
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Verification of Evolving Software via Component Substitutability Analysis ⋆

Sagar Chaki1, Edmund Clarke2, Natasha Sharygina3,2, Nishant Sinha4

1 Software Engineering Institute, Pittsburgh, USA

2 Carnegie Mellon University, School of Computer Science, Pittsburgh, USA

3 Universita della Svizzera Italiana, Lugano, Switzerland

4 Carnegie Mellon University, Electrical and Computer Engineering Department, Pittsburgh, USA

Received: August 7, 2009/ Revised version: August 7, 2009

Abstract This paper presents anautomatedandcompositionalprocedure to solve the substitutability problem in

the context of evolving software systems. Our solution contributes two techniques for checking correctness of soft-

ware upgrades: 1) a technique based on simultaneous use of over- and under- approximations obtained via existential

and universal abstractions; 2) adynamicassume-guarantee reasoning algorithm – previously generated component

assumptions are reused and altered on-the-fly to prove or disprove the global safety properties on the updated system.

When upgrades are found to be non-substitutable, our solution generates constructive feedback to developers showing

⋆ This is an extended version of a paper,Dynamic Component Substitutability Analysis, published in the proceedings of the For-

mal Methods 2005 conference, Lecture Notes in Computer Science, Vol. 3582, by the same authors. This research was sponsored

by the National Science Foundation under grant nos. CNS- 0411152, CCF-0429120, CCR-0121547, and CCR-0098072, the Semi-

conductor Research Corporation under grant no. TJ-1366, the US Army Research Office under grant no. DAAD19-01-1-0485, the

Office of Naval Research under grant no. N00014-01-1-0796, the ICAST project and the Predictable Assembly from Certifiable

Components (PACC) initiative at the Software Engineering Institute, Carnegie Mellon University. The views and conclusions con-

tained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed

or implied, of any sponsoring institution, the U.S. government or any other entity.

2 Sagar Chaki et al.

how to improve the components. The substitutability approach has been implemented and validated in the COMFORT

reasoning framework, and we report encouraging results on an industrial benchmark.

1 Introduction

Correctness of computer software is critical in today’s information society, especially for software that runs on com-

puters embedded in our transportation and communication infrastructure. Errors in complex software systems have

caused large-scale economic losses in the past. Software bugs, especially in multi-threaded systems, are notoriously

difficult to detect and fix. Therefore, it is necessary to employ automated formal verification methods to validate and

debug critical software systems.

Programs in imperative languages like C or C++ are executed line-by-line in what is called athread of control.

It is tempting to hope that a line-by-line inspection of the code, following this thread of control, will uncover all the

flaws in a program. The problem is that complex systems have many software components running in parallel, so

there are many different threads of control that run simultaneously. While one of these threads may be executing some

statement in its program, another thread, with exactly the same program, may be executing an entirely different line

of code concurrently. Consequently, in the presence of multiple threads, any combination of program lines that the

threads can execute must be considered.

The stateof the program is the location of the control in each thread and the values of the program variables.

To discover flaws, the possible states of the program must be explored. To illustrate the large number of states that

concurrency can cause, consider the small program in Figure1. It has one variablex , which is initialized with zero. It

has two threads (A and B) of control and only four lines of codein total. The first line in both threads simply idles until

x becomes zero. The second line setsx to 1 or 2, respectively. We assume that each program step is atomic. Despite its

tiny size, the program has 10 reachable states. The explosion in the number of reachable states is due to the different

combinations of program locations in the two threads A and B.Thus, a manual search for errors in large concurrent

programs is infeasible.

Verification of Evolving Software via Component Substitutability Analysis 3

Model checkingis an automated technique for the exploration of all the states of a system [20,22]. Introduced in

1981, it is now a standard verification technique in the hardware industry. It has been successfully used to find bugs in

circuitry that would have been hard to find by inspection alone.

Thread A

1 while(x!=0) skip;

2 x=1;

3

Thread B

1 while(x!=0) skip;

2 x=2;

3

Fig. 1 A Small Program with Two Threads of Control

The use of model checking has lead to major enhancements in the reliability and robustness of software. The basic

idea of software model checking [12,44] is to explore all thestates of the software system systematically. The states

are checked for errors. Such an error may be division by zero,a race condition or a violated assertion. Once such an

erroneous state is found, it is reported to the programmer together with a counterexample (i.e., an error trace), which

demonstrates the flaw. In practice, counterexamples are very helpful for understanding the nature of errors and fixing

them.

However, the effectiveness of the model checking of such systems is severely constrained by the state space explo-

sion problem (by the sheer number of states a program can be in). If there are too many states, it becomes impossible

to explore all of them, even on a powerful computer.

Much of the research in this area is therefore targeted at reducing the state space of the model used for veri-

fication. One principal method in state space reduction of software systems isabstraction. Abstraction techniques

reduce the program state space by generating a smaller set ofstates in a way that preserves the relevant behaviors of

the system. Manual abstractions of large software systems require considerable expertise and are error prone. Indus-

trial applications of model checking therefore favor automated ways to compute the abstract model. One such method,

calledpredicate abstraction[32,25], has proven to be particularly successful when applied to large software programs.

We have exploited predicate abstraction while developing asolution to the problem of establishing the correctness of

4 Sagar Chaki et al.

evolving systems. We describe predicate abstraction in Section 2 and its application to verification of evolving software

in Section 4.

The other principal approach in reducing the state space of the verifiable model iscompositional reasoning. Com-

positional reasoning partitions verification into checks of individual modules, while the global correctness of the

composed system is established by constructing a proof outline that exploits the modular structure of the system.

We used theassume-guaranteestyle of compositional reasoning to support verification ofevolving systems [47,41,

49]. We describe the assume-guarantee reasoning paradigm and its application to verification of evolving software in

Section 5.

In this article, we focus on a particular model checking problem, namely verification of evolving software. Software

systems evolve throughout the product life-cycle. For example, any software module (or component) is inevitably

transformed as designs take shape, requirements change, and bugs are discovered and fixed. In general such evolution

results in the removal of previous behaviors from the component and addition of new ones. Since the behavior of the

updated software component has no direct correlation to that of its older counterpart, substituting it directly can lead

to two kinds of problems. First, the removal of behaviors canlead to unavailability of previously provided services.

Second, the addition of new behaviors can lead to violation of global correctness properties that were previously being

respected. Although software evolution may involve both changing the component decomposition of the system as

well as communication structure between components, the approach presented in this work focuses on assemblies in

which both the decomposition and the communication structure remain the same.

In this context, thesubstitutabilityproblem can be defined as the verification of the following twocriteria: (i) any

updated portionof a software system must continue to provide allservicesoffered by its earlier counterpart, and (ii)

previously established systemcorrectness propertiesmust remain valid for the new version of the software system.The

above two criteria correspond to changes due to addition andremoval of behaviors or services of software components

respectively; we believe that they are sufficient to model a large variety of software upgrades.

Model checking can be used at each stage of a system’s evolution to solve both the above problems. Conventionally,

model checking is applied to the entire system after every update, irrespective of the degree of modification involved.

The amount of time and effort required to verify an entire system can be prohibitive and repeating the exercise after

Verification of Evolving Software via Component Substitutability Analysis 5

each (even minor) system update is therefore impractical. In this article we present anautomatedframework that

localizesthe necessary verification effort to only modified system components, and thereby reduces dramatically the

effort to check substitutability after every system update. Note that our framework is general enough to handle changes

in the environment if the environment can also be modeled as acomponent.

In our framework a component is essentially a C program communicating with other components via blocking

message passing. An assembly is a collection of such concurrently executing and mutually interacting components.

We define the notion of a component’s behavior precisely later but for now let us denote the set of behaviors of a

componentC by Behv(C). Given two componentsC andC ′ we writeC 4 C ′ to meanBehv(C) ⊆ Behv(C ′).

Suppose we are given an assembly of components:C = {C1, . . . , Cn}, and a safety propertyϕ (e.g., the system

can enter an error state upon execution). Now suppose thatmultiple components inC are upgraded. In other words,

consider an index setI ⊆ {1, . . . , n} such that for eachi ∈ I there is anewcomponentC
′

i to be used in place of its

old versionCi. Our goal is to check the substitutability ofC
′

i for Ci in C for everyi ∈ I with respect to the property

ϕ. This article presents a framework that achieves this goal by performing the following two tasks:

Containment. Verify, for eachi ∈ I, that every behavior ofCi is also a behavior ofC
′

i , i.e.,Ci 4 C
′

i . If Ci 64 C
′

i ,

we also construct a setFi of behaviors inBehv(Ci) \ Behv(C
′

i) which is used subsequently for providing feedback

to the assembly designer. Note that the upgrade may involve the removal of behaviors designated as errant, sayB.

In this case, we checkCi \ B 4 C
′

i since behaviors ofB are clearly absent inC
′

i . In general,B should contain

the set of behaviors that have been intentionally removed (buggy or otherwise), so that they do not occur as spurious

counterexamples in the containment check.

Compatibility. Let us denote byC′ the assembly obtained fromC by replacing the old componentCi with its new

versionC
′

i for eachi ∈ I. In general, it is not the case that for eachi ∈ I, C
′

i 4 Ci. Therefore, the new assemblyC′

may have more behaviors than the old assemblyC. HenceC′ might violateϕ even thoughC did not. Thus, our second

task is to verify thatC′ satisfies the safety propertyϕ (which would imply that the new components can be safely

integrated).

6 Sagar Chaki et al.

Note that checking compatibility is non-trivial because itrequires the verification of a concurrent system where

multiple components might have been modified. Moreover, this task is complicated by the fact that our goal is to focus

on the components that have been modified.

The component substitutability framework is defined by the following new algorithms: 1) a technique based on

simultaneous use of over- and under- approximations obtained via existential and universal abstractions for the con-

tainment check of the substitutable components; 2) adynamicassume-guarantee algorithm developed for the com-

patibility check. The algorithm is based on an automated assume-guarantee reasoning approach for a fixed system

assembly, developed by Cobleigh et al. [23] which is based ona combination of learning algorithms for regular lan-

guages with model checking. This paper, in contrast, proposes adynamicassume-guarantee reasoning procedure for

evolving systems. The procedure is dynamic, in the sense that it learns appropriate environment assumptions for the

new components byreusingthe environment assumptions for their older versions.

In summary, the developed component substitutability framework has several advantageous features:

– It allowsmultiplecomponents to be upgraded simultaneously. This is crucial since modifications in different com-

ponents often interact non-trivially to maintain overall system safety and integrity. Hence such modifications must

be analyzed jointly.

– It identifies features of an old component which are absent inits updated version. It subsequently generates feed-

back to localize the modifications required to add the missing features back.

– It is completely automated and usesdynamicassume-guarantee style reasoning to scale to large software systems.

– It allows new components to have more behaviors than their old counterparts in order to be replaceable. Theextra

behaviors are critical since they provide vendors with the flexibility to implement new features into the product

upgrades. Our framework verifies if these new behaviors do not violate previously established global specifications

of a component assembly.

We have implemented the substitutability check as part of the COMFORT [40] reasoning framework. For the

compatibility check, we experimented with an industrial benchmark and report encouraging results in Section 6.

The article is organized as follows: Section 2 provides somebackground on model checking, abstraction and com-

positional reasoning. Section 3 defines the notation used throughout the article and presents theL∗ learning algorithm

Verification of Evolving Software via Component Substitutability Analysis 7

that forms the basis of the compatibility analysis. Sections 4,5 describe the problem of verification of evolving sys-

tems and present a detailed description of the containment and compatibility algorithms that we have developed to

overcome difficulties in the verification of evolving programs. Section 7 provides an overview of related work, and

Section 8 summarizes the contributions of this article.

2 Overview of the Model Checking Approach

In formal verification, a system is modeled mathematically,and its specification (also called aclaim or property in

model checking) is described in a formal language. Model checking [20] is an automated formal verification technique

which checks whether a system satisfies a desired claim through an exhaustive search of all possible executions of

the system. The exhaustive nature of model checking addresses the issue of inadequate coverage that is typically a

drawback of testing.

Model checking is a technique for verifying finite-state concurrent systems. One benefit of this restriction to finite-

state systems is that verification can be performed automatically. Given sufficient resources, model checking always

terminates with a “yes” or “no” answer. Moreover, it can be implemented by efficient algorithms.

2.1 The Process of Model Checking

Model checking involves the following steps:

1. The system is modeled using the description language of a model checker, producing a modelM.

2. The claim to check is defined using the specification language of the model checker, producing a temporal logic

formulaφ.

3. The model checker automatically checks whetherM |= φ (i.e., whetherM satisfiesφ).

The model checker explores all system executions captured by the model and outputs “yes” if the claim holds in

the model (M) and “no” otherwise. When the claim is not satisfied, the modelchecker produces acounterexample

consisting of a system behavior that causes the failure. A counterexample defines an execution trace that violates the

8 Sagar Chaki et al.

claim. Counterexamples are one of the most useful features of model checking, as they allow users to understand why

a claim is not satisfied.

2.2 Model Checking Software

Applying model checking to software, as opposed to hardware, is complicated by several factors, ranging from the

difficulty of modeling computer systems (due to the complexity of programming languages as compared to hardware

description languages) to difficulties in specifying meaningful claims for software using the usual temporal logic

formalism of model checking. The most significant limitation, however, is thestate space explosionproblem (which

applies to both hardware and software), whereby the complexity of model checking becomes prohibitive.

State space explosion results from the fact that the size of the state transition system is exponential in the number

of variables and concurrent units in the system. When the system is composed of several concurrent units, its combined

description may lead to an exponential explosion as well. The state space explosion problem is the subject of most

model checking research.

The following state space reduction techniques are commonly used during verification of software:

– Abstraction: A smaller abstract system is constructed such that the claimholds for the original system if it holds

for the abstract system.

– Counterexample-guided abstraction refinement:Abstracted systems are refined iteratively using information

extracted from counterexamples until an error is found or itis proven that the system satisfies the verification

claim.

– Compositional reasoning:Verification is partitioned into checks of individual modules, while the global correct-

ness of the composed system is established by constructing acorrectness proof that exploits the modular structure

of the system.

2.2.1 Abstraction. Abstraction is one of the principal techniques for reducingthe complexity of a verification prob-

lem [19,42,18,8]. Abstraction techniques reduce the statespace by mapping the set of actual system states to an

Verification of Evolving Software via Component Substitutability Analysis 9

abstract set of states that preserve the behavior of the actual system. Abstractions are usually performed in an infor-

mal, manual manner and require considerable expertise. Predicate abstraction [32,25] is one of the most popular and

widely applied methods for the systematic abstraction of systems. It maps concrete data types to abstract data types

through predicates over the concrete data. However, the computational cost of the predicate abstraction procedure may

be too high, making generation of a full set of predicates fora large system infeasible. In practice, the number of

computed predicates is bounded [8,12], and model checking is guaranteed to deliver sound results within this bound.

The bound limit is increased when errors (if any) are found within the bound and fixed. Moreover, in many cases,

software systems are first rendered finite by restricting variables to finite domains and then abstraction techniques are

used to obtain smaller models.

The abstract program is created using existential abstraction [19]. This method defines the transition relation of

the abstract program so it is guaranteed to be a conservativeover-approximation of the original program, with respect

to the set of given predicates. This ensures that if a claim holds for the abstract over-approximate system, it must

also hold for the original system. The use of a conservative abstraction, as opposed to an exact abstraction, produces

considerable reductions in the state space. The drawback ofthe conservative abstraction is that when model checking

of the abstract program fails, it may produce a counterexample that does not correspond to a concrete counterexample.

Such a counterexample is usually calledspurious[18]. When a spurious counterexample is encountered, the abstract

model is refined (e.g., by adjusting the set of predicates) such that the counterexample is eliminated.

2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR). The abstraction refinement process has been auto-

mated by the CEGAR paradigm [42,18,9,26]. The CEGAR framework is shown in Figure 2.2.2: one starts by comput-

ing a coarse abstraction (for example, an abstraction of a C program) and model checking it. If an error trace reported

by the model checker is spurious, the error trace is used to refine the abstract program, and the process repeated until

no spurious error traces can be found. In short, the CEGAR framework consists of the abstract-verify-refine steps and

the actual details vary based on the abstraction and refinement techniques used.

The steps of the CEGAR procedure are described below in the context of predicate abstraction.

10 Sagar Chaki et al.

C Prog

Specϕ

ϕ true

ϕ false +

counterexample

Counterexample

Model

Checking

Spurious?

Predicate

Abstraction

Predicate
Refinement

Abstract Model

ϕ

Spurious
Counterexample

Fig. 2 The CEGAR Framework

1. Program abstraction: Given a set of predicates, a finite-state model is extracted from the code of a software

system, and the abstract transition system is constructed.

2. Verification: A model checking algorithm is run to check whether the model created by applying predicate ab-

straction satisfies the desired behavioral claimϕ. If the claim holds, the model checker reports success (ϕ is true),

and the CEGAR loop terminates. Otherwise, the model checkerextracts a counterexample, and the computation

proceeds to the next step.

3. Counterexample validation:The counterexample is examined to determine whether it is spurious. This examina-

tion is done by simulating the (concrete) program using the abstract counterexample as a guide, to find out if the

counterexample represents an actual program behavior. If this is the case, the bug is reported (ϕ is false), and the

CEGAR loop terminates. Otherwise, the CEGAR loop proceeds to the next step.

4. Predicate refinement:The set of predicates is changed to eliminate the detected spurious counterexample and

possibly other spurious behaviors introduced by predicateabstraction. Given the updated set of predicates, the

CEGAR loop proceeds to Step 1.

The efficiency of this process depends on the efficiency of theprogram abstraction, verification and predicate

refinement procedures. While program abstraction focuses onconstructing the transition relation of the abstract pro-

gram, the focus of predicate refinement is to define efficient techniques for choosing the set of predicates in a way that

eliminates spurious counterexamples.

Verification of Evolving Software via Component Substitutability Analysis 11

2.2.3 Compositional Reasoning.Compositional reasoning [21,42,4,46,28] allows model checking to scale to large

systems by using a “divide and conquer” approach that exploits the modular structure of hardware and software

systems. More specifically, the verification claim for a system is first decomposed into a set of local claims, one for

each system module. These local claims are then verified separately. The compositional approach establishes whether

for given systemsM1 andM2 and a claimT , the composed system satisfiesT (written M1 ‖ M2 |= T). A naive

compositional approach proceeds by executing the following steps: (1)M1 |= T and (2)M2 |= T and concludes by

proving thatM1 ‖ M2 |= T. Although this rule is sound in theory, it is often not useful in practice. Usually, bothM1

andM2 behave likeT only under a suitable environment. To solve this problem, the compositional principle can be

strengthened to anassume-guaranteeprinciple [47,41,49,1]: in order to checkM |= T , it suffices to check that both

M1 ‖ A |= T andM2 |= A hold. This technique uses a local specificationA as the constraining environment (also

called anassumption) for M1. In general, for a system composed of multiple modules, assume-guarantee reasoning

tries to prove that each system componentMi satisfies a corresponding specification componentTi under a suitable

constraining environmentAi and that the environment indeed satisfies the constraintAi. Recently, an approach was

proposed by Cobleigh et al. [23] to automate assume-guarantee reasoning with the help of using learning algorithms

for regular languages to compute these environment assumptions. The proposed compatibility check is based on this

automated assume-guarantee reasoning procedure.

3 Notation and Background

In this section we present some basic definitions. LetX be a sequence. Let• denote the concatenation operator over

sequences, and letX∗ denote zero or more applications of• overX as usual. As a special case, the empty sequence

λ denotes zero applications of• overX. For any two setsX andY, we denote the set{x • y | x ∈ X ∧ y ∈ Y } by

X • Y . In the following, we use the terms sequence andtrace interchangeably.

Definition 1 (Finite Automaton) A finite automaton (FA) is a 5-tuple(Q, Init, Σ, T, F) where (i)Q is a finite set of

states, (ii) Init⊆ Q is the set of initial states, (iii)Σ is a finite alphabet of actions, (iv)T ⊆ Q×Σ×Q is the transition

relation, and (v)F ⊆ Q is a set of accepting states.

12 Sagar Chaki et al.

For any FAM = (Q, Init, Σ, T, F), we writes
α

−→ s′ to mean(s, α, s′) ∈ T . We define the functionδ as follows:

∀α ∈ Σ � ∀s ∈ Q � δ(α, s) = {s′|s
α

−→ s′}. We extendδ to operate on strings and sets of states in the natural manner:

for anyσ ∈ Σ∗ andQ′ ⊆ Q, δ(σ,Q′) denotes the set of states ofM reached by simulatingσ onM starting from any

s ∈ Q′.

The languageaccepted by a FAM , denoted byL(M), is defined as follows:L(M) = {σ ∈ Σ∗ | δ(σ, Init)∩F 6=

∅}. An element ofL(M) is said to be a trace ofM .

Definition 2 (Deterministic and Complete Finite Automaton) A FA M = (Q, Init, Σ, T, F) is said to be a de-

terministic FA, or DFA, if|Init| = 1 and ∀α ∈ Σ � ∀s ∈ Q � |δ(α, s)| ≤ 1. Also, M is said to be complete if

∀α ∈ Σ � ∀s ∈ Q � |δ(α, s)| ≥ 1.

Thus, for a complete DFA, we have the following:∀α ∈ Σ � ∀s ∈ Q � |δ(α, s)| = 1. Unless otherwise mentioned,

all DFA we consider in the rest of this paper are also complete. It is well-known that a language is regular if and only if

it is accepted by some FA (or DFA, since FA and DFA have the sameaccepting power). Also, every regular language

is accepted by a unique (up to isomorphism) minimum DFA. Given any FAM , its complementM is defined to beM ′

whereM ′ is the DFA obtained fromM by the subset construction [39].

We now define a notion of asynchronous parallel composition between FAs which is based on the notion of com-

position defined for CSP [51].

Definition 3 (Parallel Composition) Given two FAM1 = (Q1, Init1, Σ1, T1, F1) andM2 = (Q2, Init2, Σ2, T2, F2),

their parallel compositionM1 ‖ M2 is the FA(Q1 × Q2, Init1 × Init2, Σ1 ∪ Σ2, T, F1 × F2) such that∀s1, s
′

1
∈

Q1 � ∀s2, s
′

2
∈ Q2, (s1, s2)

α
−→ (s′

1
, s′

2
) if and only if :

(a) α ∈ Σ1 ∧ α 6∈ Σ2 ∧ s1

α
−→ s′

1
∧ (s2 = s′

2
) or,

(b) α ∈ Σ2 ∧ α 6∈ Σ1 ∧ s2

α
−→ s′

2
∧ (s1 = s′

1
) or,

(c) α ∈ (Σ1 ∩ Σ2) ∧ ∀i ∈ {1, 2} si
α

−→ s′i.

Given a stringt, we writeM ‖ t to denote the composition ofM with the automaton representation oft.

Definition 4 (Language Containment)For any FAM1 andM2 (with alphabetsΣ1 andΣ2 respectively, whereΣ2 ⊆

Σ1), we writeM1 4 M2 to meanL(M1 ‖ M2) = ∅. A counterexample toM1 4 M2 is a stringσ ∈ L(M1 ‖ M2).

Verification of Evolving Software via Component Substitutability Analysis 13

If M1 4 M2, then we sometimes also say thatM2 is an abstraction ofM1. We now define the notion of weakest

assumptions. We assume that a safety property can be represented as a FA in the usual way [31].

Definition 5 (Weakest Assumption [31])For any FAM and any safety property expressed as a FAϕ, the weakest

(i.e., maximal w.r.t. the language-containment preorder4) assumption FA, denoted byWA, is defined as follows: (i)

M ‖ WA 4 ϕ and (ii) for any FAE, M ‖ E 4 ϕ iff E 4 WA.

Lemma 1 (Existence and Uniqueness of Weakest Assumption)Given a FAM and a property FAϕ, the weakest

assumptionWA exists and can be represented by a FA accepting the languageL(M ‖ ϕ).

Proof.The proof follows from the construction given in [31].

The following lemma shows that we can check if a given tracet is in L(WA) without constructingWA directly by

checking ifM ‖ t 4 ϕ holds.

Lemma 2 LetWA be the weakest assumption automata for component automatonM and specification automatonϕ.

Given a tracet, if M ‖ t 4 ϕ, thent ∈ L(WA).

Proof. It follows from the definition of weakest assumptions (cf. Definition 5) that for all assumptions such that

M ‖ A 4 ϕ, L(A) ⊆ L(WA) holds. LetMt be the automaton representation oft. SinceM ‖ Mt 4 ϕ holds, it

follows thatL(Mt) ⊆ L(WA). SinceL(Mt) = {t}, t ∈ L(WA).

3.1 L∗ algorithm

TheL∗ algorithm for learning DFAs was developed by Angluin [6] andlater improved by Rivest and Schapire [50].

In this paper, we use the improved version ofL∗ due to Rivest and Schapire. The algorithm learns an unknown regular

languageU , over an alphabetΣ, by generating the minimum DFA that acceptsU .

3.1.1 Preliminaries. Let U be an unknown regular language over some alphabetΣ.

Definition 6 (Prefix Closed)A setX ⊆ Σ∗ is said to prefix-closed if for eachx ∈ X, all the prefixes ofx are also in

X.

14 Sagar Chaki et al.

In the rest of this section, we present the coreL∗ algorithm. We begin with the notion of a minimally adequate

teacher.

3.1.2 Minimally Adequate Teacher.In order to learn an unknown languageU , L∗ interacts with an oracle, also known

as aminimally adequate teacher, MAT , for U . The teacher can provide answers to the following two kinds of queries:

1. Membership. Given a traceσ ∈ Σ∗, MAT returnsTRUE iff σ ∈ L(U).

2. Candidate. Given a DFAD, MAT returnsTRUE iff L(D) = U . If MAT returnsFALSE, it also returns a coun-

terexample tracew which either lies inL(D) \ U or U \ L(D).

3.1.3 Observation Table.TheL∗ algorithm constructs iteratively a minimal DFAD such thatL(D) = U . To this

goal, it maintains an observation table data structureT = (S,E, T), where:

– S ⊆ Σ∗ is a prefix-closed set of traces,

– E ⊆ Σ∗ is a set of experiment traces, used to distinguish states inD, and,

– T : (S ∪ (S • Σ)) × E → {0, 1} is a function such that:

∀s ∈ (S ∪ (S • Σ)) � ∀e ∈ E � T (s, e) = 1 ≡ s • e ∈ U

Intuitively, one can think ofT as a two-dimensional table. The rows ofT are labeled with the elements ofS∪ (S •

Σ) while the columns are labeled with elements ofE. Finally T denotes the table entries. In other words, the entry

corresponding to rows and columne is simplyT (s, e). The value ofT (s, e) is 1 if s • e ∈ U , otherwiseT (s, e) is 0.

Figure 5(left) shows an example of an observation table.

Table Congruence.We define an equivalence relation≡ as follows: fors, s′ ∈ (S ∪ S • Σ), s ≡ s′ iff ∀e ∈ E,

T (s, e) = T (s′, e). Also, for alls ∈ (S ∪ S • Σ), we denote the set of traces equivalent tos by [s], where

[s] = {s′ ∈ (S ∪ S • Σ) | s ≡ s′}

.

Well-formed Table. An observation tableT is said to bewell-formedif for all s, s′ ∈ S, s 6≡ s′. TheL∗ algorithm

always keepsT well-formed1.

1 We omit the notion ofconsistencyusually used while presenting ofL∗ [7] since a well-formed table is consistent by definition.

Verification of Evolving Software via Component Substitutability Analysis 15

Algorithm CloseTable

1: forever do

2: if (∀t ∈ S • Σ � ∃s ∈ S � s ≡ t) return ;

3: find t ∈ S • Σ such that∀s ∈ S � s 6≡ t;

4: S := S ∪ {t};

5: UpdateT using membership queries;

Fig. 3 Pseudo-code for algorithmCloseTable.

Table Closure. The observation tableT is said to be closed if for eacht ∈ S • Σ, there is as′ ∈ S, so that

t ≡ s′. Given any observation tableT , we assume that a procedureCloseTablemakes it closed. Figure 3.1.3 shows

the pseudo-code for the procedure. In words, the procedure iteratively selects somet ∈ S • Σ so that for alls ∈ S,

s 6≡ t. Then, it addst to S and updates the functionT by asking membership queries for extensions oft on each

alphabet symbol. The procedureCloseTableterminates with a closed table when no sucht can be found. In each

iteration the size ofS increases by one. Lemma 5 (described below) shows that the procedureCloseTablecannot

increase the size ofS indefinitely and must terminate in finite number of steps.

DFA Construction. Given a closed tableT , L∗ obtains a DFAD = 〈Q, q0, Σ,∆, F 〉, as follows:

– Q = {[s] | s ∈ S}, where a stateq ∈ Q corresponds to the equivalence class[s] of a traces ∈ S,

– q0 = [λ],

– ∆ = {([s], a, [s • a]) | s ∈ S, a ∈ Σ}.

– F = {[s] | s ∈ S ∧ T (s, λ) = 1}.

Suppose that a procedure calledMkDFA implements this construction. Note thatD is both deterministic and

complete.

3.1.4 TheL∗ Algorithm. Figure 4 shows the pseudo-code for theL∗ algorithm. Recall thatλ denotes any empty

sequence.L∗ starts with a tableT = (S,E, T) such thatS = E = {λ} and in each iteration proceeds as follows.

16 Sagar Chaki et al.

Algorithm L∗

1: S := E := {λ};

2: forever do

3: CloseTable();

4: M := MkDFA (T);

5: if (IsCandidate(M)) returnM ;

6: let CE be the counterexample returned byIsCandidate;

7: Obtain adistinguishing suffixe from CE

8: E := E ∪ {e};

Fig. 4 Pseudo-code for algorithmL∗.

1. It first updatesT using theCloseTableprocedure untilT is closed.

2. NextL∗ builds a candidate DFAD from the closed table (usingMkDFA procedure) and makes a candidate query

with D.

3. If theMAT returnsTRUE to the candidate query,L∗ returnsD as the result and stops.

4. Otherwise, a counterexampleCE is obtained. NowL∗ constructs a new experimente fromCE using the algorithm

proposed by Rivest and Schapire [50] and addse toE. The new experimente (also known as adistinguishing suffix)

has the property that it causes the observation tableT to be no longer closed, and thereby forces the number of

rows ofT to increase strictly in the next iteration ofL∗.

Example 1Consider Figure 5. On the left is an observation table(S,E, T) whereS andE correspond to rows and

columns respectively andT corresponds to the table entries. Here,Σ = {α, β}. From this table we see that{α, α •

α} ⊆ U . On the right is the corresponding candidate DFA. The statess0 ands1 of the DFA correspond to the elements

λ andα of S respectively. The states0 is marked initial since it corresponds to wordλ. The states1 is marked final

since the table entryT (α, λ) = 1. Finally, the transitions are determined as described in the procedureMkDFA . ⊓⊔

Verification of Evolving Software via Component Substitutability Analysis 17

E

λ

S

λ 0 (s0)

α 1 (s1)

S • Σ

β 0

αα 1

αβ 0

β α

s1

s0

α

β

Fig. 5 An Observation Table and the Corresponding Candidate DFA

3.1.5 Results onL∗. In order to make our presentation more self-contained, we now prove some results about the

L∗ algorithm and the proceduresCloseTableandMkDFA . We use these results to prove the correctness of a new

dynamicversion of theL∗ algorithm that we propose later in this paper (cf. Section 5.1.1).

Lemma 3 TheL∗ algorithm always maintains a well-formed table.

Proof. Consider the pseudo-code ofL∗ in Figure 4. Given an observation tableT = (S,E, T), the setS is updated

only in line 3 by theCloseTableprocedure. Hence, we need to show thatCloseTablealways maintains a well-formed

table at each iteration.

We proceed by induction. Note that at the first iteration of theL∗ loop (first call toCloseTable), S only has a single

element and hence the table is well-formed. Assume that the input observation tableT to CloseTableis well-formed

at kth iteration (k > 1). The procedureCloseTable(cf. Figure 3.1.3) only adds a new elementt to S (line 4) if for

all s ∈ S, s 6≡ t (line 3). Therefore, all the elements inS ∪ {t} are non-equivalent and the resultant table is also

well-formed.

2

The following lemma is crucial for proving termination ofL∗. It essentially provides an upper bound on the size

of S.

18 Sagar Chaki et al.

Lemma 4 Let T = (S,E, T) be a well-formed observation table. LetU be an unknown regular language andn be

the number of states in the minimum DFAM such thatL(M) = U . Then the size of the trace setS cannot exceedn.

Proof. Let δ denote the transition relation ofM (∆ extended to words) (cf. procedureMkDFA) andq0 denote the

initial state forM .

The proof is by contradiction. Suppose that the size ofS exceedsn. Then by the pigeon-hole principle, there exist

two elementss1 ands2 of S such thatδ(s1, {q0}) = δ(s2, {q0}) = q (say), i.e.,s1 ands2 must reach the same state

q in M . SinceM is the minimum DFA forU , we know that the states ofM correspond to equivalence classes of the

Nerode congruence [39] forU . Sinces1 ands2 reach the same state inM (same Nerode equivalence class), it follows

that

∀e ∈ Σ∗, s1 • e ∈ U iff s2 • e ∈ U (1)

But, T is well-formed and hences1 6≡ s2. Therefore there exists somee ∈ E, such thatT (s1 • e) 6= T (s2 • e), i.e.,

s1 • e ∈ U ands2 • e 6∈ U or vice versa. Together with (1), we reach a contradiction.

2

The following lemma shows that the procedureCloseTablecannot increase the size ofS indefinitely and must

terminate in finite number of steps.

Lemma 5 The procedureCloseTablealways terminates with a closed table. Moreover, the procedure maintains a

well-formed observation tableT = (S,E, T) at each iteration.

Proof. It follows from the pseudo-code (Figure 3.1.3) that the procedureCloseTablekeeps adding new elements to

S until T is closed. Since the size ofS is bounded by the number of states in the minimum DFA for the unknown

languageU (Lemma 4),CloseTableterminates with a closed table in finite number of steps. It follows from Lemma 3

that the procedure always maintains a well-formed table.

2

The following lemma shows that theMkDFA procedure always constructs a candidate DFA starting from awell-

formed and closed observation table.

Verification of Evolving Software via Component Substitutability Analysis 19

Lemma 6 Given a well-formed and closed observation table as an input, the procedureMkDFA always terminates

with a candidate DFAD as a result.

Proof.Since the input tableT is well-formed, the states ofD are uniquely defined by the elements ofS. Moreover, the

initial state is unique by definition and the final states are well-defined. Since the table is closed, the transition relation

of D is also well-defined. Hence, the candidate DFA is well-defined.

2

Theorem 1Given an unknown regular languageU , the algorithmL∗ always terminates with a DFAM such that

L(M) = U .

Proof.The fact thatL∗ algorithm terminates with the correct resultM (L(M) = U) is obvious since it stops only after

a candidate query has passed. To prove that it terminates, itsuffices to show that there can only be a finite number of

failed candidate queries and therefore only a finite number of iterations of the top-level loop (Figure 4, line 2). It has

been shown [50] that for each failed candidate query, the procedureCloseTablemust add at least one element toS in

the next iteration of the top-level loop. However, the size of S is bounded (cf. Lemma 4) and hence the loop executes

only a finite number of times.

2

4 Containment Analysis

Recall that the containment step verifies for eachi ∈ I, thatCi 4 C
′

i , i.e., every behavior ofCi is also a behavior of

C
′

i . If Ci 64 C
′

i , we also generate a counterexample behavior inBehv(Ci)\Behv(C
′

i) which is subsequently provided

as user feedback. This containment check is performed as depicted in Figure 6 for each modified component. (CE

refers to the counterexample generated during the verification phase). For eachi ∈ I, the containment check proceeds

as follows:

1. Abstraction. Construct finite modelsM andM ′ such that the following conditionsC1 andC2 hold:

(C1) Ci 4 M (C2) M ′ 4 C
′

i (2)

20 Sagar Chaki et al.

True

No All behaviors are preserved

No

Over−approximate Under−approximate

False + CE

Yes

M′
iMi

C′
iCi

Check:CE 6∈C′
i

Check:CE∈CiVALIDATION 1

VALIDATION 2

Check:Mi ⊑ M′
iVERIFICATION

ABSTRACTION

Yes⇒CE∈Ci \C′
i

Refine Enlarge

Fig. 6 The containment phase of the substitutability framework.

HereM is an over-approximationof Ci and can be constructed by standard predicate abstraction [33]. M ′ is

constructed fromC
′

i via a modified predicate abstraction which produces anunder-approximationof its input C com-

ponent. We now describe the details of the abstraction steps.

Suppose thatCi consists of a set of C statementsStmt = {st1, . . . , stk}. Let V be the set of variables in theCi.

A valuation of all the variables in a program corresponds to aconcrete state of the given program. We denote it byv̄.

Predicates are functions that map a concrete statev̄ ∈ S into a Boolean value. LetP = {π1, . . . , πk} be the set of

predicates over the given program. On evaluating the set of predicates inP in a particular concrete statēv, we obtain

a vector of Boolean values̄b, whereb̄[i] = πi(v̄). The Boolean vector̄b represents an abstract state. We represent

this predicate evaluation using an abstraction functionα: b̄ = α(v̄). Also, theconcretizationfunctionγ is defined as

follows:

γ(b̄) = {v̄ | b̄ = α(v̄)}

“May” Predicate Abstraction: Over-approximation. This step corresponds to the standard predicate abstrac-

tion [12]. Each statement (or basic block)St in Ci is associated with a transition relationT (v̄, v̄′). Here,v̄ and v̄′

represent a concrete state before and after execution ofSt, respectively. Given the set of predicatesP and associated

Verification of Evolving Software via Component Substitutability Analysis 21

vector of Boolean variables̄b as before, we compute an abstract transition relationT̂ (b̄, b̄′) [19] as follows:

T̂ (b̄, b̄′) ≡ ∃v̄, v̄′ � T (v̄, v̄′) ∧ b̄ = α(v̄) ∧ b̄′ = α(v̄′) (3)

T̂ is the existential abstraction [19] ofT (with respect to the abstraction functionα) and is also referred to as itsmay

abstractionT̂may [52]. In practice, we compute this abstraction using the weakest precondition (WP) transformer [29]

on predicates inP along with an automated theorem prover [33] as follows:

T̂ (b̄, b̄′) ≡ γ(b̄) ∧ WP(St, γ(b̄′)) is satisfiable (4)

whereWP(St, φ) denotes the weakest precondition expression for formulaφ with respect to statementSt andγ is the

concretization function as defined above. By the definition of weakest preconditions, we have

v̄ ∈ WP(St, γ(b̄′)) ≡ ∃v̄′ � T (v̄, v̄′) ∧ v̄′ ∈ γ(b̄′)

Note that Equation 3 is equivalent to Equation 4 since:

T̂ (b̄, b̄′) ≡ ∃v̄ � ∃v̄′ � T (v̄, v̄′) ∧ b̄ = α(v̄) ∧ b̄′ = α(v̄′)

≡ ∃v̄ � (v̄ ∈ γ(b̄) ∧ ∃v̄′ � T (v̄, v̄′) ∧ v̄′ ∈ γ(b̄′))

≡ ∃v̄ � (v̄ ∈ γ(b̄) ∧ v̄ ∈ WP(St, γ(b̄′)))

≡ γ(b̄) ∧ WP(St, γ(b̄′)) is satisfiable

Note that even though we are checking software consisting ofseveral communicating program components,

it is sufficient to use standard weakest preconditions for sequential programs, since the abstraction is performed

component-wise.

“Must” Predicate Abstraction: Under-approximation. The modified predicate abstraction constructs an under-

approximation of the concrete system via universal ormust[52] abstraction. Given a statementSt in the modified

componentC
′

i and its associated transition relationT (v̄, v̄′) as before, we compute its must abstraction with respect

to predicatesP as follows:

T̂ (b̄, b̄′) ≡ ∀v̄ � b̄ = α(v̄) =⇒ ∃v̄′ � T (v̄, v̄′) ∧ b̄′ = α(v̄′) (5)

22 Sagar Chaki et al.

We useT̂must to denote the above relation. Note thatT̂must contains a transition from an abstract stateb̄ to b̄′ iff

for every concrete statēv corresponding tōb, there exists a concrete transition to a statev̄′ corresponding tōb′ [52].

Further, it has been shown [52] that the concrete transitionrelationT simulates the abstract transition relationT̂must.

Hence,T̂must is an under-approximation ofT . Again, in practice, we computêTmust using the WP transformer on the

predicates together with a theorem prover [36] in the following way:

T̂ (b̄, b̄′) ≡ (γ(b̄) =⇒ WP(St, γ(b̄′))) (6)

Note that Equation 5 is equivalent to Equation 6 since:

T̂ (b̄, b̄′) ≡ (∀v̄ � b̄ = α(v̄) =⇒ ∃v̄′ � T (v̄, v̄′) ∧ b̄′ = α(v̄′))

≡ (∀v̄ � v̄ ∈ γ(b̄) =⇒ ∃v̄′ � T (v̄, v̄′) ∧ v̄′ ∈ γ(b̄′))

≡ (∀v̄ � v̄ ∈ γ(b̄) =⇒ v̄ ∈ WP(St, γ(b̄′)))

≡ (γ(b̄) =⇒ WP(St, γ(b̄′)))

At the end of the abstraction phase, we obtainM as an over-approximation ofCi andM ′ as an under-approximation

of C
′

i , as defined in Equation 2. The containment check now proceedsto the next stage involving verification.

2. Verification. Verify if M 4 M ′ (or alternativelyM \B 4 M ′ if the upgrade involved some bug fix and the bug

was defined as a finite automatonB). If so then from(C1) and(C2) (cf. Abstraction) above we know thatCi 4 C
′

i

and we terminate with success. Otherwise we obtain a counterexampleCE .

3. Validation and Refinement 1.Check thatCE is a real behavior ofCi. This step is done in a manner similar

to the counterexample validation techniques employed in software model checkers based on CEGAR [8,38,12]. If

CE is a real behavior ofCi, we proceed to Step 4. Otherwise we refine modelM (i.e., remove the spuriousCE) by

constructing a new set of predicatesP ′ and repeat from Step 2. The procedure for refining the modelM has been

presented elsewhere [12] in detail, and we do not describe ithere further.

4. Validation and Refinement 2.Check thatCE is not a real behavior ofC
′

i . The operations involved in this

check are the same as those used for the validation check in Step 3. The only difference is that we complement the

Verification of Evolving Software via Component Substitutability Analysis 23

final result, since in this step we are interested in checkingwhetherCE is not a real behavior ofC
′

i , while in Step 3,

we were interested in checking whetherCE is a real behavior ofCi.

If CE is not a real behavior ofC
′

i , we know thatCE ∈ Behv(Ci) \ Behv(C
′

i). We addCE to the user feedback

step and stop. Otherwise we enlargeM ′ (i.e., addCE) by constructing a new set of predicatesP ′ and repeat from

Step 2. The procedure for enlarging the modelM ′ has been presented elsewhere [36] in detail, and we do not describe

it here further.

Figure 6 depicts the individual steps of this containment check. Similar to ordinary abstraction-refinement proce-

dures for programs, the containment check may not terminatebecause a sufficient set of predicates is never found.

Otherwise, the check terminates either with a successful result (all behaviors ofCi are verified to be present inC
′

i) or

returns an actual diagnostic behaviorCE as feedback to the developers. The following theorem provesthis result.

Theorem 2 (Correctness of Containment Check)Upon termination, if the Containment Check is successful, then

Ci 4 C
′

i holds. Otherwise, a witness counterexampleCE ∈ Ci \ C
′

i is returned.

Proof.The containment check terminates either when the verification check (Step 2) succeeds or both the Valida-

tion and Refinement checks (Steps 3 and 4) fail. Note that at each iterationCi 4 Mi andM ′

i 4 C
′

i . If the verification

step (Step 2) succeeds, then it follows thatMi 4 M ′

i , and henceCi 4 Mi 4 M ′

i 4 C
′

i . Therefore,Ci 4 C
′

i holds.

Otherwise, suppose that both the Validation and Refinement phases (Steps 3 and 4) fail. Then, from Step 3 we know

thatCE ∈ Ci, and from Step 4 we know thatCE 6∈ C
′

i . Hence, we have a counterexampleCE ∈ Ci\ ∈ C
′

i which is

returned by the containment check.

2

4.1 Feedback

Recall that for somei ∈ I, if our containment check detects thatCi 64 C
′

i , it also computes a setFi of erroneous

behaviors. Intuitively, each element ofFi represents a behavior ofCi that is not a behavior ofC
′

i . We now present our

process of generating feedback fromFi. In the rest of this section, we writeC,C
′

, andF to meanCi, C
′

i , andFi,

respectively.

24 Sagar Chaki et al.

Consider any behaviorπ in F . Recall thatπ is a trace of an automatonM obtained by predicate abstraction ofC.

By simulatingπ onM , we construct a sequenceRep(π) = 〈α1, . . . , αn〉 of states and actions ofM corresponding to

the traceπ.

We also know thatπ represents an actual behavior ofC but not an actual behavior ofC
′

. Thus, there is a prefix

Pref (π) of π such thatPref (π) represents a behavior ofC
′

. However, no extension ofPref (π) is a valid behavior

of C
′

. Note thatPref (π) can be constructed by simulatingπ on C
′

. Let us denote the suffix ofπ afterPref (π) by

Suff (π). SincePref (π) is an actual behavior ofC
′

, we can also construct a representation forPref (π) in terms of

the statements and predicate valuations ofC
′

. Let us denote this representation byRep′(Pref (π)).

As our feedback, for eachπ ∈ F , we compute the following representations:Rep(Pref (π)), Rep(Suff (π)),

andRep′(Pref (π)). Such feedback allows us to identify the exact divergence point of π beyond which it ceases to

correspond to any concrete behavior ofC
′

. Since the feedback refers to a program statement, it allows us to understand

at the source code level whyC is able to matchπ completely, butC
′

is forced to diverge fromπ beyondPref (π).

This understanding makes it easier to modifyC
′

so that the missing behaviorπ can be added back to it.

5 Compatibility Analysis

The compatibility check is aimed at ensuring that the upgraded system satisfies global safety specifications. Our com-

patibility check procedure involves two key paradigms: dynamic regular-set learning and assume-guarantee reasoning.

We first present these two techniques and then describe theiruse in the compatibility algorithm.

5.1 Dynamic Regular-Set Learning

Central to our compatibility check procedure is a newdynamicalgorithm to learn regular languages. Our algorithm is

based on theL∗ algorithm described in Section 3. In this section we first present a dynamic version of theL∗ learning

algorithm and then describe how it can be applied for checking compatibility.

5.1.1 DynamicL∗. NormallyL∗ initializes withS = E = {λ}. This can be a drawback in cases where a previously

learned candidate (and hence a table) exists and we wish to restart learning using information from the previous table.

Verification of Evolving Software via Component Substitutability Analysis 25

In the following discussion, we show that ifL∗ begins with any non-empty valid table, it must terminate with the

correct result (Theorem 3). In particular, this theorem allows us to perform our compatibility check dynamically by

restartingL∗ with any previously computed table by revalidating it instead of starting from an empty table.2

Definition 7 (Agreement)An observation tableT = (S,E, T) is said to agree with a regular languageU iff:

∀(s, e) ∈ (S ∪ S • Σ) × E � T (s, e) = 1 ≡ s • e ∈ U

Definition 8 (Validity) Recall the notion of a well-formed observation table from Section 3.1.3. An observation table

T = (S,E, T) is said to be valid for a languageU iff T is well-formed and agrees withU . Moreover, we say that a

candidate automaton derived from a tableT is valid for a languageU if T is valid forU .

Theorem 3L∗ terminates with a correct result for any unknown languageU starting from any valid table forU .

Proof. It was shown earlier (cf. Theorem 1) that for a given unknown languageU , the L∗ algorithm terminates if

it is able to perform a finite number of candidate queries. Therefore, it remains to show that starting from a valid

observation table, the algorithm must be able to perform a candidate query in a finite number of steps. Note that each

iteration of theL∗ algorithm involves executing theCloseTableandMkDFA procedures before making a candidate

query (cf. Figure 4). Therefore, we need to show that the proceduresCloseTableandMkDFA terminate in a finite

number of steps starting from a valid table.

Let the valid observation table beT1. SinceT1 agrees withU , the CloseTableprocedure terminates in a finite

number of steps with a closed tableT2 (cf. Lemma 5). Moreover,T2 is well-formed since the initial tableT1 is well-

formed (cf. Lemma 5). SinceT2 is well-formed and closed, theMkDFA algorithm is able to compute a DFA candidate

D (cf. Lemma 6) fromT2 and terminates. Therefore, after the execution ofMkDFA finishes,L∗ must perform a

candidate query.

2

Suppose we have a tableT that is valid for an unknown languageU, and we have a new unknown languageU ′

different fromU. Suppose we want to learnU ′ by startingL∗ with tableT . Note that sinceU andU ′ differ in general,

2 A similar idea was also proposed in the context of adaptive model checking [34].

26 Sagar Chaki et al.

T may not agree withU ′ and hence may not be valid with respect toU ′; hence,L∗ may not terminate starting fromT .

Thus, we firstrevalidateT againstU ′ and then startL∗ from the validT . Theorem 3 provides the key insight behind

the correctness of this procedure. As we shall see, this ideaforms the backbone of our dynamic compatibility-check

procedure (see Section 5.3).

In the context of assume-guarantee reasoning,U represents a weakest assumption language. When an upgrade

occurs,U may change to a different languageU ′. However, since the change was caused by an upgrade, we expect

that the languageU ′ will differ from U only slightly. We will see that the efficiency of our revalidation procedure

depends crucially on this hypothesis.

Revalidation Procedure.Suppose we have a tableT which is valid for an unknown languageU . Given a Teacher

for a different unknown languageU ′, the table revalidation procedureReval (shown in Figure 7) makesT valid with

respect toU ′ by executing the following two steps. In Step 1,Reval updates all the table entries inT by asking

membership queries. The tableT ′ obtained as a result may not be well-formed since the function T is updated. More

precisely, for somes1, s2 ∈ S wheres1 6≡ s2 in T , it may happen thats1 ≡ s2 in T ′. However, the construction of a

candidate DFA requires that the observation table be well-formed (cf. Lemma 6). Therefore, in Step 2,Revaluses the

procedureMkWellFormed to makeT ′ well-formed. In order to describeMkWellFormed , we need the concepts of

thewell-formed coverand theexperiment coverfor an observation tableT .

Procedure Reval

Input: An observation tableT = (S, E, T) and a teacher for a languageU ′.

Output: An observation tableT ′ that is valid forU ′.

1. (Step 1)For alls ∈ S ande ∈ E, ask membership query fors • e with respect toU ′ and updateT .

Let the table obtained as a result beT ′.

2. (Step 2)MakeT ′ well-formed (cf. Section 3.1.3) by using the procedureMkWellFormed .

Fig. 7 The table revalidation procedureReval.

Verification of Evolving Software via Component Substitutability Analysis 27

Definition 9 (Well-formed Cover) Given a prefix-closed setS, a well-formed subset ofS is a setS′ ⊆ S such that (i)

S′ is prefix-closed, and (ii) for alls1, s2 ∈ S′, s1 6≡ s2 holds. A well-formed coverS′ of S is a maximal well-formed

subset ofS.

Given a prefix-closed setS, a well-formed coverS′ of S can be obtained by performing a depth-first tree search

on the tree representation ofS in the following way: for each newly visited node in the tree,the corresponding string

in S is added toS′. However, a node (with the corresponding strings) is visited only if for alls′ in the current cover

S′, s ands′ are non-equivalent, i.e.,s 6≡ s′. The search terminates when for everys ∈ S there exists somes′ ∈ S′ so

thats ≡ s′. Note that the finalS′ obtained in this way is prefix-closed and no two elements ofS′ are equivalent. For

example, letS = {a, a • b, a • c, d} wherea ≡ a • c andd ≡ a • b. A well-formed cover ofS is S′ = {a, a • b}. Note

thatS′ is prefix-closed anda 6≡ a • b.

Definition 10 (Column Function) Given an observation tableT = (S,E, T), and somee ∈ E, Col(e) is defined to

be a function from(S ∪ S • Σ) to {0, 1} such thatCol(e)(s) = T (s, e) for all s ∈ (S ∪ S • Σ). For e1, e2 ∈ E, we

say thatCol(e1) = Col(e2) if for all s ∈ (S ∪ S • Σ), T (s, e1) = T (s, e2).

Intuitively, for an experimente ∈ E, Col(e) denotes the vector of Boolean values in the column corresponding to

e in an observation tableT . Two elementse1 ande2 are equivalent under theCol function if the vector of Boolean

values in the corresponding columns of the observation table are same.

Definition 11 (Experiment Cover) An experiment cover ofE is a setE′ ⊆ E, such that (i) for alle1, e2 ∈ E′,

Col(e1) 6= Col(e2), and (ii) for eache ∈ E, there exists ane′ ∈ E′, such thatCol(e) = Col(e′).

An experiment cover forE can be obtained by finding the set of elements equivalent under Col function and

picking a representative element from each set. For example, consider the observation table in Figure 8(d). Here,

E = {λ, α}. Note thatCol(λ) 6= Col(α). Hence, the experiment coverE′ for E is the same asE.

The MkWellFormed procedure is described by the pseudo-code in Figure 9. Intuitively, the procedure removes

duplicate elements fromS (which are equivalent under the≡ relation) andE (having the same value under theCol

function).

28 Sagar Chaki et al.

E

λ

S

λ 1

α 0

S • Σ

β 1

αα 1

αβ 1

E

λ

S

λ 1

α 1

S • Σ

β 1

αα 0

αβ 1

E

λ

S λ 1

S • Σ

β 1

α 1

E

λ α

S

λ 1 1

α 1 0

αα 0 0

S • Σ

β 1 1

αβ 1 1

ααα 0 0

ααβ 0 0

(a) (b) (c) (d)

β α

α,

β

(e)

β α

α

β

α, β

(f)

Fig. 8 Illustration of the revalidation procedure described in Example 2; (a) Observation table for original languageU = (β | (α •

(α|β)))∗; (b) New observation table after recomputing the entries with respect to thenew languageU ′ = ((β | α • β)∗) | ((β | α •

β)∗ • α); e.g.,α ∈ U ′ impliesT (α, λ) = 1 (c) Observation table after revalidating with respect toU ′ and (d) after anL∗ learning

iteration with respect toU ′; (e) DFA for languageU (corresponding to observation table in (a)); and (f) DFA for languageU ′

(corresponding to table in (d)).

Example 2(Revalidation Example) Figure 8 shows an illustration of the revalidation procedure in the dynamicL∗

algorithm. Let the initial unknown language (the weakest assumption language) beU = (β | (α • (α|β)))∗. The

observation tableT1 and the DFA forU are shown in Figure 8(a) and Figure 8(e) respectively. Suppose that an upgrade

happens and the new weakest assumption language isU ′ = ((β | α • β)∗) | ((β | α • β)∗ • α). In particular, note that

Verification of Evolving Software via Component Substitutability Analysis 29

Procedure MkWellFormed

Input: Observation tableT = (S, E, T)

Output: Well-formed observation tableT ′ = (S′, E′, T ′)

1. SetS′ to a well-formed cover (cf. Definition 9) ofS.

2. SetE′ to an experiment cover (cf. Definition 11) ofE with respect to(S′ ∪ S′ • Σ).

3. ObtainT ′ by restrictingT to (S′ ∪ S′ • Σ) × E′

Fig. 9 Pseudo-code for theMkWellFormed procedure

α ∈ U ′ but not inU andα • α ∈ U but not inU ′. Our goal is to start learning with respect toU ′ from the observation

tableT1 computed forU previously. So, theReval procedure is applied toT1. Figure 8(b) shows the table obtained

after applying the Step 1 of the revalidation procedure withrespect to the new languageU ′. Note that the entries for

T (α, λ) andT (α •α, λ) are updated with respect toU ′. This, in turn, results inα ≡ λ (cf. Figure 8(b)). Now, the Step

2 of theReval procedure is applied: sinceα ≡ λ andS = {λ, α}, the well-formed coverS′ = {λ}. The experiment

coverE′ remains the same asE. Hence,α is removed fromS during computation of the well-formed cover in this

step (Note that the extensionsα • α andα • β are also in turn removed fromS • Σ). The resultant observation table

(after making it closed) is shown in Figure 8(c). Since this table is closed, learning proceeds in the normal fashion

from here by computing the next candidate and making a candidate query. Figure 8(d) shows the final observation

table and Figure 8(f) shows the DFA obtained after learning completes with respect toU ′.

Note that our example is small, and therefore the revalidation step gives rise to a trivial intermediate observation

table (Figure 8(b)). However, as noted earlier, in the case when an upgrade causes the change fromU to U ′, the lan-

guagesU andU ′ may differ only slightly. Therefore, in this case, theReval procedure may modify the observation

table only slightly. In particular, during revalidation, the well-formed cover ofS may remain very similar toS (i.e., a

large number of elements ofS may continue to remain non-equivalent after revalidation), leading to reuse of informa-

tion about many traces (S • E) in the observation table. In the experimental evaluation of our approach, we observed

that the above expectation was true in most of the cases.

We now show that the output ofMkWellFormed procedure is a well-formed table.

30 Sagar Chaki et al.

Lemma 7 TheMkWellFormed procedure returns a well-formed observation table.

Proof. Given an observation tableT = (S,E, T), theMkWellFormed procedure restrictsS to a well-formed cover

(sayS′) andE to an experiment cover (sayE′). Let the table obtained as a result beT ′. It follows from Definition 9

that for all s1,s2 ∈ S′, s1 6≡ s2. Using the definition of≡ (cf. Section 3.1.3), we know that for somee ∈ E,

T (s1 • e) 6= T (s2 • e). Now, consider the following two cases:

Case 1.If e ∈ E′, s1 6≡ s2 still holds in the result table sinceT (s1 • e) 6= T (s2 • e).

Case 2.Otherwise,e 6∈ E′. However, by Definition 11, there exist somee′ ∈ E′, so thatCol(e′) = Col(e). By

using the definition ofCol (Definition 10), it follows that for alls ∈ S, T (s • e) = T (s • e′). Hence,T (s1 • e′) =

T (s1 • e) 6= T (s2 • e) = T (s2 • e′). Therefore,s1 6≡ s2 holds and so the output tableT ′ is well-formed.

2

Lemma 8 TheRevalprocedure always computes a valid observation table for theunknown languageU ′ as an output.

Proof. Refer to Figure 7 describing theReval procedure. By construction, the table obtained at the end ofStep 1

mustagreewith U ′. In Step 2, the procedureMkWellFormed is applied. Therefore, it follows from Lemma 7 that the

resultant table iswell-formed. As a result, the final table both agrees withU ′ and is well-formed; hence, by Definition 8,

it is valid.

2

It follows from Lemma 8 and Theorem 3 that starting from an observation table computed by theRevalprocedure,

theL∗ algorithm must terminate with the correct minimum DFA for anunknown languageU ′.

5.2 Assume-Guarantee Reasoning

Along with dynamicL∗, we also use assume-guarantee style compositional reasoning to check compatibility. Given

a set of component finite automataM1, . . . ,Mn and a specification automatonϕ, the following non-circular rule

AG [49] can be used to verifyM1 ‖ · · · ‖ Mn 4 ϕ:

Verification of Evolving Software via Component Substitutability Analysis 31

M1 ‖ A1 4 ϕ

M2 ‖ · · · ‖ Mn 4 A1

M1 ‖ · · · ‖ Mn 4 ϕ

In the above equation,A1 is a finite automaton representing the assumption about the environment under which

M1 is expected to operate correctly. As also observed by Cobleigh et al. [23], the second premise is itself an instance

of the top-level proof obligation withn − 1 component finite automata. Hence,AG can be applied to decompose it

further. It has been shown that theAG rule is both sound and complete [23]. The proof of completeness relies on the

existence of an unique weakest assumption (cf. Lemma 1) for acomponent automatonM and propertyϕ.

As mentioned above, the ruleAG can be instantiated recursively forn components [23] as follows.

Mi ‖ Ai 4 Ai−1(1 ≤ i ≤ n − 1, A0 = ϕ)

Mn 4 An−1

M1 ‖ .. ‖ Mn 4 ϕ

Our algorithm for checking compatibility uses this instantiation of ruleAG for n components. We can show that

this rule iscompleteusing the notion of weakest assumptions. Recall (cf. Definition 5) that for any finite automatonM

and a specification automatonϕ, there must exist a weakest finite automaton assumptionWA such thatM ‖ A 4 ϕ iff

A 4 WA andM ‖ WA 4 ϕ. For the above instantiation ofAG rule, we can define a set of weakest assumptionsWAi

(1 ≤ i ≤ n − 1) as follows. It is clear that a weakest assumptionWA1 exists such thatM1 ‖ WA1 4 ϕ. GivenWA1,

it follows thatWA2 must exist so thatM2 ‖ WA2 4 WA1. Therefore, by induction oni, there must exist weakest

assumptionsWAi for 1 ≤ i ≤ n − 1, such thatMi ‖ WAi 4 WAi−1(1 ≤ i ≤ n − 1,WA0 = ϕ) andMn 4 An−1.

5.3 Compatibility Check for C Components

The procedure for checking compatibility of new componentsin the context of the original component assembly

is presented in Figure 10. Given an old component assemblyC = {C1, . . . , Cn} and a set of new components

C′ = {C ′

i | i ∈ I} (whereI ⊆ {1, . . . , n}), the compatibility-check procedure checks if a safety propertyϕ holds

in the new assembly. We first present an overview of the compatibility procedure and then discuss its implementation

32 Sagar Chaki et al.

in detail. The procedure uses aDynamicCheckalgorithm (cf. Section 5.3.2) and is done in an iterative abstraction-

refinement style as follows:

1. Use predicate abstraction to obtain finite automaton models Mi, whereMi is constructed fromCi if i 6∈ I and

from C ′

i if i ∈ I. The abstraction is carried out component-wise. LetM = {M1, . . . ,Mn}.

2. Apply DynamicCheckonM. If the result isTRUE, the compatibility check terminates successfully. Otherwise,

we obtain a counterexampleCE .

3. Check ifCE is a valid counterexample. Once again this is done component-wise. IfCE is valid, the compatibility

check terminates unsuccessfully withCE as a counterexample. Otherwise we go to the next step.

4. Refine a specific model, sayMk, such that the spuriousCE is eliminated. Repeat the process from Step 2.

New Components

L*

True

CE spurious

No
CE provided

False + CE
Yes

Old Components

Predicate Abstraction

New Component is Substitutable

RefineM

New Component is not Substitutable

M = {M1, . . . ,Mn}

{Ci | i 6∈ I} {C′
i | i ∈ I}

Check:M � ϕ

Fig. 10 The Compatibility Phase of the Substitutability Framework

5.3.1 Overview of DynamicCheck.We first present an overview of the algorithm for two finite automata and then

generalize it to an arbitrary collection of finite automata.Suppose we have two old finite automata,M1 andM2, and a

property finite automatonϕ. We assume that we previously tried to verifyM1 ‖ M2 4 ϕ usingDynamicCheck. The

algorithmDynamicCheckuses dynamicL∗ to learn appropriate assumptions that can discharge the premises ofAG.

Verification of Evolving Software via Component Substitutability Analysis 33

In particular, suppose that while trying to verifyM1 ‖ M2 4 ϕ, DynamicCheckhad constructed an observation table

T .

Now suppose that we have new versionsM ′

1
andM ′

2
for M1 andM2. Note that, in general, eitherM ′

1
or M ′

2
could

be identical to its old version.DynamicChecknow reusesT and invokes the dynamicL∗ algorithm to automatically

learn an assumptionA′ such that (i)M ′

1
‖ A′ 4 ϕ and (ii) M ′

2
4 A′. More precisely,DynamicCheck proceeds

iteratively as follows:

1. It checks ifM1 = M ′

1
. If so, it initializes learning from the previous tableT (i.e., it setsT ′ := T). Otherwise, it

revalidatesT againstM ′

1
to obtain a new tableT ′.

2. It derives a conjectureA′ from T ′ and checks ifM ′

2
4 A′. If this check passes, it terminates withTRUE and the

new assumptionA′. Otherwise, it obtains a counterexampleCE .

3. It analyzesCE to see ifCE corresponds to a real counterexample toM ′

1
‖ M ′

2
4 ϕ. If so, it constructs such a

counterexample and terminates withFALSE. Otherwise, it adds a new experiment toT ′ usingCE . This is done

via the algorithm by Rivest and Schapire [50] as explained inSection 3.1.4. Therefore, once the new experiment

is added,T ′ is no longer closed.

4. It makesT ′ closed by making membership queries and repeats the processfrom Step 2.

We now describe the key ideas that enable us to reuse the previous assumptions and then present the complete

DynamicCheck algorithm for multiple finite automata. Due to its dynamic nature, the algorithm is able to locally

identify the set of assumptions that must be modified to revalidate the system.

Incremental Changes Between Successive Assumptions.Recall that theL∗ algorithm maintains an observation

table (S,E, T) corresponding to an assumptionA for every componentM . During an initial compatibility check,

this table stores the information about membership of the current set of traces (S • E) in an unknown languageU .

Upgrading the componentM modifies this unknown language for the corresponding assumption from U to, say,

U ′. Therefore, checking compatibility after an upgrade requires that the learner must compute a new assumptionA′

corresponding toU ′. As mentioned earlier, in most cases, the languagesL(A) andL(A′) may differ only slightly;

hence, the information about the behaviors ofA is reused in computingA′.

34 Sagar Chaki et al.

Table Revalidation.The originalL∗ algorithm computesA′ starting from an empty table. However, as mentioned

before, a more efficient algorithm would try to reuse the previously inferred set of elements ofS andE to learnA′.

The result in Section 5.1.1 (Theorem 3) precisely enables theL∗ algorithm to achieve this goal. In particular, sinceL∗

terminates starting from anyvalid table, the algorithm uses theRevalprocedure to obtain a valid table by reusing traces

in S and experiments inE. The valid table thereby obtained is subsequently made closed, and then learning proceeds

in the normal fashion. Doing this allows the compatibility check to restart from any previous set of assumptions by

revalidating them. TheRevalidateAssumptionmodule implements this feature (see Figure 12).

5.3.2 Overall DynamicCheck Procedure.TheDynamicCheckprocedure instantiates theAG rule forn components

and enables checking multiple upgrades simultaneously by reusing previous assumptions and verification results. In the

description, we denote the previous and new versions of a component finite automaton byM andM ′ and the previous

and new versions of component assemblies byM andM′, respectively. For ease of description, we always use a

property,ϕ, to denote the right-hand side of the top-level proof obligation of theAG rule. We denote the modified

property3 at each recursion level of the algorithm byϕ′. The old and new assumptions are denoted byA andA′,

respectively.

Figure 12 presents the pseudo-code of theDynamicCheckalgorithm to perform the compatibility check. Lines 1-4

describe the case whenM contains only one component. In Line 5-6, if the previous assumption is found to be not valid

(usingIsValidAssumption procedure) with respect to the weakest assumption corresponding toM ′ andϕ′, it is reval-

idated using theRevalidateAssumptionprocedure. Lines 8-10 describe the recursive invocation ofDynamicCheck

onM′ \M ′ against propertyA′. Finally, Lines 11-16 show how the algorithm detects a counterexampleCE and uses

it to updateA′ or terminates with aTRUE result or a counterexample. The salient features of this algorithm are the

following:

– We assume that there exists a set of previously computed assumptions from the earlier verification check. Suppose

we have a component automatonM and a property automatonϕ, such that the corresponding weakest assumption

3 Under the recursive application of the compatibility-check procedure, the updated propertyϕ′ corresponds to an assumption

from the previous recursion level.

Verification of Evolving Software via Component Substitutability Analysis 35

GenerateAssumption(A, CE)

// Let (S,E,T) be theL∗ observation table corresponding to an assumptionA;

1: Obtain adistinguishing suffixe from CE ;

2: E := E ∪ {e};

3: forever do

4: CloseTable();

5: A′ := MkDFA (T);

6: if (IsCandidate(A′)) returnA′;

7: let CE
′ be the counterexample returned byIsCandidate;

8: Obtain adistinguishing suffixe from CE
′;

9: E := E ∪ {e};

Fig. 11 Pseudo-code for procedureGenerateAssumption.

is WA. In order to find out if a previously computed assumption (sayA) is valid againstL(WA) (cf. Definition 8),

theIsValidAssumption procedure is used. More precisely, theIsValidAssumption procedure checks if the obser-

vation table (sayT) corresponding toA is valid with respect toL(WA) by asking a membership query for each

element of the table (cf. Lemma 2).

– The procedureGenerateAssumption(cf. Figure 11) essentially models theL∗ algorithm. Given a counterexample

CE , the procedureGenerateAssumptioncomputes the next candidate assumption in a manner similar to the

originalL∗ algorithm (cf. Section 3.1.4). The termination of theGenerateAssumptionprocedure directly follows

from that of theL∗ algorithm.

– Verification checks are repeated on a componentM ′ (or a collection of componentsM′ \M ′) only if it is (or they

are) found to be different from the previous versionM (M\ M) or if the corresponding propertyϕ has changed

(Lines 3, 8). Otherwise, the previously computed and cachedresult (returned by the procedureCachedResult) is

reused (Lines 4, 9).

36 Sagar Chaki et al.

DynamicCheck(M′, ϕ′) returns counterexample orTRUE

1: let M ′ = first element ofM′;

//M andϕ denote the first element ofM and the corresponding property before upgrade

//andA denotes the assumption computed previously forM andϕ

2: if (M′ = {M ′})

3: if (M 6= M ′ or ϕ 6= ϕ′) return (M ′
4 ϕ′);

4: else return CachedResult(M 4 ϕ);

//check ifA is a valid assumption forM ′ andϕ′

5: if (¬ IsValidAssumption(A, M ′, ϕ′))

//make assumptionA valid for M ′ andϕ′

6: A′ := RevalidateAssumption(A, M ′, ϕ′);

7: elseA′ := A;

//Now check the rest of the systemM′ \ M ′ againstA′

8: if (A 6= A′ orM\ M 6= M′ \ M ′)

9: res := DynamicCheck(M′ \ M ′, A′);

10: elseres := CachedResult(M\ M 4 A);

11: while(res is notTRUE)

//LetCE be the counterexample obtained

12: if (M ′ ‖ CE 4 ϕ′)

13: A′ := GenerateAssumption(A′,CE); // ObtainA′ so thatM ′ ‖ A′
4 ϕ′

14: res = DynamicCheck(M′ \ M ′, A′); // Check ifM′ \ M ′
4 A′

15: else returna witness counterexampleCE
′ to M ′ ‖ CE 64 ϕ′;

16: return TRUE;

Fig. 12 Pseudo-Code for Compatibility Checking on an upgrade. The procedure returnsTRUE if M′
4 ϕ′ holds, otherwise returns

a counterexample witnessCE .

Verification of Evolving Software via Component Substitutability Analysis 37

Note that for a component automatonM and a counterexample traceCE , we write M ‖ CE to denote the

composition ofM with the automaton representation of the traceCE (where the last state is the only accepting state).

In order to prove the correctness ofDynamicCheck, we need the following lemma.

Lemma 9 SupposeM is a set of component automata (withM ∈ M) and ϕ be a specification automaton. Let

M\M 64 ϕ hold andCE be a witness to it. Moreover, supposeM ‖ CE 64 ϕ holds, andCE ′ is a witness to it. Then

M 64 ϕ holds andCE ′ is a witness to it.

Proof.Let M2 = M\ M . SinceCE is a witness toM2 64 ϕ, we know thatCE ∈ L(M2). Also, sinceM ‖ CE 64 ϕ

holds andCE ′ is a witness to it, there is aCE ′′ ∈ L(M) such thatCE ′ = (CE ′′ ‖ CE) (using the automaton

representation of bothCE andCE ′′). Also, CE ′ 6∈ L(ϕ). SinceCE ′′ ∈ L(M) andCE ∈ L(M2), it follows that

CE ′ = (CE ′′ ‖ CE) is in L(M ‖ M2) = L(M). Hence,CE ′ is in L(M) but not inL(ϕ). Therefore,CE ′ is a

witness toM 64 ϕ.

Theorem 4 shows the correctness ofDynamicCheck. The proof relies on the fact that the ruleAG for a sys-

tem of n component automata is complete due to the existence of an unique set of weakest assumptions (cf. Sec-

tion 5.2). Note that we never construct the weakest assumptions directly; they are only used to show that the procedure

DynamicCheck terminates with the correct result.

Theorem 4Given modifiedM′ andϕ′, theDynamicCheckalgorithm always terminates with eithertrue or a coun-

terexampleCE toM′ 4 ϕ′.

Proof.We assume that for the earlier systemM, a set of previously computed assumption automataA1 . . . An−1 exist.

Suppose one or more components inM are upgraded resulting in the systemM′.

The proof proceeds by induction over the number of componentsk in M′. In the base caseM′ consists of a single

component automatonM ′; hence we need to model checkM ′ againstϕ′ only if eitherM or ϕ changed. This is done

in Lines 3-4. Hence,DynamicCheckreturns the correct result in this case.

Assume for the inductive case thatDynamicCheck(M′ \M ′, A′) terminates with eithertrue or a counterexample

CE . If Line 8 holds (i.e.,A′ 6= A or M \ M 6= M′ \ M ′), then, by the inductive hypothesis, execution of Line 9

terminates with the correct result: eithertrue or a counterexampleCE . Otherwise, the previously computed correct

38 Sagar Chaki et al.

resultres is used (Line 10). Based on this result, Lines 11-16 update the current assumption in an iterative manner.

Therefore, it remains to be shown that Lines 11-16 compute the correct return value based on this result.

If the result in Line 9 or Line 10 istrue, it follows from the soundness of the assume-guarantee rulethatM′ 4 ϕ′

andDynamicCheckreturnstrue (Line 16). Otherwise, a counterexampleCE is found which is a witness toM\M 64

ϕ′. This counterexample is used in Line 12 to check ifM ′ ‖ CE 4 ϕ′. If this holds, thenCE is used to improve

the current assumption in Lines 13-14. Otherwise, the procedure returns a suitable witnessCE ′ (Line 15). In order to

show that Lines 11-16 compute the correct result, we need to show that (i) the counterexampleCE ′ is indeed a witness

toM′ 64 ϕ′ and, (ii) the loop in Lines 11-15 can execute only a finite number of times.

Using the fact thatCE is a witness toM′ \ M ′ 64 ϕ′ (from Lines 9-10) andM ′ ‖ CE 64 ϕ′ (Line 12), it follows

from Lemma 9 thatM′ 64 ϕ′ andCE ′ is a suitable witness toM′ 64 ϕ′.

It remains to show that Lines 11-15 can execute only a finite number of times. Note that in Line 13,A′ is valid

since it was computed byRevalidateAssumption(Line 6). Hence,GenerateAssumption(Line 13) must terminate

(cf. Theorem 3) by learning a new assumption, sayA′′, such thatM ′ ‖ A′′ 4 ϕ′. Note that by Lemma 4, the number

of states ofA′ or A′′ cannot exceed that of the corresponding weakest assumptionWA′. Also, it follows from the proof

of correctness ofL∗ (cf. Theorem 1) that|A′| < |A′′| . Moreover, by the inductive hypothesis, Line 14 must terminate

with the correct result. Hence, each iteration of Lines 11-14 of thewhile loop will lead to increase in the number of

states of the assumption candidates until|A′′| = |WA′|. In this case, the loop terminates. If no counterexample is

generated at Line 14, then the loop terminates with a true result at Line 16. Otherwise, if a counterexampleCE is

generated at Line 14 (withA′′ = WA′), then it follows thatCE ∈ L(M′ \ M ′) andCE 6∈ L(WA′). Therefore it

follows from Lemma 2 thatM ′ ‖ CE 4 ϕ′ does not hold. Hence, by Lemma 9,CE is an actual witness toM′ 64 ϕ′.

Therefore, the procedure returns by generating the correctwitnessCE ′ at Line 15.

2

6 Implementation and Experimental Evaluation

The procedures for checking, in a dynamic manner, the substitutability of components, were implemented in the

COMFORT reasoning framework [15]. The tool includes a front end for parsing and constructing control-flow graphs

Verification of Evolving Software via Component Substitutability Analysis 39

from C programs. Further, it is capable of model checking properties on programs based on automated may-abstraction

(existential abstraction), and it allows compositional verification by employing learning-based, automated assume-

guarantee reasoning. Specifically, we implemented the compatibility check in full while for the containment check,

we only implemented the Abstraction and Verification steps (cf. Section 4) since they were sufficient for the examples

we considered.

We reused the above features of COMFORT in the implementation of the substitutability check. Thetool interface

was modified so a collection of components and correspondingupgrades could be specified. We extended the learning-

based, automated assume-guarantee to obtain its dynamic version, as required in the compatibility check. Multiple

learner instances are kept across calls to the verification engine and implementing algorithms to validate multiple,

previous observation tables in an efficient way during learning. For the Abstraction step in containment checking, we

implemented procedures for computing must-abstractions from C code using a given set of predicates [36,37].

We performed the compatibility check while verifying upgrades of a benchmark provided to us by our indus-

trial partner, ABB Inc. [2]. The benchmarks consist of sevencomponents which together implement an inter-process

communication (IPC) protocol. The combined state space is over106.

We used a set of properties describing the functionality of the verified portion of the IPC protocol. We used

upgrades of thewrite-queue(ipc1) and theipc-queue(ipc2 and ipc3) components. The upgrades had both missing

and extra behaviors compared to their original versions. Weverified two properties (P1 andP2) before and after the

upgrades. We also verified the properties on a simultaneous upgrade (ipc4) of both the components.P1 specifies that

a process may write data into theipc-queueonly after it obtains a lock for the corresponding critical section.P2

specifies an order in which data may be written into theipc-queue. Figure 13 shows the comparison between the time

required for initial verification of the IPC system, and the time taken byDynamicCheck for verifying the upgrades.

In Figure 13,#Mem. Queries denotes the total number of membership queries made during verification of the

original assembly,Torig denotes the time required for the verification of the original assembly, andTug denotes the

time required for the verification of the upgraded assembly.

40 Sagar Chaki et al.

Upgrade # (Prop.) # Mem. Queries Torig (msec) Tug (msec)

ipc1(P1) 279 2260 13

ipc1(P2) 308 1694 14

ipc2(P1) 358 3286 17

ipc2(P2) 232 805 10

ipc3(P1) 363 3624 17

ipc3(P2) 258 1649 14

ipc4(P1) 355 1102 24

Fig. 13 Summary of Results forDynamicCheck

We observed that the previously generated assumptions (after revalidation) in all the cases were also sufficient to

prove the properties on the upgraded system. Hence, the compatibility check succeeded in a small fraction of time

(Tug) as compared to the time for compositional verification (Torig) of the original system.

7 Related Work

Related projects on checking software systems across modifications often impose the restriction that every behavior

of a new component must also be a behavior of the old component. In such a case, the new component is said to refine

the old component. For instance, de Alfaro et al. [27,17] define a notion of interface automaton for modeling com-

ponent interfaces and show compatibility between components via refinement and consistency between interfaces.

However, automated techniques for constructing interfaceautomata from component implementations are not pre-

sented. In contrast, our approach automatically extracts conservative finite state automaton models from component

implementations. Moreover, we do not require refinement among the old components and their new versions.

McCamant and Ernst [45] suggest a technique for checking compatibility of multi-component upgrades. They

derive consistency criteria by focusing on input/output component behavior only and abstract away the temporal

information. Even though they state that their abstractions are unsound in general, they report success in detecting

Verification of Evolving Software via Component Substitutability Analysis 41

important errors. In contrast, our abstractions preserve temporal information about component behavior and are always

sound. They also use a refinement-based notion on the generated consistency criteria for showing compatibility.

The application of learning is extremely useful from a pragmatic point of view since it is amenable to complete

automation, and it is gaining rapid popularity in formal verification [34]. The use of learning for automated assume-

guarantee reasoning was proposed originally by Cobleigh etal. [23]. The initial methodology was followed by a

symbolic approach [5], application to checking component substitutability [13], extensions to different notions of

conformance [14,16], combination with automated system decomposition using hyper-graph partitioning [48], opti-

mized learning and iterative alphabet enlargement approaches [16,30], lazy learning approach [53] and a technique for

computing minimal assumptions [35]. The problem of choosing a suitable order of components for assume-guarantee

reasoning has been addressed in Gheorghiu et al. [30]. Cobleigh et al. investigate the advantages of automated AGR

methods over monolithic verification techniques in the context of LTSA and FLAVERS tools [24] by experimenting

with different two-way system decompositions. The use of learning along with predicate abstraction has also been ap-

plied in the context of interface synthesis [3] and various types of assume-guarantee proof rules for automated software

verification [10].

This paper is related to our earlier project [11] that solvesthe component-substitutability problem in the context

of verifying individual component upgrades. A major improvement of the current work is that it is aimed at verifying

the component substitutability in the presence of simultaneous upgrades of multiple components. Another distinction

of this work is that it provides an innovative dynamic assume-guarantee reasoning framework for the compatibility

check. The dynamic nature of the compatibility check allowsreusing previously computed assumptions to prove or

disprove the global properties of the updated system.

Additionally, this paper gives a new solution to the containment-check problem presented by Chaki and et al. [11].

In our earlier work, the containment step is solved using learning techniques for regular sets and handles finite-state

systems only. In contrast, the new approach is extended to handle infinite-state C programs. Moreover, this report

defines a new technique based on the simultaneous use of over-approximations and under-approximations obtained

via existential and universal abstractions.

42 Sagar Chaki et al.

Another approach to preserve behavioral properties of a component across an upgrade is based on the principle

of behavioral sub-typing [43]: typeT ′ is a subtype of typeT if for every propertyφ(t) provable about objectst of

type T , φ(t′) is provable about objectst′ of type T ′. The notion of subtypes is extended to system behaviors by

augmenting object types with invariants and constraints and showing that these constraints are maintained for objects

of the subtype. However, this approach focuses only on the given behavior specification of a single component and does

not take into account the way it is used in the component assembly. In contrast, the assumptions in our approach reflect

the behavior of environment components. Therefore, although the upgraded component may not satisfy a property

φ in all possible environments, it may continue to satisfyφ in context of the current environment components. In

other words, the new component may not be a behavioral subtype of the earlier one, but still be compatible with its

environment.

8 Conclusions

We proposed a solution to the critical and vital problem of component substitutability consisting of two phases:con-

tainmentandcompatibility. The compatibility check performs compositional reasoning with help of adynamicregular

language inference algorithm and a model checker. Our experiments confirm that the dynamic approach is more ef-

fective than complete re-validation of the system after an upgrade. The containment check detects behaviors which

were present in each component before but not after the upgrade. These behaviors are used to construct useful feed-

back to the developers. We observed that the order of components used to discharge the assume-guarantee rules has a

significant impact on the algorithm run times and hence needsinvestigation.

References

1. M. Abadi and L. Lamport. Conjoining Specifications.ACM Transactions on Programming Languages and Systems (TOPLAS),

17(3):507–534, May 1995.

2. ABB. http://www.abb.com, 2005.

Verification of Evolving Software via Component Substitutability Analysis 43

3. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of Interface Specifications for Java Classes. InProceedings of the

32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’05), pages 98–109, Long Beach,

CA, January 12–14, 2005. New York, NY, 2005. Association for Computing Machinery (ACM).

4. R. Alur and T. Henzinger. Reactive Modules. InProceedings of the 11th Annual IEEE Symposium on Logic in Computer

Science (LICS ’96), pages 207–218, New Brunswick, NJ, July 27–30, 1996. Los Alamitos, CA, 1996. IEEE Computer Society

Press.

5. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning assumptions. InProc. of 17th Int.

Conf. on Computer Aided Verification, 2005.

6. Dana Angluin. Learning regular sets from queries and counterexamples.Information and Computation, 75(2):87–106, Novem-

ber 1987.

7. Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Information and Computation, 75(2):87–106,

November 1987.

8. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Predicate Abstraction of C Programs. InProceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 203–213, Snowbird, UT,

June 20-22, 2001. New York, NY, 2001. Association for Computing Machinery.

9. T. Ball and S.K. Rajamani. Boolean programs: A model and process for software analysis. Technical Report MSR-TR-2000-14,

Microsoft Research, Redmond, WA, February 2000. ftp://ftp.research.microsoft.com/pub/tr/tr-2000-14.pdf.

10. S. Chaki, E. Clarke, D. Giannakopoulou, and C. S. Păs̆areanu. Abstraction and assume-guarantee reasoning for automated

software verification. Technical Report 05.02, Research Institute for Advanced Computer Science (RIACS), Mountain View,

CA, 2004.

11. S. Chaki, N. Sharygina, and N. Sinha. Verification of Evolving Software. InProceedings of the Third Workshop on Specification

and Verification of Component Based Systems (SAVCBS), pages 55–61, Newport Beach, CA, October 31–November 1, 2004.

Ames, Iowa: Iowa State University, 2004.

12. Sagar Chaki, Edmund Clarke, Alex Groce, Joël Ouaknine, Ofer Strichman, and Karen Yorav. Efficient verificationof sequential

and concurrent C programs.Formal Methods in System Design, 25(2–3), 2004.

13. Sagar Chaki, Edmund Clarke, Natasha Sharygina, and Nishant Sinha. Dynamic component substitutability analysis. InProc.

of Conf. on Formal Methods, 2005.

44 Sagar Chaki et al.

14. Sagar Chaki, Edmund Clarke, Nishant Sinha, and Prasanna Thati.Automated assume-guarantee reasoning for simulation

conformance. InProc. of 17th Int. Conf. on Computer Aided Verification, 2005.

15. Sagar Chaki, James Ivers, Natasha Sharygina, and Kurt Wallnau. The ComFoRT Reasoning Framework. InProceedings of the

17th International Conference on Computer Aided Verification (CAV ’05), volume 3576 ofLecture Notes in Computer Science,

pages 164–169, Edinburgh, Scotland, July 6–10, 2005. New York, NY, 2005. Springer-Verlag.

16. Sagar Chaki and Ofer Strichman. Optimized L* for assume-guarantee reasoning. InProceedings of the 13th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’07), 2007.

17. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. Jurdzinski, and F. Y. C. Mang. Interface Compatibility Checking for

Software Modules. InProceedings of the 14th International Conference on Computer Aided Verification (CAV ’02), volume

2404 ofLecture Notes in Computer Science, pages 428–441, Copenhagen, Denmark, July 27–31, 2002. New York, NY, 2002.

Springer-Verlag.

18. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction Refinement. InProceedings of the

12th International Conference on Computer Aided Verification (CAV ’00), volume 1855 ofLecture Notes in Computer Science,

pages 154–169, Chicago, IL, July 15–19, 2000. Berlin, Germany, 2000. Springer-Verlag.

19. E. Clarke, O. Grumberg, and D. Long. Model Checking and Abstraction. InProceedings of the 19th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’92), pages 343–354, Albuquerque, NM, January 19–22, 1992.

New York, NY, 1992. Association for Computing Machinery (ACM).

20. Edmund Clarke and Allen Emerson. Design and Synthesis of Synchronization Skeletons for Branching Time Temporal Logic.

In Proceedings of Workshop on Logic of Programs, volume 131 ofLecture Notes in Computer Science, pages 52–71, Yorktown

Heights, New York, May 4–6, 1982. Berlin, Germany, 1982. Springer-Verlag.

21. Edmund Clarke, David Long, and Kenneth McMillan. Compositional Model Checking. InProceedings of the Fourth Annual

IEEE Symposium on Logic in Computer Science (LICS ’89), pages 353–362, Pacific Grove, CA, June 5–8, 1989. Washington,

DC, 1989. IEEE Computer Society Press.

22. Edmund M. Clarke, Orna Grumberg, and Doron Peled.Model Checking. MIT Press, Cambridge, MA, 2000.

23. J. M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păs̆areanu. Learning Assumptions for Compositional Verification.

In Proceedings of the Ninth International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS ’03), volume 2619 ofLecture Notes in Computer Science, pages 331–346, Warsaw, Poland, April 7–11, 2003. New

York, NY, 2003. Springer-Verlag.

Verification of Evolving Software via Component Substitutability Analysis 45

24. Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking up is hard to do: an investigation of decomposition

for assume-guarantee reasoning. InProc. of the ACM/SIGSOFT International Symposium on Software Testing and Analysis,

pages 97–108, 2006.

25. M. Coĺon and T. E. Uribe. Generating Finite-State Abstractions of Reactive Systems Using Decision Procedures. InPro-

ceedings of the 10th International Conference on Computer Aided Verification (CAV ’98), volume 1427 ofLecture Notes in

Computer Science, pages 293–304, Vancouver, Canada, June 28–July 2, 1998. Berlin, Germany, 1998. Springer-Verlag.

26. S. Das and D.L. Dill. Successive Approximation of Abstract Transition Relations. InProceedings of the 16th Annual IEEE

Symposium on Logic in Computer Science (LICS ’01), pages 51–60, Boston, MA, June 16–19, 2001. Los Alamitos, CA, 2001.

IEEE Computer Society Press.

27. L. de Alfaro and T. A. Henzinger. Interface Automata. InProceedings of the Ninth ACM SIGSOFT Symposium on Foundations

of Software Engineering (FSE ’01), pages 109–120, Vienna, Austria, September 10–14, 2001. New York, NY, 2001. ACM

Press.

28. Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors.Compositionality: The Significant Difference, International

Symposium, COMPOS’97, Bad Malente, Germany, September 8-12, 1997. Revised Lectures, volume 1536 ofLecture Notes in

Computer Science. Springer, 1998.

29. Edsger Dijkstra.A Discipline of Programming. Prentice-Hall, 1976.

30. Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S. Păs̆areanu. Refining interface alphabets for compositional veri-

fication. InProceedings of the 13th International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS ’07), 2007.

31. D. Giannakopoulou, C. S. Păs̆areanu, and H. Barringer. Assumption Generation for Software Component Verification. In

Proceedings of the 17th International Conference on Automated SoftwareEngineering (ASE ’02), pages 3–12, Edinburgh,

Scotland, September 23–27, 2002. Los Alamitos, CA, 2002. IEEE Computer Society Press.

32. Susanne Graf and Hassen Saı̈di. Construction of Abstract State Graphs with PVS. InProceedings of the Ninth International

Conference on Computer Aided Verification (CAV ’97), volume 1254 ofLecture Notes in Computer Science, pages 72–83,

Haifa, Israel, June 22–25, 1997. New York, NY, 1997. Springer-Verlag.

33. Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with PVS. In Orna Grumberg, editor, Proceedings of the

9th International Conference on Computer Aided Verification (CAV ’97), volume 1254 ofLecture Notes in Computer Science,

pages 72–83. Springer-Verlag, June 1997.

46 Sagar Chaki et al.

34. A. Groce, D. Peled, and M. Yannakakis. Adaptive Model Checking. In Proceedings of the Eighth International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’02), volume 2280 ofLecture Notes in Computer

Science, pages 357–370, Grenoble, France, April 8–12, 2002. New York,NY, 2002. Springer-Verlag.

35. Anubhav Gupta, Ken McMillan, and Zhaohui Fu. Automated assumption generation for compositional verification. InPro-

ceedings of the 19th International Conference on Computer Aided Verification (CAV ’07), 2007.

36. Arie Gurfinkel and Marsha Chechik. Why waste a perfectly good abstraction? InProceedings of the 12th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 212–226, 2006.

37. Arie Gurfinkel, Ou Wei, and Marsha Chechik. Yasm: A software model-checker for verification and refutation. InProc. of

Computer-Aided Verification, pages 170–174, 2006.

38. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy abstraction. InProceedings of the 29th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Langauges (POPL ’02), volume 37(1) ofSIGPLAN Notices,

pages 58–70. ACM Press, January 2002.

39. J.E. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading,

Massachusetts, 1979.

40. James Ivers and Natasha Sharygina. Overview of ComFoRT: A model checking reasoning framework.CMU/SEI-2004-TN-

018, 2004.

41. Cliff B. Jones. Tentative steps toward a development method for interfering programs.ACM Trans. Program. Lang. Syst.,

5(4):596–619, 1983.

42. R.P. Kurshan.Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton Univer-

sity Press, Princeton, NJ, 1995.

43. Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst., 16(6):1811–

1841, 1994.

44. MAGIC. http://www.cs.cmu.edu/˜chaki/magic .

45. S. McCamant and M. D. Ernst. Early Identification of Incompatibilities inMulti-Component Upgrades. InProceedings of

the 18th European Conference on Object-Oriented Programming (ECOOP’04), volume 3086 ofLecture Notes in Computer

Science, pages 440–464, Oslo, Norway, June 14–18, 2004. New York, NY,2004. Springer-Verlag.

46. K. McMillan. A Compositional Rule for Hardware Design Refinement. In Proceedings of the Ninth International Conference

on Computer Aided Verification (CAV ’97), volume 1254 ofLecture Notes in Computer Science, pages 24–35, Haifa, Israel,

June 22–27, 1997. New York, NY, 1997. Springer-Verlag.

Verification of Evolving Software via Component Substitutability Analysis 47

47. Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.IEEE Trans. Software Eng., 7(4):417–426, 1981.

48. Wonhong Nam and Rajeev Alur. Learning-based symbolic assume-guarantee reasoning with automatic decomposition. In4th

International Symposium on Automated Technology for Verification and Analysis (ATVA ’06), pages 170–185, 2006.

49. A. Pnueli. In Transition from Global to Modular Temporal ReasoningAbout Programs. InLogics and Models of Concurrent

Systems, pages 123–144, New York, NY, 1985. Springer-Verlag.

50. R. L. Rivest and R. E. Schapire. Inference of Finite Automata Using Homing Sequences.Information and Computation,

103(2):299–347, 1993.

51. A. W. Roscoe.The Theory and Practice of Concurrency. Prentice-Hall International, New York, 1998.

52. Sharon Shoham and Orna Grumberg. Monotonic abstraction-refinement for CTL. InProceedings of the 10th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’04), pages 546–560, 2004.

53. Nishant Sinha and Edmund Clarke. SAT-based compositional verification using lazy learning. InProceedings of the 19th

International Conference on Computer Aided Verification (CAV ’07), 2007.

