Figure 4). Therefore, we need to show that thegutoesCloseTableand MkDFA terminate in a finite
number of steps starting from a valid table.

Let the valid observation table 5. Since7; agrees withl/, the CloseTableprocedure terminates in a finite
number of steps with a closed talife (cf. Lemma 5). Moreover7; is well-formed since the initial tabl&; is well-
formed (cf. Lemma 5). Sinc#, is well-formed and closed, tHdkDFA algorithm is able to compute a DFA candidate
D (cf. Lemma 6) from7Z; and terminates. Therefore, after the executioM&DFA finishes,L* must perform a

candidate query.

Suppose we have a tabfethat is valid for an unknown languadé and we have a new unknown langudge

different fromU. Suppose we want to leaf’ by startingL* with table7 . Note that sincé/ andU’ differ in general,

2 A similar idea was also proposed in the context of adaptive model crupf3d.



26 Sagar Chaki et al.

7 may not agree witl/’ and hence may not be valid with respecttq hence,L* may not terminate starting frof.
Thus, we firstevalidate7 againstU’ and then starL* from the valid7 . Theorem 3 provides the key insight behind
the correctness of this procedure. As we shall see, thisfatess the backbone of our dynamic compatibility-check

procedure (see Section 5.3).

In the context of assume-guarantee reasonihgepresents a weakest assumption language. When an upgrade
occurs,U may change to a different languagé. However, since the change was caused by an upgrade, wet expec
that the languagé”’ will differ from U only slightly. We will see that the efficiency of our revaltaa procedure

depends crucially on this hypothesis.

Revalidation Procedure.Suppose we have a talilewhich is valid for an unknown languad@é. Given a Teacher
for a different unknown languadé’, the table revalidation proceduReval (shown in Figure 7) makesg valid with
respect to’ by executing the following two steps. In StepReval updates all the table entries i by asking
membership queries. The taldé obtained as a result may not be well-formed since the fundfics updated. More
precisely, for some;, s, € S wheres; # s, in 7, it may happen that; = s, in 7’. However, the construction of a
candidate DFA requires that the observation table be wefhéd (cf. Lemma 6). Therefore, in StepReval uses the
procedureMkWellFormed to make7’ well-formed. In order to describkWellFormed , we need the concepts of

thewell-formed coveand theexperiment covefor an observation tablé.

Procedure Reval
Input: An observation tabl§” = (S, E, T') and a teacher for a languageé.

Output: An observation tablg” that is valid forU’.

1. (Step 1)For alls € S ande € E, ask membership query fare e with respect td/’ and updatd’.
Let the table obtained as a resultbé

2. (Step 2)Make 7"’ well-formed (cf. Section 3.1.3) by using the proceditiéWellFormed .

Fig. 7 The table revalidation proceduReval.
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Definition 9 (Well-formed Cover) Given a prefix-closed sét, a well-formed subset ¢f is a setS” C S such that (i)
S’ is prefix-closed, and (i) for alk;, so € S, s1 £ s» holds. A well-formed cove$’ of S is a maximal well-formed

subset ofS.

Given a prefix-closed sef, a well-formed covers’ of S can be obtained by performing a depth-first tree search
on the tree representation §fin the following way: for each newly visited node in the tré®e corresponding string
in S is added taS’. However, a node (with the corresponding strigs visited only if for all s” in the current cover
S’, s ands’ are non-equivalent, i.es, # s’. The search terminates when for everg S there exists someg € S’ so
thats = s’. Note that the finab’ obtained in this way is prefix-closed and no two elementS’aire equivalent. For
example, letS = {a,a e b,a e ¢,d} wherea = a e c andd = a e b. A well-formed cover ofS is S” = {a,a e b}. Note

that S’ is prefix-closed and # a e b.

Definition 10 (Column Function) Given an observation tabl& = (S5, E,T'), and some: € E, Col(e) is defined to
be a function from(S U S e X') to {0, 1} such thatCol(e)(s) = T'(s,e) forall s € (SU S e X). Forey,es € F, we

say thatCol(e;1) = Col(ez) ifforall s € (SUS e X)), T'(s,e1) = T(s, e2).

Intuitively, for an experiment € E, Col(e) denotes the vector of Boolean values in the column correipgrio
e in an observation tabl&. Two elements; ande, are equivalent under th€ol function if the vector of Boolean

values in the corresponding columns of the observatiore tatd same.

Definition 11 (Experiment Cover) An experiment cover ot is a setE’ C F, such that (i) for alle;,es € F’,

Col(ey) # Col(ez), and (i) for eache € F, there exists ar’ € E’, such thatCol(e) = Col(e’).

An experiment cover fo? can be obtained by finding the set of elements equivalentrufidé function and
picking a representative element from each set. For examplesider the observation table in Figure 8(d). Here,
E = {\, a}. Note thatCol(X\) # Col(a). Hence, the experiment covél for E is the same a#&.

The MkWellFormed procedure is described by the pseudo-code in Figure 9tilrgly, the procedure removes
duplicate elements frord' (which are equivalent under the relation) andE (having the same value under tbl

function).
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Fig. 8 lllustration of the revalidation procedure described in Example 2; (ap@bton table for original languadé = (3 | (« e
(a]B3)))*; (b) New observation table after recomputing the entries with respect tethdéanguage/’ = (8 | ae8)*) | (B | ae
B)" e a); e.g.,a € U’ impliesT(a, \) = 1 (c) Observation table after revalidating with respedttcand (d) after ar.* learning
iteration with respect t@/’; (e) DFA for languagd/ (corresponding to observation table in (a)); and (f) DFA for langu&ige

(corresponding to table in (d)).

Example ZARevalidation Example) Figure 8 shows an illustration of the revalidation procediarthe dynamid.*
algorithm. Let the initial unknown language (the weakestuagption language) b& = (5 | (« e (a|3)))*. The
observation tablg; and the DFA forlJ are shown in Figure 8(a) and Figure 8(e) respectively. Sspfitat an upgrade

happens and the new weakest assumption langud@esg (5 | c e 5)*) | (5| « @ 3)* @ ). In particular, note that
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Procedure MkWellFormed
Input: Observation tablg = (S, E,T)

Output: Well-formed observation tabté’ = (S’, E', T")

1. SetS’ to a well-formed cover (cf. Definition 9) of.
2. SetE’ to an experiment cover (cf. Definition 11) &f with respect t.S’ U S’ e X0).

3. ObtainT” by restrictingl to (S’ U S" e X) x E’
Fig. 9 Pseudo-code for thlkWellFormed procedure

a € U' butnotinU anda e o € U but notinU’. Our goal is to start learning with respectl{o from the observation
table7; computed forlJ previously. So, thé&keval procedure is applied t@;. Figure 8(b) shows the table obtained
after applying the Step 1 of the revalidation procedure wagpect to the new languagg. Note that the entries for
T(a, ) andT (e o, \) are updated with respecttd. This, in turn, results im = A (cf. Figure 8(b)). Now, the Step

2 of theReval procedure is applied: sinece = X andS = {), a}, the well-formed cove’” = {A}. The experiment
cover E’ remains the same ds. Hence,« is removed fromS during computation of the well-formed cover in this
step (Note that the extensionss « anda e 3 are also in turn removed froisi e X). The resultant observation table
(after making it closed) is shown in Figure 8(c). Since thilsl¢ is closed, learning proceeds in the normal fashion
from here by computing the next candidate and making a cateliguery. Figure 8(d) shows the final observation

table and Figure 8(f) shows the DFA obtained after learnmmmetes with respect tG’.

Note that our example is small, and therefore the revabidagiep gives rise to a trivial intermediate observation
table (Figure 8(b)). However, as noted earlier, in the casensan upgrade causes the change ftomo U’, the lan-
guaged/ andU’ may differ only slightly. Therefore, in this case, tReval procedure may modify the observation
table only slightly. In particular, during revalidatiomet well-formed cover of may remain very similar t& (i.e., a
large number of elements 6fmay continue to remain non-equivalent after revalidatitegding to reuse of informa-
tion about many tracesS(e F) in the observation table. In the experimental evaluatiooun approach, we observed
that the above expectation was true in most of the cases.

We now show that the output MkWellFormed procedure is a well-formed table.
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Lemma 7 TheMkWellFormed procedure returns a well-formed observation table.

Proof. Given an observation tablg = (S, £, T"), the MkWellFormed procedure restricts to a well-formed cover
(sayS’) and E to an experiment cover (sdy’). Let the table obtained as a resultbt It follows from Definition 9
that for all s1,s2 € S’, s1 # s2. Using the definition of= (cf. Section 3.1.3), we know that for somec F,
T(s1 e¢) # T(s2 e ¢). Now, consider the following two cases:

Case 1lf e € F’, s1 £ s still holds in the result table SincE(s; e €) # T'(s2 @ €).

Case 2.0therwise,e ¢ E’. However, by Definition 11, there exist some e E’, so thatCol(e’) = Col(e). By
using the definition of”ol (Definition 10), it follows that for alls € S, T(see) = T(s e €¢’). Hence,T'(s; e €') =

T(sye¢) #T(s2ee)=T(soe¢'). Therefores; # s, holds and so the output tabfe is well-formed.

Lemma 8 TheReval procedure always computes a valid observation table foutilenown languag&’ as an output.

Proof. Refer to Figure 7 describing tHeeval procedure. By construction, the table obtained at the enStey 1
mustagreewith U’. In Step 2, the procedutdkWellFormed is applied. Therefore, it follows from Lemma 7 that the
resultant table isvell-formed As a result, the final table both agrees withand is well-formed; hence, by Definition 8,

it is valid.

It follows from Lemma 8 and Theorem 3 that starting from anesteation table computed by tieval procedure,

the L* algorithm must terminate with the correct minimum DFA forwarknown languagé&’’.

5.2 Assume-Guarantee Reasoning

Along with dynamicL*, we also use assume-guarantee style compositional regsionaneck compatibility. Given
a set of component finite automadd,, ..., M,, and a specification automatas the following non-circular rule

AG [49] can be used to verifyf; || - || M, < ¢:
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MiAi <o
M |-+ || Mp < A
Myl [[ M=o

In the above equatiory; is a finite automaton representing the assumption abouttfisbement under which
M, is expected to operate correctly. As also observed by Ggibleti al. [23], the second premise is itself an instance
of the top-level proof obligation withh — 1 component finite automata. Hen@; can be applied to decompose it
further. It has been shown that tA& rule is both sound and complete [23]. The proof of completemelies on the
existence of an unique weakest assumption (cf. Lemma 1)dormgonent automatah/ and propertyp.

As mentioned above, the rufG can be instantiated recursively fercomponents [23] as follows.

M; || Ai S Aa(1<i<n—1,40 = ¢)

Mn < An—l

Myl | Mp=xe
Our algorithm for checking compatibility uses this instatibn of rule AG for n components. We can show that
this rule iscompletausing the notion of weakest assumptions. Recall (cf. Déimi) that for any finite automatah/
and a specification automatgnthere must exist a weakest finite automaton assumptidrsuch that\/ || A < ¢ iff
A< WAandM || WA < ¢. For the above instantiation &G rule, we can define a set of weakest assumptiétis
(1 <i<n-—1)asfollows. Itis clear that a weakest assumptitd; exists such thad/; | WA; < ¢. Given WA,
it follows that WA, must exist so thad/s | WA, < WA;. Therefore, by induction ofy there must exist weakest

assumptiondVA; for 1 <i <n —1,suchthatM; || WA; < WA;_1(1 <i<n—1, WAy = ¢)andM,, < A,_1.

5.3 Compatibility Check for C Components

The procedure for checking compatibility of new componéntshe context of the original component assembly
is presented in Figure 10. Given an old component assetbly {C1,...,C,} and a set of new components
C'={C!|i eI} (whereZ C {1,...,n}), the compatibility-check procedure checks if a safetypprty ¢ holds

in the new assembly. We first present an overview of the caiifiigt procedure and then discuss its implementation
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in detail. The procedure useDynamicCheckalgorithm (cf. Section 5.3.2) and is done in an iterativetia@sion-

refinement style as follows:

1. Use predicate abstraction to obtain finite automaton msadg, whereM; is constructed fronC; if ¢ ¢ Z and
from C/ if i € Z. The abstraction is carried out component-wise. AMét= { M7, ..., M, }.

2. Apply DynamicCheckon M. If the result iSTRUE, the compatibility check terminates successfully. Othsew
we obtain a counterexamplér.

3. Check ifCF is a valid counterexample. Once again this is done compeniset If CE is valid, the compatibility
check terminates unsuccessfully withy as a counterexample. Otherwise we go to the next step.

4. Refine a specific model, say, such that the spuriouSE is eliminated. Repeat the process from Step 2.

Old Components New Components
{Glig1} {Clliel}
””””””””” Predicate Abstraction——=~——=——
M - {Mla ey Mn}
L* Check: M &= (I) Refine
New Component is Substitutable CE spuriou Yes
NO | New Component is not Substitutable

CE provided

Fig. 10 The Compatibility Phase of the Substitutability Framework

5.3.1 Overview of DynamicCheckWe first present an overview of the algorithm for two finitecanata and then
generalize it to an arbitrary collection of finite autom&appose we have two old finite automaté, and M-, and a
property finite automatop. We assume that we previously tried to verif§; || M2 < ¢ usingDynamicCheck The

algorithmDynamicCheckuses dynamid.* to learn appropriate assumptions that can discharge tineiges ofAG.
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In particular, suppose that while trying to veriy; || M2 < ¢, DynamicCheckhad constructed an observation table
7.

Now suppose that we have new versidd$ and M} for M, andMs. Note that, in general, eithéd| or M/, could
be identical to its old versiorDynamicChecknow reuseg¥ and invokes the dynamit* algorithm to automatically
learn an assumptiod’ such that (i)M; || A" < ¢ and (ii) M} < A’. More preciselyDynamicCheck proceeds

iteratively as follows:

1. It checks ifM; = Mj. If so, it initializes learning from the previous tabife(i.e., it sets7’ := 7). Otherwise, it
revalidates/ against)M/] to obtain a new tablg”.

2. It derives a conjecturd’ from 7’ and checks if\; < A’. If this check passes, it terminates witRUE and the
new assumptiom’. Otherwise, it obtains a counterexampglé.

3. It analyzesCE to see if CE corresponds to a real counterexampleMo || M, < . If so, it constructs such a
counterexample and terminates wiRALSE. Otherwise, it adds a new experimentZ6 using CE. This is done
via the algorithm by Rivest and Schapire [50] as explaine8ention 3.1.4. Therefore, once the new experiment
is added7” is no longer closed.

4. It makes7” closed by making membership queries and repeats the privoasStep 2.

We now describe the key ideas that enable us to reuse theopseassumptions and then present the complete
DynamicCheck algorithm for multiple finite automata. Due to its dynamidure, the algorithm is able to locally
identify the set of assumptions that must be modified to rgatd the system.

Incremental Changes Between Successive Assumptiofecall that the.* algorithm maintains an observation
table (S, E,T) corresponding to an assumptiehfor every componenf\/. During an initial compatibility check,
this table stores the information about membership of threeati set of tracesy e F) in an unknown languag¥'.
Upgrading the component/ modifies this unknown language for the corresponding assamfrom U to, say,

U’. Therefore, checking compatibility after an upgrade reggithat the learner must compute a new assumption
corresponding td/’. As mentioned earlier, in most cases, the langudge$) and L(A’) may differ only slightly;

hence, the information about the behaviorsdas reused in computing’.
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Table Revalidation. The originalL* algorithm computes!’ starting from an empty table. However, as mentioned
before, a more efficient algorithm would try to reuse the fesly inferred set of elements ¢f and E to learnA’.
The result in Section 5.1.1 (Theorem 3) precisely enabkeg thalgorithm to achieve this goal. In particular, since
terminates starting from amalid table, the algorithm uses tiReval procedure to obtain a valid table by reusing traces
in .S and experiments ify. The valid table thereby obtained is subsequently maded|@nd then learning proceeds
in the normal fashion. Doing this allows the compatibilityeck to restart from any previous set of assumptions by

revalidating them. Th&evalidateAssumptionmodule implements this feature (see Figure 12).

5.3.2 Overall DynamicCheck ProcedureThe DynamicCheckprocedure instantiates ti# rule forn components
and enables checking multiple upgrades simultaneouslgusimg previous assumptions and verification resultsdn th
description, we denote the previous and new versions of gooent finite automaton hy/ and M’ and the previous
and new versions of component assemblies\dyand M’, respectively. For ease of description, we always use a
property,p, to denote the right-hand side of the top-level proof oltigyaof the AG rule. We denote the modified
property at each recursion level of the algorithm by. The old and new assumptions are denoteddbgnd A’,
respectively.

Figure 12 presents the pseudo-code oflygaamicCheckalgorithm to perform the compatibility check. Lines 1-4
describe the case whevt contains only one component. In Line 5-6, if the previousiaggtion is found to be not valid
(usinglsValidAssumption procedure) with respect to the weakest assumption comeamptoM’ andy’, it is reval-
idated using th&kevalidateAssumptionprocedure. Lines 8-10 describe the recursive invocatidbysfamicCheck
on M’ \ M’ against propertyl’. Finally, Lines 11-16 show how the algorithm detects a cerexampleCE and uses
it to updateA’ or terminates with @aRUE result or a counterexample. The salient features of thigritkgn are the

following:

— We assume that there exists a set of previously computedasisms from the earlier verification check. Suppose

we have a component automatbhand a property automatan such that the corresponding weakest assumption

8 Under the recursive application of the compatibility-check procedueeypitlated property’ corresponds to an assumption

from the previous recursion level.
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GenerateAssumption(A, CFE)

/I Let (S,E,T) be thé&.” observation table corresponding to an assumptign
1: Obtain adistinguishing suffix from CFE;
2: E:=FEU/{e};

3: forever do

4: CloseTablg);

5: A’ :=MKDFA (T);

6: if (IsCandidate(A”)) returnA’;

7 let CE’ be the counterexample returnedlsZandidate;
8: Obtain adistinguishing suffix from CE’;

9: E :=EU{e};

Fig. 11 Pseudo-code for proceduBenerateAssumption

is WA. In order to find out if a previously computed assumption (&8s valid against( WA) (cf. Definition 8),
thelsValidAssumption procedure is used. More precisely, te¥alidAssumption procedure checks if the obser-
vation table (say") corresponding tod is valid with respect td.( WA) by asking a membership query for each
element of the table (cf. Lemma 2).

— The procedur&enerateAssumption(cf. Figure 11) essentially models tlié algorithm. Given a counterexample
CE, the procedurésenerateAssumptioncomputes the next candidate assumption in a manner similtret
original L* algorithm (cf. Section 3.1.4). The termination of tBenerateAssumptionprocedure directly follows
from that of theL* algorithm.

— Verification checks are repeated on a compodhtor a collection of component$t’ \ M’) only if itis (or they
are) found to be different from the previous versigh(M \ M) or if the corresponding property has changed
(Lines 3, 8). Otherwise, the previously computed and cacesdlt (returned by the procedu@achedResul} is

reused (Lines 4, 9).
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DynamicCheck(M’, ) returns counterexample orRUE
1. let M’ =firstelement ofM’;
/IM and ¢ denote the first element 8ff and the corresponding property before upgrade
/land A denotes the assumption computed previoushoand o
20 if (M ={M'})
3: if (M # M’ orp# ¢')return (M’ < ¢');
4: else return CachedResulfM < ¢);
/lcheck ifA is a valid assumption foh/’ and ¢’
5. if (= IsValidAssumption(A, M’, ©’))
/Imake assumptiod valid for M’ and ¢’
6: A’ = RevalidateAssumption{A4, M’, ¢©');
7: elseA’ = A4
/INow check the rest of the systewt’ \ M’ againstA’
8 if(A#£A or M\ M#AM\M")
9: res := DynamicCheck M’ \ M’, A’);
10: elseres := CachedResul(M \ M < A);
11: while(res is NOt TRUE)

/ILet CE be the counterexample obtained

12: if (M'|| CE < ¢)

13: A’ := GenerateAssumption(A’, CE); // Obtain A" so thatM”’ || A’ < ¢’
14: res = DynamicCheck (M’ \ M’, A"); Il Check it M’ \ M’ < A’

15: else return a witness counterexampleE’ to M’ || CE # ¢';

16: return TRUE;
Fig. 12 Pseudo-Code for Compatibility Checking on an upgrade. The proeeeturnsrRUE if M’ < ¢’ holds, otherwise returns

a counterexample witnegsE.
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Note that for a component automatdd and a counterexample trace”, we write M || CFE to denote the
composition ofM with the automaton representation of the trade (where the last state is the only accepting state).

In order to prove the correctnessynamicCheck we need the following lemma.

Lemma 9 SupposeM is a set of component automata (witi € M) and ¢ be a specification automaton. Let
M\ M # ¢ hold andCE be a witness to it. Moreover, suppakg || CE £ ¢ holds, andCE' is a witness to it. Then

M £ ¢ holds andCE' is a witness to it.

Proof.Let My = M \ M. SinceCE is a witness talls £ ¢, we know thatCE € L(Ms). Also, sinceM || CE £ ¢
holds andCE’ is a witness to it, there is &E” € L(M) such thatCE’ = (CE" || CE) (using the automaton
representation of botlWE and CE"). Also, CE' ¢ L(y). SinceCE"” € L(M) and CE € L(M,), it follows that
CE" = (CE" || CE)isin L(M | M) = L(M). Hence,CE" is in L(M) but not in L(¢). Therefore,CE" is a
witness toM £ .

Theorem 4 shows the correctnessfnamicCheck The proof relies on the fact that the rud& for a sys-
tem of n component automata is complete due to the existence of @uensiet of weakest assumptions (cf. Sec-
tion 5.2). Note that we never construct the weakest assomgptlirectly; they are only used to show that the procedure

DynamicCheckterminates with the correct result.

Theorem 4 Given modified\’ and¢’, the DynamicCheckalgorithm always terminates with eithéerue or a coun-

terexampleCE to M’ < ¢/,

Proof.We assume that for the earlier systérh a set of previously computed assumption autordata. . A,,_; exist.
Suppose one or more components\thare upgraded resulting in the systef .

The proof proceeds by induction over the number of compaieint M. In the base cas&1’ consists of a single
component automatah/’; hence we need to model chetk’ againsty’ only if either M or ¢ changed. This is done
in Lines 3-4. HenceDynamicCheckreturns the correct result in this case.

Assume for the inductive case tHaygnamicCheck(M'\ M’ A”) terminates with eithefrue or a counterexample
CE. If Line 8 holds (i.e., A" # Aor M\ M # M’ \ M’), then, by the inductive hypothesis, execution of Line 9

terminates with the correct result: either.e or a counterexampl€'E. Otherwise, the previously computed correct
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resultres is used (Line 10). Based on this result, Lines 11-16 updaectiirent assumption in an iterative manner.
Therefore, it remains to be shown that Lines 11-16 comp@edhrect return value based on this result.

If the resultin Line 9 or Line 10 isrue, it follows from the soundness of the assume-guarantedtrate\t’ < ¢’
andDynamicCheckreturnstrue (Line 16). Otherwise, a counterexamlé is found which is a withess td1\ M %
¢’. This counterexample is used in Line 12 to checRif | CE < ¢'. If this holds, thenCFE is used to improve
the current assumption in Lines 13-14. Otherwise, the ghaeereturns a suitable witneg&z’ (Line 15). In order to
show that Lines 11-16 compute the correct result, we nedaow that (i) the counterexampl@E’ is indeed a witness
to M’ £ ¢’ and, (i) the loop in Lines 11-15 can execute only a finite nendf times.

Using the fact thaC'E is a witness toM’ \ M’ £ ¢’ (from Lines 9-10) and\l’ || CE # ¢’ (Line 12), it follows
from Lemma 9 that\’ £ ¢’ and CE’ is a suitable witness ta1’ £ ¢'.

It remains to show that Lines 11-15 can execute only a finitalmer of times. Note that in Line 13}’ is valid
since it was computed bigevalidateAssumption(Line 6). Hence GenerateAssumption(Line 13) must terminate
(cf. Theorem 3) by learning a new assumption, g4y such thatV/’ || A” < ¢’. Note that by Lemma 4, the number
of states ofd’ or A” cannot exceed that of the corresponding weakest assumiptidnAlso, it follows from the proof
of correctness of.* (cf. Theorem 1) thatd’| < |A”| . Moreover, by the inductive hypothesis, Line 14 must teaten
with the correct result. Hence, each iteration of Lines 4lefithewhile loop will lead to increase in the number of
states of the assumption candidates uptil| = |WA'|. In this case, the loop terminates. If no counterexample is
generated at Line 14, then the loop terminates with a trugtrasLine 16. Otherwise, if a counterexamplé’ is
generated at Line 14 (witd” = WA’), then it follows thatCE € L(M’\ M’) and CE ¢ L(WA'). Therefore it
follows from Lemma 2 thafl/’ | CE < ¢’ does not hold. Hence, by Lemma@F is an actual witness td1" £ ¢'.

Therefore, the procedure returns by generating the comiénéssCE’ at Line 15.

6 Implementation and Experimental Evaluation

The procedures for checking, in a dynamic manner, the sutsdtility of components, were implemented in the

CoMFORT reasoning framework [15]. The tool includes a front endpfarsing and constructing control-flow graphs
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from C programs. Further, it is capable of model checkingprties on programs based on automated may-abstraction
(existential abstraction), and it allows compositionalifieation by employing learning-based, automated assume-
guarantee reasoning. Specifically, we implemented the athility check in full while for the containment check,
we only implemented the Abstraction and Verification stefpsection 4) since they were sufficient for the examples

we considered.

We reused the above features adi@FORT in the implementation of the substitutability check. Tbel interface
was modified so a collection of components and correspongiggades could be specified. We extended the learning-
based, automated assume-guarantee to obtain its dynarsionjeas required in the compatibility check. Multiple
learner instances are kept across calls to the verificatigine and implementing algorithms to validate multiple,
previous observation tables in an efficient way during leaynFor the Abstraction step in containment checking, we

implemented procedures for computing must-abstractiam £ code using a given set of predicates [36, 37].

We performed the compatibility check while verifying updes of a benchmark provided to us by our indus-
trial partner, ABB Inc. [2]. The benchmarks consist of seeemponents which together implement an inter-process

communication (IPC) protocol. The combined state spacedsi®®.

We used a set of properties describing the functionalityhef verified portion of the IPC protocol. We used
upgrades of thevrite-queue(ipc;) and theipc-queue(ipcs andipes) components. The upgrades had both missing
and extra behaviors compared to their original versionsvévdied two properties#; and P,) before and after the
upgrades. We also verified the properties on a simultanepgide {pc4) of both the componentd?, specifies that
a process may write data into tliygc-queueonly after it obtains a lock for the corresponding criticatson. P,
specifies an order in which data may be written intoiitequeue Figure 13 shows the comparison between the time
required for initial verification of the IPC system, and tivae taken byDynamicCheckfor verifying the upgrades.

In Figure 13,#Mem. Queries denotes the total number of membership queries made duenfication of the
original assembly7s,,.;, denotes the time required for the verification of the origassembly, and’,, denotes the

time required for the verification of the upgraded assembly.
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Upgrade # (Prop.) | #Mem. Queries | T,y (Msec) | T., (Msec)
iper (Py) 279 2260 13
iper (Py) 308 1694 14
ipea(Py) 358 3286 17
ipea(P2) 232 805 10
ipes(P1) 363 3624 17
ipes(Py) 258 1649 14
ipea(Py) 355 1102 24

Fig. 13 Summary of Results fabynamicCheck

We observed that the previously generated assumptiores (eftalidation) in all the cases were also sufficient to
prove the properties on the upgraded system. Hence, theatinilify check succeeded in a small fraction of time

(T.4) as compared to the time for compositional verificati®p.{,) of the original system.

7 Related Work

Related projects on checking software systems across etibifis often impose the restriction that every behavior
of a new component must also be a behavior of the old compolmesuich a case, the new component is said to refine
the old component. For instance, de Alfaro et al. [27,17]raeéi notion of interface automaton for modeling com-
ponent interfaces and show compatibility between compsnea refinement and consistency between interfaces.
However, automated techniques for constructing intertagemata from component implementations are not pre-
sented. In contrast, our approach automatically extramtservative finite state automaton models from component
implementations. Moreover, we do not require refinementragibe old components and their new versions.
McCamant and Ernst [45] suggest a technique for checkingpatibility of multi-component upgrades. They

derive consistency criteria by focusing on input/outputnponent behavior only and abstract away the temporal

information. Even though they state that their abstrastiare unsound in general, they report success in detecting
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important errors. In contrast, our abstractions presewgbral information about component behavior and are away

sound. They also use a refinement-based notion on the gedeaisistency criteria for showing compatibility.

The application of learning is extremely useful from a pratjmpoint of view since it is amenable to complete
automation, and it is gaining rapid popularity in formalifieation [34]. The use of learning for automated assume-
guarantee reasoning was proposed originally by Cobleighl. §23]. The initial methodology was followed by a
symbolic approach [5], application to checking componenrissitutability [13], extensions to different notions of
conformance [14,16], combination with automated systenoagosition using hyper-graph partitioning [48], opti-
mized learning and iterative alphabet enlargement appesd 6, 30], lazy learning approach [53] and a technique for
computing minimal assumptions [35]. The problem of chogsirsuitable order of components for assume-guarantee
reasoning has been addressed in Gheorghiu et al. [30]. igbl#eal. investigate the advantages of automated AGR
methods over monolithic verification techniques in the eghdf LTSA and FLAVERS tools [24] by experimenting
with different two-way system decompositions. The use afiieng along with predicate abstraction has also been ap-
plied in the context of interface synthesis [3] and varigyees of assume-guarantee proof rules for automated seftwar

verification [10].

This paper is related to our earlier project [11] that sollescomponent-substitutability problem in the context
of verifying individual component upgrades. A major impeavent of the current work is that it is aimed at verifying
the component substitutability in the presence of simelbars upgrades of multiple components. Another distinction
of this work is that it provides an innovative dynamic asstgnarantee reasoning framework for the compatibility
check. The dynamic nature of the compatibility check all@ewssing previously computed assumptions to prove or

disprove the global properties of the updated system.

Additionally, this paper gives a new solution to the contaémt-check problem presented by Chaki and et al. [11].
In our earlier work, the containment step is solved usingnieg techniques for regular sets and handles finite-state
systems only. In contrast, the new approach is extendedrtdidanfinite-state C programs. Moreover, this report
defines a new technique based on the simultaneous use ofjppeximations and under-approximations obtained

via existential and universal abstractions.
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Another approach to preserve behavioral properties of gopooent across an upgrade is based on the principle
of behavioral sub-typing [43]: typ&” is a subtype of typd if for every propertyo(t) provable about objectsof
type T', ¢(t') is provable about object8 of type T’. The notion of subtypes is extended to system behaviors by
augmenting object types with invariants and constraintssfmowing that these constraints are maintained for objects
of the subtype. However, this approach focuses only on trendiehavior specification of a single component and does
not take into account the way it is used in the component asiyem contrast, the assumptions in our approach reflect
the behavior of environment components. Therefore, athdbhe upgraded component may not satisfy a property
¢ in all possible environments, it may continue to satigéfyn context of the current environment components. In
other words, the new component may not be a behavioral salatfythe earlier one, but still be compatible with its

environment.

8 Conclusions

We proposed a solution to the critical and vital problem ahponent substitutability consisting of two phasesn-
tainmentandcompatibility The compatibility check performs compositional reasgniith help of adynamicregular
language inference algorithm and a model checker. Our Brpats confirm that the dynamic approach is more ef-
fective than complete re-validation of the system after pgrade. The containment check detects behaviors which
were present in each component before but not after the dpgidese behaviors are used to construct useful feed-
back to the developers. We observed that the order of commp®need to discharge the assume-guarantee rules has a

significant impact on the algorithm run times and hence new@stigation.
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