
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Three Optimizations for Assume-Guarantee Reasoning with L*

Sagar Chaki1, Ofer Strichman2

1 Software Engineering Institute, Pittsburgh, USA ⋆

2 Information Systems Engineering, IE, Technion, Israel

Received: August 7, 2009/ Revised version: August 7, 2009

Abstract The learning-based automated Assume-Guarantee reasoning paradigm has been applied in the

last few years for the compositional verification of concurrent systems. Specifically, L* has been used for

learning the assumption, based on strings derived from counterexamples, which are given to it by a model-

checker that attempts to verify the Assume-Guarantee rules. We suggest three optimizations to this paradigm.

First, we derive from each counterexample multiple strings to L*, rather than a single one as in previous

approaches. This small improvement saves candidate queries and hence model-checking runs. Second, we

observe that in existing instances of this paradigm, the learning algorithm is coupled weakly with the teacher.

Thus, the learner completely ignores the details of the internal structure of the system and specification being

verified, which are available already to the teacher. We suggest an optimization that uses this information

in order to avoid many unnecessary – and expensive, since they involve model checking – membership

and candidate queries. Finally, and most importantly, we develop a method for minimizing the alphabet

used by the assumption, which reduces the size of the assumption and the number of queries required to

construct it. We present these three optimizations in the context of verifying trace containment for concurrent

systems composed of finite state machines. We have implemented our approach in the ComFoRT tool, and

⋆ This research was supported by the Predictable Assembly from Certifiable Components (PACC) initiative at the

Software Engineering Institute, Pittsburgh.

2 Sagar Chaki, Ofer Strichman

experimented with real-life examples. Our results exhibit an average speedup of between 4 to 12 times,

depending on the assume-guarantee rule used and the combination of optimizations options.

1 Introduction

Formal reasoning about concurrent programs is particularly hard due to the number of reachable states in the

overall system. In particular, the number of such states can grow exponentially with each added component.

Assume-Guarantee (AG) is a method for compositional reasoning that can be helpful in such cases. Consider

a system with two components M1 and M2 that need to synchronize on a given set of shared actions, and

a property ϕ that the system should be verified against. In its simplest form, AG requires checking one

of the components, say M1, separately, while making some assumption on the behaviors permitted by M2.

The assumption should then be discharged when checking M2 in order to conclude the conformance of the

product machine with the property. This idea is formalized with the following non-circular AG rule:

A × M1 � ϕ

M2 � A

M1 × M2 � ϕ
(AG-NC) (1)

where � stands for some conformance relation1. For trace containment, simulation and some other known

relations, AG-NC is a sound and complete rule. In this paper, we consider the case in which M1,M2 and

ϕ are non-deterministic finite automata, and interpret � as the trace containment (i.e., language inclusion)

relation.

Recently, Cobleigh et al. proposed [12] a completely automatic method for finding the assumption A, using

Angluin’s L* algorithm [4]. L* constructs a minimal Deterministic Finite Automaton (DFA) that accepts

an unknown regular language U . L* interacts iteratively with a Minimally Adequate Teacher (MAT). In

each iteration, L* queries the MAT about membership of strings in U and whether the language of a specific

candidate DFA is equal to U . The MAT is expected to supply a “Yes/No” answer to both types of questions.

1 Clearly, for this rule to be effective, A × M1 must be easier to compute than M1 × M2.

Three Optimizations for Assume-Guarantee Reasoning with L* 3

It is also expected to provide a counterexample along with a negative answer to a question of the latter type.

L* then uses the counterexample to refine its candidate DFA while enlarging it by at least one state. L* is

guaranteed to terminate within no more than n iterations, where n is the size of the minimal DFA accepting

U .

In this paper we suggest three improvements to the automated AG procedure. The first improvement is

based on the observation that counterexamples can sometimes be reused in the refinement process, which

saves candidate queries.

The second improvement is based on the observation that the core L* algorithm is completely unaware

of the internal details of M1,M2 and ϕ. With a simple analysis of these automata, most queries to the MAT

can in fact be avoided. Indeed, we suggest to allow the core L* procedure access to the internal structure of

M1,M2 and ϕ. This leads to a tighter coupling between the L* procedure and the MAT, and enables L* to

make queries to the MAT in a more intelligent manner. Since each MAT query incurs an expensive model

checking run, overall performance is improved considerably.

The last and most important improvement is based on the observation that the alphabet of the assumption

A is fixed conservatively to be the entire interface alphabet between M1 and ϕ on one hand, and M2 on the

other. While the full interface alphabet is always sufficient, it is often possible to complete the verification

successfully with a much smaller assumption alphabet. Since the overall complexity of the procedure depends

on the alphabet size, a smaller alphabet can improve the overall performance. In other words, while L*

guarantees the minimality of the learned assumption DFA with respect to a given alphabet, our improvement

reduces the size of the alphabet itself, and hence also the size of the learned DFA. The technique we present is

based on an automated abstraction/refinement procedure: we start with the empty alphabet and keep refining

it based on an analysis of the counterexamples, using a pseudo-Boolean solver. The procedure is guaranteed

to terminate with a minimal assumption alphabet that suffices to complete the overall verification. This

technique effectively combines the two paradigms of automated AG reasoning and abstraction-refinement.

4 Sagar Chaki, Ofer Strichman

Although our optimizations are presented in the context of AG-NC, a non-circular AG rule, they are

applicable for circular AG rules as well. Specifically, our tool supports the AG-C rule, which appears in Eq.

2. The experimental results that we present in Section 6 include experiments with this rule as well.

M1 × A1 � ϕ

M2 × A2 � ϕ

A1 × A2 � ϕ

M1 × M2 � ϕ
(AG-C) (2)

We implemented our approach in the ComFoRT [8] reasoning framework and experimented with a set

of benchmarks derived from real-life source code. The improvements reduce the overall number of queries

to the MAT and the size of the learned automaton. While individual speedup factors exceeded 23, an

average speedup of a factor of over 12 was observed (for the circular rule). The speedup achieved for the

non-circular rule are more moderate and average on 4.5. Somewhat surprisingly, the relative effect of each

of the optimizations change when switching from circular to non-circular rules. The detailed results and a

discussion of this point appear in Section 6.

Related Work. The L* algorithm was developed originally by Angluin [4]. Most learning-based AG im-

plementations, including ours, use a more sophisticated version of L* proposed by Rivest and Schapire [22].

Machine learning techniques have been used in several contexts related to verification [20,16,2,17,13]. The

use of L* for AG reasoning was first proposed by Cobleigh et al. [12]. A symbolic version of this framework

has also been developed by Alur et al. [3]. The use of learning for automated AG reasoning has also been

investigated in the context of simulation checking [7] and deadlock detection [9]. The circular rule AG-C

described in Section 1 was proposed by Barringer et. al [6]. The basic idea behind the automated AG rea-

soning paradigm is to learn an assumption [15], using L*, that satisfies the two premises of AG-NC. The AG

paradigm was proposed originally by Pnueli [21] and has since been explored (in manual/semi-automated

forms) widely. The third optimization we propose amounts to a form of counterexample-guided abstraction

refinement (CEGAR). The core ideas behind CEGAR were proposed originally by Kurshan [19], and CE-

Three Optimizations for Assume-Guarantee Reasoning with L* 5

GAR has since been used successfully for automated hardware [11] and software [5] verification. An approach

similar to our third optimization was proposed independently by Gheorghiu et. al [14]. However, they use

polynomial (greedy) heuristics aimed at minimizing the alphabet size, whereas we find the optimal value,

and hence we solve an NP-hard problem.

The main difference of this article from its earlier proceedings version [10] is the inclusion of the circular

rule AG-C (Eq. 2) and the experiments with it, as well as a slower introduction to L* and the prior work by

the NASA group.

2 Preliminaries

Let λ and · denote the empty string and the concatenation operator respectively. We use lower letters (α, β,

etc.) to denote actions, and higher letters (σ, π, etc.) to denote strings.

Definition 1 (Finite Automaton) A finite automaton (FA) is a 5-tuple (S, Init,Σ, T, F) where (i) S is

a finite set of states, (ii) Init ⊆ S is the set of initial states, (iii) Σ is a finite alphabet of actions, (iv)

T ⊆ S × Σ × S is the transition relation, and (v) F ⊆ S is a set of accepting states.

For any FA M = (S, Init,Σ, T, F), we write s
α
→ s′ to mean (s, α, s′) ∈ T . Then the function δ is defined

as follows: ∀α ∈ Σ � ∀s ∈ S � δ(α, s) = {s′|s
α
→ s′}. We extend δ to operate on strings and sets of states

in the natural manner. Thus, for any σ ∈ Σ∗ and S′ ⊆ S, δ(σ, S′) denotes the set of states of M reached

by simulating σ on M starting from any s ∈ S′. The language accepted by M , denoted L(M), is defined as

follows: L(M) = {σ ∈ Σ∗ | δ(σ, Init) ∩ F 6= ∅}.

Determinism. An FA M = (S, Init,Σ, T, F) is said to be a deterministic FA, or DFA, if |Init| = 1 and

∀α ∈ Σ � ∀s ∈ S � |δ(α, s)| ≤ 1. Also, M is said to be complete if ∀α ∈ Σ � ∀s ∈ S � |δ(α, s)| ≥ 1. Thus, for a

complete DFA, we have the following: ∀α ∈ Σ � ∀s ∈ S � |δ(α, s)| = 1. Unless otherwise mentioned, all DFA

we consider in the rest of this paper are also complete. It is well-known that a language is regular if and

only if it is accepted by some FA (or DFA, since FA and DFA have the same accepting power). Also, every

regular language is accepted by a unique (up to isomorphism) minimal DFA.

6 Sagar Chaki, Ofer Strichman

Complementation. For any regular language L, over the alphabet Σ, we write L to mean the language

Σ∗−L. If L is regular, then so is L. For any FA M we write M to mean the (unique) minimal DFA accepting

L(M).

Projection. The projection of any string σ over an alphabet Σ is denoted by σ⇃Σ and defined inductively

on the structure of σ as follows: (i) λ⇃Σ= λ, and (ii) (α · σ′)⇃Σ= α · (σ′⇃Σ) if α ∈ Σ and σ′⇃Σ otherwise. The

projection of any regular language L on an alphabet Σ is defined as: L⇃Σ= {σ⇃Σ | σ ∈ L}. If L is regular, so

is L⇃Σ . Finally, the projection M⇃Σ of any FA M on an alphabet Σ is the (unique) minimal DFA accepting

the language L(M)⇃Σ .

For the purpose of modeling systems with components that need to synchronize, it is convenient to

distinguish between local and global actions. Specifically, local actions belong to the alphabet of a single

component, while global actions are shared between multiple components. As defined formally below, com-

ponents synchronize on global actions, and execute asynchronously on local actions.

Definition 2 (Parallel Composition) Given two finite automata M1 = (S1, Init1, Σ1, T1, F1) and M2 =

(S2, Init2, Σ2, T2, F2), their parallel composition M1×M2 is the FA (S1×S2, Init1×Init2, Σ1∪Σ2, T, F1×F2)

such that ∀s1, s
′

1 ∈ S1� ∀s2, s
′

2 ∈ S2, (s1, s2)
α
→ (s′1, s

′

2) if and only if for i ∈ {1, 2} either α 6∈ Σi ∧ si = s′i or

si
α
→ s′i.

Trace Containment. For any FA M1 and M2, we write M1 � M2 to mean L(M1 ×M2) = ∅. A counterex-

ample to M1 � M2 is a string σ ∈ L(M1 × M2).

3 The L* Algorithm

The L* algorithm for learning DFAs was developed by Angluin [4] and later improved by Rivest and

Schapire [22]. In essence, L* learns an unknown regular language U , over an alphabet Σ, by generating

the minimal DFA that accepts U . In order to learn U , L* requires “Yes/No” answers to two types of queries:

1. Membership query : for a string σ ∈ Σ∗, ‘is σ ∈ U ?’

Three Optimizations for Assume-Guarantee Reasoning with L* 7

2. Candidate query : for a DFA C, ‘is L(C) = U ?’

If the answer to a candidate query is “No”, L* expects a counterexample string σ such that σ ∈ U −L(C) or

σ ∈ L(C)−U . In the first case, we call σ a positive counterexample, because it should be added to L(C). In

the second case, we call σ a negative counterexample since it should be removed from L(C). As mentioned

before, L* uses the MAT to obtain answers to these queries.

Observation Table. L* builds an observation table (S,E, T) where: (i) S ⊆ Σ∗ is the set of rows, (ii)

E ⊆ Σ∗ is the set of columns (or experiments), and (iii) T : (S ∪ S · Σ) × E → {0, 1} is a function defined

as follows:

∀s ∈ (S ∪ S · Σ)� ∀e ∈ E � T (s, e) =















1 s · e ∈ U

0 otherwise

(3)

Consistency and Closure. For any s1, s2 ∈ (S ∪ S · Σ), s1 and s2 are equivalent (denoted as s1 ≡ s2) if

∀e ∈ E � T (s1, e) = T (s2, e). A table is consistent if ∀s1, s2 ∈ S � s1 6= s2 ⇒ s1 6≡ s2. L* always maintains a

consistent table. In addition, a table is closed if ∀s ∈ S � ∀α ∈ Σ � ∃s′ ∈ S � s′ ≡ s · α.

Candidate Construction. Given a closed and consistent table (S,E, T), L* constructs a candidate DFA

C = (S, {λ}, Σ,∆, F) such that: (i) F = {s ∈ S | T (s, λ) = 1}, and (ii) ∆ = {(s, α, s′) | s′ ≡ s · α}. Note

that C is deterministic and complete since (S,E, T) is consistent and closed. Since a row corresponds to a

state of C, we use the terms “row” and “candidate state” synonymously.

Example 1 Consider Figure 1. On the left is an observation table with the entries being the T values. Let

Σ = {α, β}. From this table we see that {e2, α, α · e2, β · e2, αα, . . .} ∈ U . On the right is the corresponding

candidate DFA. ⊓⊔

L* Step-By-Step. We now describe L* in more detail, using line numbers from its algorithmic description

in Figure 2. This conventional version of L* is used currently in the context of automated AG reasoning. We

also point out the specific issues that are addressed by the improvements we propose later on in this paper.

8 Sagar Chaki, Ofer Strichman

E

λ e2 e3

S

λ 0 1 0

α 1 1 0

S · Σ
β 0 1 0

αα 1 1 0

αβ 0 1 0

λ α

αβ

β

α

Fig. 1 An Observation Table and the Corresponding Candidate DFA

Recall that λ denotes the empty string. After the initialization at Line 1, the table has one cell corresponding

to (λ, λ). In the top-level loop, the table entries are first computed (at Line 2) using membership queries.

Next, L* closes the table by trying to find (at Line 3) for each s ∈ S, some uncovered action α ∈ Σ such

that ∀s′ ∈ S � s′ 6≡ s · α. If such an uncovered action α is found for some s ∈ S, L* adds s · α to S at Line

4 and continues with the closure process. Otherwise, it proceeds to the next Step. Note that each α ∈ Σ is

considered when attempting to find an uncovered action.

Once the table is closed, L* constructs (at Line 5) a candidate DFA C using the procedure described

previously. Next, at Line 6, L* conjectures that L(C) = U via a candidate query. If the conjecture is wrong

L* extracts from the counterexample CE (returned by the MAT) a suffix e that, when added to E, causes

the table to cease being closed. The process of extracting the feedback e has been presented elsewhere [22]

and we do not describe it here. Once e has been obtained, L* adds e to E and iterates the top-level loop by

returning to line 2. Note that since the table is no longer closed, the subsequent process of closing it strictly

increases the size of S. It can also be shown that the size of S cannot exceed n, where n is number of states

of the minimal DFA accepting U . Therefore, the top-level loop of L* executes no more than n times.

Non-uniform Refinement. It is interesting to note that the feedback from CE does not refine the candidate

in the abstraction/refinement sense: refinement here does not necessarily add/eliminate a positive/negative

CE ; this occurs eventually, but not necessarily in one step. Indeed, the first improvement we propose leverages

Three Optimizations for Assume-Guarantee Reasoning with L* 9

(1) let S = E = {λ}

loop {

(2) Update T using queries

while (S, E, T) is not closed {

(3) Find (s, α) ∈ S × Σ such that ∀s′ ∈ S � s′ 6≡ s · α

(4) Add s · α to S

}

(5) Construct candidate DFA C from (S, E, T)

(6) Make the conjecture C

(7) if C is correct return C

(8) else Add e ∈ Σ∗ that witnesses the counterexample to E

}

Fig. 2 The L* algorithm for learning an unknown regular language.

this observation to reduce the number of candidate queries. It is also interesting to note that the refinement

does not work in one direction: it may remove strings that are in U or add strings that are not in U . The only

guarantee that we have is that in each step at least one state is added to the candidate and that eventually

L* learns U itself.

L* is based on the observation that in a DFA, two reachable states s, s′ are distinct (and hence cannot be

combined) if and only if there exists a distinguishing sequence σ ∈ Σ∗ such that δ(σ, s) ∈ F ⇐⇒ δ(σ, s′) 6∈

F . Indeed, from the counterexample that it receives from a candidate query, L* extracts a string σ that

demonstrates that there exists two rows p1, p2 such that δ(p1, q0) = δ(p2, q0) = s (s being a state of the

current candidate automaton C), and p1 · σ ∈ U whereas p2 · σ 6∈ U ; hence, s must be split into two states.

This means that at each iteration the number of states must increase by at least one, and that none of these

states is redundant. This property guarantees that L* makes no more than n − 1 wrong conjectures, and

terminates with the minimal DFA M(U).

10 Sagar Chaki, Ofer Strichman

Complexity. Overall, the number of membership queries made by L* is O(kn2 + n log m), where k = |Σ|

is the size of the alphabet of U , and m is the length of the longest counterexample to a candidate query

returned by the MAT [22]. The dominating fragment of this complexity is kn2 which varies directly with the

size of Σ. As noted before, the Σ used in the literature is sufficient, but often unnecessarily large. The third

improvement we propose is aimed at reducing the number of membership queries by minimizing the size of

Σ.

4 AG Reasoning with L*

In this section, we describe the key ideas behind the automated AG procedure proposed by Cobleigh et

al. [12]. We begin with a fact that we use later on.

Fact 1 For any FA M1 and M2 with alphabets Σ1 and Σ2, L(M1 × M2) 6= ∅ if and only if ∃σ ∈ L(M1) �

σ⇃(Σ1∩Σ2)∈ L(M2)⇃(Σ1∩Σ2).

Let us now restate AG-NC to reflect our implementation more accurately:

A × (M1×ϕ̄) � ⊥

M2 � A

(M1×ϕ̄) × M2 � ⊥
(4)

where ⊥ denotes a DFA accepting the empty language. The unknown language to be learned is

U = L((M1×ϕ̄)⇃Σ) (5)

over the alphabet Σ = (Σ1∪Σϕ)∩Σ2 where Σ1, Σ2 and Σϕ are the alphabets of M1,M2 and ϕ respectively2.

The choice of U and Σ is significant because, by Fact 1, the consequence of Eq. 4 does not hold if and only

if the intersection between U = L((M1×ϕ̄)⇃Σ) and L(M2 ⇃Σ) is non-empty. This situation is depicted in

Fig. 3(a). Hence, if A is the DFA computed by L* such that L(A) = U , any counterexample to the second

2 Note that we do not compute U directly because complementing M1, a non-deterministic automaton, is typically

intractable.

Three Optimizations for Assume-Guarantee Reasoning with L* 11

premise M2 � A is guaranteed to be a real one. However, in practice, the process terminates after learning U

itself only in the worst case. As we shall see, it usually terminates earlier by finding either a counterexample

to M1 × M2 � ϕ, or an assumption A that satisfies the two premises of Eq. 4. This later case is depicted in

Fig. 3(b).

L(M2)

π
Σ

L(M1×ϕ̄)(c)

L(M2)

A

(a) (b)

A = U

L(M1×ϕ̄)(f)

(d) L(M1×ϕ̄)
L(M2)

L(M2)
L(M1×ϕ̄)(e)

π
Σ

π
Σ

A

A

L(M1×ϕ̄) L(M2) L(M1×ϕ̄)

A

L(M2)

A

π
Σ

π
Σ

Fig. 3 Different L* scenarios. The gray area represents the candidate assumption A.

MAT Implementation. The answer to a membership query with a string σ is “Yes” if and only if σ cannot

be simulated on M1×ϕ̄ (see Eq. 5). A candidate query with some candidate A, on the other hand, is more

complicated, and is now described step-wise (see also Figure 4). From hereon we denote π⇃Σ by π
Σ
.

12 Sagar Chaki, Ofer Strichman

L* A

M2 � A π
Σ
� M1×ϕ̄

π
Σ
� M2

N

N

Y

M1 × M2 6� ϕ

Y

Y

M1 × M2 � ϕ

Y

N

N
A × M1 � ϕ

π

π

Negative counterexample: π ∈ L(A) − U

Positive counterexample: π ∈ U − L(A)

Fig. 4 AG Reasoning with L*.

Step 1. Use model checking to verify that A satisfies the first premise of Eq. 4. If the verification of the

first premise fails, obtain a counterexample trace π ∈ L(A × M1×ϕ̄) and proceed to Step 2. Otherwise, go

to Step 3.

Step 2. Check via simulation if π
Σ
∈ L(M2⇃Σ). If so, then by Fact 1, L(M1×ϕ̄×M2) 6= ∅ (i.e., M1×M2 6� ϕ)

and the algorithm terminates. This situation is depicted in Fig. 3(c). Otherwise π
Σ
∈ L(A)−U is a negative

counterexample, as depicted in Fig. 3(d). Control is returned to L* with π
Σ
.

Step 3. At this point A is known to satisfy the first premise. Proceed to model check the second premise.

If M2 � A holds as well, then by Eq. 4 conclude that M1 × M2 � ϕ and terminate. This possibility was

already shown in Fig. 3(b). Otherwise obtain a counterexample π ∈ L(M2 × A) and proceed to Step 4.

Step 4. Check if π
Σ

∈ L((M1×ϕ̄)⇃Σ). If so, then by Fact 1, L(M1× ϕ̄ × M2) 6= ∅ (i.e., M1 × M2 6� ϕ)

and the algorithm terminates. This scenario is depicted in Fig. 3(e). Otherwise π
Σ
∈ U −L(A) is a positive

counterexample, as depicted in Fig. 3(f) – return to L* with π
Σ
.

Note that Steps 2 and 4 above are duals obtained by interchanging M1×ϕ̄ with M2 and U with L(A).

Also, note that Fact 1 could be applied in Steps 2 and 4 above only because Σ = (Σ1∪Σϕ)∩Σ2. In the next

Three Optimizations for Assume-Guarantee Reasoning with L* 13

section, we propose an improvement that allows Σ to be varied. Consequently, we also modify the procedure

for answering candidate queries so that Fact 1 is used only in a valid manner.

5 Optimized L*-based AG Reasoning

In this section we list three improvements to the algorithm described in Section 4. The first two improvements

reduce the number of candidate and membership queries respectively. The third improvement is aimed at

completing the verification process using an assumption alphabet that is smaller than (Σ1 ∪ Σϕ) ∩ Σ2.

5.1 Reusing Counterexamples

Recall from Section 3 that every candidate query counterexample π returned to L* is used to find a suffix that

makes the table not closed, and hence adds at least one state (row) to the current candidate C (observation

table). Let C ′ denote the new candidate constructed in the next iteration of the top-level loop (see Figure 2).

We say that C ′ is obtained by refining C on π. However, the refinement process does not guarantee the

addition/elimination of a positive/negative counterexample from C ′. Thus, a negative counterexample π ∈

L(C)−U may still be accepted by C ′, and a positive counterexample π ∈ U −L(C) may still be rejected by

C ′. This leads naturally to the idea of reusing counterexamples. Specifically, for every candidate C ′ obtained

by refining on a negative counterexample π, we check, via simulation, whether π ∈ L(C ′). If this is the

case, we repeat the refinement process on C ′ using π instead of performing a candidate query with C ′. The

same idea is applied to positive counterexamples as well. Thus, if we find that π 6∈ L(C ′) for a positive

counterexample π, then π is used to further refine C ′. This optimization reduces the number of candidate

queries.

5.2 Selective Membership Queries

Recall the operation of closing the table (see Lines 3 and 4 of Figure 2) in L*. For every row s added to S,

L* must compute T for every possible extension of s by a single action. Thus L* must decide if s · α · e ∈ U

14 Sagar Chaki, Ofer Strichman

for each α ∈ Σ and e ∈ E — a total of |Σ| · |E| membership queries. To see how a membership query is

answered, for any σ ∈ Σ∗, let Sim(σ) be the set of states of M1×ϕ̄ reached by simulating σ from an initial

state of M1×ϕ̄ and by treating actions not in Σ as ǫ (i.e., ǫ-transitions are allowed where the actions are

local to M1×ϕ̄). Then, σ ∈ U if and only if Sim(σ) does not contain an accepting state of M1×ϕ̄.

Let us return to the problem of deciding if s ·α · e ∈ U . Let En(s) = {α′ ∈ Σ | δ(α′, Sim(s)) 6= ∅} be the

set of enabled actions from Sim(s) in M1×ϕ̄. Now, for any α 6∈ En(s), Sim(s · α · e) = ∅ and hence s · α · e

is guaranteed to belong to U . This observation leads to our second improvement. Specifically, for every s

added to S, we first compute En(s). Note that En(s) is computed by simulating s⇃Σ1
on M1 and s⇃Σϕ

on

ϕ separately, without composing M1 and ϕ. We then make membership queries with s · α · e, but only for

α ∈ En(s). For all α 6∈ En(s) we directly set T (s · α, e) = 1 since we know that in this case s · α · e ∈ U .

The motivation behind this optimization is that En(s) is usually much smaller that Σ for any s. The actual

improvement in performance due to this tactic depends on the relative sizes of En(s) and Σ for the different

s ∈ S.

5.3 Minimizing the Assumption Alphabet

As mentioned before, existing automated AG procedures use a constant assumption alphabet Σ = (Σ1 ∪

Σϕ) ∩ Σ2. There may exist, however, an assumption A over a smaller alphabet Σc ⊂ Σ that satisfies the

two premises of Eq. 4. Since Eq. 4 is sound, the existence of such an A would still imply that M1 ×M2 � ϕ.

However, recall that the number of L* membership queries varies directly with the alphabet size. Therefore,

the benefit, in the context of learning A, is that a smaller alphabet leads to fewer membership queries.

In this section, we propose an abstraction-refinement scheme for building an assumption over a minimal

alphabet. During our experiments, this improvement led to a 6 times reduction in the size of the assumption

alphabet. The main problem with changing Σ is of course that AG-NC is no longer complete. Specifically,

if ΣC ⊂ Σ, then there might not exist any assumption A over ΣC that satisfies the two premises of AG-NC

even though the conclusion of AG-NC holds. The following theorem characterizes this phenomenon precisely.

Three Optimizations for Assume-Guarantee Reasoning with L* 15

Theorem 1 (Incompleteness of AG-NC) Suppose there exists a string π and an alphabet ΣC that main-

tains the following condition:

(inc) π⇃ΣC
∈ L((M1×ϕ̄)⇃ΣC

) ∩ L(M2⇃ΣC
). (6)

Then no assumption A over ΣC satisfies the two premises of AG-NC.

Proof Suppose that there exists a π satisfying inc and an A over ΣC satisfying the two premises of AG-NC.

This leads to a contradiction as follows:

– Case 1: π⇃ΣC
∈ L(A). Since A satisfies the first premise of AG-NC, we have π⇃ΣC

6∈ L((M1×ϕ̄)⇃ΣC
), a

contradiction with inc.

– Case 2: π ⇃ΣC
6∈ L(A). Hence π ⇃ΣC

∈ L(A). Since A satisfies the second premise of AG-NC, we have

π⇃ΣC
6∈ L(M2⇃ΣC

), again contradicting inc. ⊓⊔

We say that an alphabet ΣC is incomplete if ΣC 6= Σ and there exists a trace π satisfying condition inc

above. Therefore, whenever we come across a trace π that satisfies inc, unless ΣC = Σ, we know that the

current ΣC is incomplete and must be refined. We now describe our overall procedure which incorporates

testing ΣC for incompleteness and refining an incomplete ΣC appropriately.

Detecting Incompleteness. Our optimized automated AG procedure is depicted in Fig. 5. Initially Σc =

∅3. Let us write πc and π
Σ

to mean π⇃ΣC
and π⇃Σ respectively. The process continues as in Section 4, until

one of the following two scenarios occur while answering a candidate query:

– Scenario 1: We reach Step 2 with a trace π ∈ L(A×M1×ϕ̄). Note that this implies πc ∈ L((M1×ϕ̄)⇃ΣC
).

Now we first check if πc ∈ L(M2⇃ΣC
). If not, we return πc as a negative counterexample to L* exactly

as in Section 4. However, if πc ∈ L(M2⇃ΣC
), then π satisfies the condition inc of Theorem 1, and hence

ΣC is incomplete. Instead of refining ΣC at this point, we first check if π
Σ
∈ L(M2⇃Σ). If so, then as in

Section 4, by a valid application of Fact 1, M1 × M2 6� ϕ and the algorithm terminates. Otherwise, if

π
Σ
6∈ L(M2⇃Σ), we refine ΣC .

3 We could also start with Σc = Σϕ since it is very unlikely that ϕ can be proven or disproven without controlling

the actions that define it.

16 Sagar Chaki, Ofer Strichman

L* A

M2 � A πc � M1×ϕ̄⇃ΣC

πc � M2⇃ΣC

N

N

Y

Y

M1 × M2 � ϕ

N

N
A × M1 � ϕ

π

π

with Σ for ΣC

Repeat checkY

Y

M1 × M2 6� ϕ

N

Refinement :

Update Σc

Positive counterexample: πc ∈ U − L(A)

Negative counterexample: πc ∈ L(A) − U

and π
Σ

for πc

Fig. 5 Generalized AG with L*, with an abstraction-refinement loop (added with dashed lines) based on the as-

sumption alphabet Σc ⊆ Σ. Strings πc and π
Σ

denote π⇃ΣC
and π⇃Σ respectively.

– Scenario 2: We reach Step 4 with π ∈ L(M2 ×A). Note that this implies πc ∈ L(M2⇃ΣC
). We first check

if πc ∈ L((M1×ϕ̄)⇃ΣC
). If not, we return πc as a positive counterexample to L* exactly as in Section 4.

However, if πc ∈ L((M1×ϕ̄)⇃ΣC
), then π satisfies inc, and hence by Theorem 1, ΣC is incomplete. Instead

of refining ΣC at this point, we first check if π
Σ
∈ L((M1×ϕ̄)⇃Σ). If so, then as in Section 4, by a valid

application of Fact 1, M1 × M2 6� ϕ and we terminate. Otherwise, if π
Σ
6∈ L((M1×ϕ̄)⇃Σ), we refine ΣC .

Note that the checks involving π
Σ

in the two scenarios above correspond to the concretization attempts

in a standard CEGAR loop. Also, Scenarios 1 and 2 are duals (as in the case of Steps 2 and 4 in Section 4)

obtained by interchanging M1×ϕ̄ with M2 and U with L(A). In essence, while solving a candidate query,

an incomplete ΣC results in a trace (specifically, π above) that satisfies inc and leads neither to an actual

counterexample of M1×M2 � ϕ, nor to a counterexample to the candidate query being solved. In accordance

with the CEGAR terminology, we refer to such traces as spurious counterexamples and use them collectively

to refine ΣC as described next. In the rest of this section, all counterexamples we mention are spurious unless

otherwise specified.

Three Optimizations for Assume-Guarantee Reasoning with L* 17

Refining the Assumption Alphabet. A counterexample arising from Scenario 1 above is said to be

negative. Otherwise, it arises from Scenario 2 and is said to be positive. Our description that follows unifies

the treatment of these two types of counterexamples, with the help of a common notation for M1×ϕ̄ and

M2. Specifically, let

M (π) =















M1×ϕ̄ π is positive

M2 π is negative

We say that an alphabet Σ′ eliminates a counterexample π, and denote this with Elim(π,Σ′), if π ⇃Σ′ 6∈

L(M (π)⇃Σ′). Therefore, any counterexample π is eliminated if we choose ΣC such that Elim(π,ΣC) holds

since π no longer satisfies the condition inc. Our goal, however, is to find a minimal alphabet ΣC with this

property. It turns out that finding such an alphabet is computationally hard.

Theorem 2 Finding a minimal eliminating alphabet is NP-hard in |Σ|.

Proof The proof relies on a reduction from the minimal hitting set problem.

Minimal Hitting Set. A Minimal Hitting Set (MHS) problem is a pair (U, T) where U is a finite set and

T ⊆ 2U is a finite set of subsets of U . A solution to (U, T) is a minimal X ⊆ U such that ∀T ′ ∈ T� X∩T ′ 6= ∅.

It is well-known that MHS is NP-complete in |U | (see [18] for a discussion on complexity and approximations

to this problem).

Now we reduce MHS to finding a minimal eliminating alphabet. Let (U, T) be any MHS problem and let

< be a strict order imposed on the elements of U . Consider the following problem P of finding a minimal

eliminating alphabet. First, let Σ = U . Next, for each T ′ ∈ T we introduce a counterexample π(T ′) obtained

by arranging the elements of U according to <, repeating each element of T ′ twice and the remaining elements

of U just once. For example suppose U = {a, b, c, d, e} such that a < b < c < d < e. Then for T ′ = {b, d, e}

we introduce the counterexample π(T ′) = a ·b ·b ·c ·d ·d ·e ·e. Also, for each counterexample π(T ′) introduced,

let M(π(T ′)) accept a single string obtained by arranging the elements of U according to <, repeating each

element of U just once. Thus, for the example U above, M(π(T ′)) accepts the single string a · b · c · d · e.

Let us first show the following result: for any T ′ ∈ T and any X ⊆ U , X ∩ T ′ 6= ∅ if and only if

Elim(π(T ′),X). In other words, X ∩ T ′ 6= ∅ if and only if π(T ′)⇃X 6∈ L(M(π(T ′))⇃X). Indeed suppose that

18 Sagar Chaki, Ofer Strichman

some α ∈ X ∩ T ′. Then π(T ′)⇃X contains two consecutive occurrences of α and hence cannot be accepted

by M(π(T ′))⇃X . By the converse implication, if M(π(T ′))⇃X does not accept π(T ′)⇃X , then π(T ′)⇃X must

contain two consecutive occurrences of some action α. But then α ∈ X ∩ T ′ and hence X ∩ T ′ 6= ∅. The

above result implies immediately that any solution to the MHS problem (U, T) is also a minimal eliminating

alphabet for P. Also, the reduction from (U, T) to P described above can be performed using logarithmic

space in |U | + |T |. Finally, |Σ| = |U |, which completes our proof. ⊓⊔

As we just proved, finding the minimal eliminating alphabet is NP-hard in |Σ|. Yet, since |Σ| is relatively

small, this problem can still be feasible in practice (as our experiments have shown: see Section 6). We

propose a solution based on a reduction to Pseudo-Boolean constraints. Pseudo-Boolean constraints have

the same modeling power as 0-1 ILP, but solvers for this logic are typically based on adapting SAT engines for

linear constraints over Boolean variables, and geared towards problems with relatively few linear constraints

(and a linear objective function) and constraints in CNF.

Optimal Refinement. Let Π be the set of all (positive and negative) counterexamples seen so far. We wish

to find a minimal ΣC such that: ∀π ∈ Π� Elim(π,ΣC). To this end, we formulate and solve a Pseudo-Boolean

constraint problem with an objective function stating that we seek a solution which minimizes the chosen set

of actions. The set of constraints of the problem is Φ =
⋃

π∈Π Φ(π). In essence, if M [π] is the minimal DFA

accepting {π}, then Φ(π) represents symbolically the states reachable in M [π] × M (π), taking into account

all possible values of ΣC . Henceforth, we continue to use square brackets when referring to elements of M [π],

and regular parenthesis when referring to elements of M (π).

We now define Φ(π) formally. Let M [π] = (S[π], Init[π], Σ[π], T [π], F [π]) and M (π) = (S(π), Init(π), Σ(π), T (π), F (π)).

Let δ[π] and δ(π) be the δ functions of M [π] and M (π) respectively. We define a state variable of the form

(s, t) for each s ∈ S[π] and t ∈ S(π). Intuitively, the variable (s, t) indicates whether the product state (s, t)

is reachable in M [π] ×M (π). We also define a choice variable s(α) for each action α ∈ Σ, indicating whether

α is selected to be included in ΣC . Now, Φ(π) consists of the following clauses:

Three Optimizations for Assume-Guarantee Reasoning with L* 19

s1π s2

t2t0 t1

s0

αβ

βα

M1×ϕ̄

Fig. 6 A positive counterexample π and M (π) = M1×ϕ̄.

Initialization and Acceptance: Every initial and no accepting state is reachable:

∀s ∈ Init[π] � ∀t ∈ Init(π) � (s, t) ∀s ∈ F [π] � ∀t ∈ F (π) � ¬(s, t)

Shared Actions: Successors depend on whether an action is selected or not:

∀α ∈ Σ � ∀s ∈ S[π] � ∀s′ ∈ δ[π](α, s) � ∀t ∈ S(π) � ∀t′ ∈ δ(π)(α, t) � (s, t) ⇒ (s′, t′)

∀α ∈ Σ � ∀s ∈ S[π] � ∀s′ ∈ δ[π](α, s) � ∀t ∈ S(π) � ¬s(α) ∧ (s, t) ⇒ (s′, t)

∀α ∈ Σ � ∀s ∈ S[π] � ∀t ∈ S(π) � ∀t′ ∈ δ(π)(α, t) � ¬s(α) ∧ (s, t) ⇒ (s, t′)

Local Actions: Asynchronous interleaving:

∀α ∈ Σ[π] − Σ � ∀s ∈ S[π] � ∀s′ ∈ δ[π](α, s) � ∀t ∈ S(π) � (s, t) ⇒ (s′, t)

∀α ∈ Σ(π) − Σ � ∀s ∈ S[π] � ∀t ∈ S(π) � ∀t′ ∈ δ(π)(α, t) � (s, t) ⇒ (s, t′)

As mentioned before, the global set of constraints Φ is obtained by collecting together the constraints

in each Φ(π). Observe that any solution ν to Φ has the following property. Let ΣC = {α | ν(s(α)) = 1}.

Then we have ∀π ∈ Π � L((M [π]⇃ΣC
) × (M (π)⇃ΣC

)) = ∅. But since L(M [π]) = {π}, the above statement is

equivalent to ∀π ∈ Π � (π⇃ΣC
) 6∈ L(M (π)⇃ΣC

), which is further equivalent to ∀π ∈ Π � Elim(π,ΣC). Thus,

ΣC eliminates all counterexamples. Finally, since we want the minimal such ΣC , we minimize the number

of chosen actions via the following objective function:

min
∑

α∈Σ

s(α). (7)

Example 2 Consider Fig. 6, in which there is one counterexample π, and an FA M (π) = M1×ϕ̄ on which

π can be simulated if Σc = ∅. The state variables are (si, tj) for i, j ∈ [0..2] and the choice variables are

20 Sagar Chaki, Ofer Strichman

s(α), s(β). The constraints are:

Initialization : (s0, t0)

Acceptance : ¬(s2, t2)

SharedActions : (s0, t1) → (s1, t2) (s1, t0) → (s2, t1)

(s0, t0) ∧ ¬s(α) → (s1, t0) (s1, t0) ∧ ¬s(β) → (s2, t0)

(s0, t1) ∧ ¬s(α) → (s1, t1) (s1, t1) ∧ ¬s(β) → (s2, t1)

(s0, t2) ∧ ¬s(α) → (s1, t2) (s1, t2) ∧ ¬s(β) → (s2, t2)

(s0, t0) ∧ ¬s(β) → (s0, t1) (s0, t1) ∧ ¬s(α) → (s0, t2)

(s1, t0) ∧ ¬s(β) → (s1, t1) (s1, t1) ∧ ¬s(α) → (s1, t2)

(s2, t0) ∧ ¬s(β) → (s2, t1) (s2, t1) ∧ ¬s(α) → (s2, t2)

Since there are no local actions, these are all the constraints. The objective is to minimize s(α) + s(β). The

optimal solution is s(α) = s(β) = 1, corresponding to the fact that both actions need to be in ΣC in order

to eliminate π. ⊓⊔

6 Experiments

We implemented our technique in ComFoRT [8] and experimented with a set of benchmarks derived from

real-life source code. All our experiments were carried out on quad 2.4 GHz machine with 4 GB RAM running

RedHat Linux 9. We used PBS version 2.1 [1] to solve the Pseudo-Boolean constraints. The benchmarks were

derived from the source code of OpenSSL version 0.9.6c. Specifically, we used the code that implements the

handshake between a client and a server at the beginning of an SSL session. We designed a suite of 10

examples, each focusing on a different property (involving a sequence of message-passing events) that a

correct handshake should exhibit. For instance, the first example (SSL-1) was aimed at verifying that a

handshake is always initiated by a client and never by a server.

The first set of experiments were aimed at evaluating our proposed improvements separately, and in

conjunction with each other in the context of AG-NC. We also performed a second set of experiments

Three Optimizations for Assume-Guarantee Reasoning with L* 21

Cand. Memb. (Time) ¬T1 (Time) T1

Name queries queries |Σ| ¬T2 T2 ¬T2 T2

¬T1 T1 ¬T2 T2 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3

SSL-1 2.2 2.0 37.5 4.5 12 1 25.4 19.7 12.3 20.0 23.8 20.1 10.5 20.5

SSL-2 5.0 5.2 101.5 11.5 12 4 31.5 40.0 12.6 30.0 32.4 44.6 13.7 30.2

SSL-3 8.5 7.5 163.0 28.0 12 4 43.8 49.1 14.5 35.3 45.6 48.9 15.6 35.5

SSL-4 13.0 10.5 248.0 56.5 12 4 63.0 67.5 17.4 58.1 61.5 67.7 18.6 48.4

SSL-5 3.2 3.0 73.0 9.5 12 1 33.8 22.3 13.6 24.1 36.2 22.2 13.8 22.2

SSL-6 6.8 7.2 252.0 36.5 12 2 102.8 30.6 24.2 29.0 102.2 43.3 23.1 29.8

SSL-7 9.8 8.0 328.8 52.5 12 2 139.9 44.4 27.8 43.9 138.2 38.6 28.2 40.6

SSL-8 15.0 13.0 443.0 77.5 12 3 183.3 73.6 37.1 67.9 184.0 73.2 35.8 64.2

SSL-9 23.5 18.2 568.0 109.5 12 3 234.1 120.5 44.1 133.7 236.2 133.4 41.0 109.3

SSL-10 25.5 22.0 689.5 128.5 12 3 293.9 188.6 48.4 168.1 297.0 179.9 45.9 169.7

Avg. 10.8 9.2 290.0 51.0 12 2 115.1 65.6 25.2 61.0 115.7 67.2 24.6 57.1

Fig. 7 Experimental Results for the Non-Circular Rule AG-NC (see Eq. 1)

using the same improvements and benchmarks set, but in the context of the circular AG rule AG-C (Eq.

2). The results for the two rules are described in Figures 7 and 8 respectively. The columns labeled with

Ti and ¬Ti contain results with/without the ith improvement for i ∈ {1, 2, 3}. The row labeled “Avg.”

contains the arithmetic mean for the rest of the column. Best figures are boldfaced. Note that entries under

the Membership queries and Candidate queries are fractional since they represent the average over the

four possible values of the remaining two improvements. Specifically, these are improvements 2 and 3 for

Candidate queries, and improvements 1 and 3 for Membership queries.

We observe that the improvements lead to the expected results in terms of reducing the number of queries

and the size of assumption alphabets. The first improvement entails somewhat fewer candidate queries on

average, but seems to have only a negligible effect on run-times. The second and third improvements, on

the other hand, lead to significant reductions in overall verification time, by a factor of over 4.7 (AG-NC)

22 Sagar Chaki, Ofer Strichman

Cand. Memb. (Time) ¬T1 (Time) T1

Name queries queries |Σ| ¬T2 T2 ¬T2 T2

¬T1 T1 ¬T2 T2 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3

SSL-1 3.5 3.0 84.0 7 12 1 17.9 10.0 12.5 10.1 16.7 10.0 10.7 11.2

SSL-2 3.2 3.0 90.0 9 12 4 25.3 12.6 14.4 11.5 26.1 12.4 14.0 11.1

SSL-3 3.8 3.5 143.0 15 12 4 39.6 13.2 14.7 11.5 41.2 13.2 15.5 11.6

SSL-4 4.2 4.0 209.0 23 12 4 60.1 12.3 17.8 14.1 61.1 12.2 16.8 12.2

SSL-5 4.5 4.0 164.0 15 12 1 32.1 10.4 12.9 11.6 32.0 11.7 13.7 11.6

SSL-6 7.8 7.2 560.0 63 12 2 127.2 13.2 25.7 12.5 126.6 12.9 24.0 14.2

SSL-7 10.8 9.5 954.0 115 12 2 242.3 14.5 36.8 15.6 240.6 14.0 34.9 14.0

SSL-8 12.2 10.5 1190.0 147 12 3 319.2 17.6 48.8 17.5 322.5 16.3 45.5 17.2

SSL-9 13.8 11.5 1452.0 183 12 3 408.7 17.3 57.5 19.4 409.3 17.3 53.7 19.6

SSL-10 8.8 7.2 878.0 113 12 3 407.5 18.9 55.7 18.8 405.3 19.1 51.8 18.2

Avg. 7.0 6.2 572.0 69 12 2 168.0 14.0 29.7 14.3 168.1 13.9 28.1 14.1

Fig. 8 Experimental Results for the Circular Rule AG-C (see Eq. 2)

and 12 (AG-C) on average. Interestingly, the two improvements have different degrees of effectiveness for the

two rules. While selective membership queries is more beneficial for AG-NC, it is outclassed by assumption

alphabet minimization in the case of AG-C.

References

1. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A Backtrack Search Pseudo-Boolean Solver and Opti-

mizer. In Proceedings of the 5th International Symposium on the Theory and Applications of Satisfiability Testing

(SAT ’02), pages 346–353, Cincinnati, OH, May 6–9, 2002. Cincinnati, OH, May 2002. University of Cincinnati.

http://gauss.ececs.uc.edu/Conferences/SAT2002/sat2002list.html.

2. R. Alur, P. Cerny, G. Gupta, P. Madhusudan, W. Nam, and A. Srivastava. Synthesis of Interface Specifications

for Java Classes. In Jens Palsberg and Martin Abadi, editors, Popl05, pages 98–109, Long Beach, CA, January

12–14, 2005. New York, NY, January 2005. Association for Computing Machinery.

Three Optimizations for Assume-Guarantee Reasoning with L* 23

3. Rajeev Alur, P. Madhusudan, and Wonhong Nam. Symbolic compositional verification by learning assumptions.

In Kousha Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th International Conference on

Computer Aided Verification (CAV ’05), volume 3576 of Lecture Notes in Computer Science, pages 548–562,

Edinburgh, Scotland, July 6–10, 2005. New York, NY, July 2005. Springer-Verlag.

4. Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Information and Computation,

75(2):87–106, November 1987.

5. Thomas Ball and Sriram K. Rajamani. Generating abstract explanations of spurious counterexamples in C

programs. Technical report MSR-TR-2002-09, Microsoft Research, Redmond, Washington, USA, January 2002.

6. Howard Barringer, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Proof rules for automated compositional

verification. In Proceedings of the 2nd Workshop on Specification and Verification of Component Based Sys-

tems (SAVCBS ’03), pages 14–21, Helsinki, Finland, September 1–2, 2003. Ames, Iowa: Iowa State University,

September 2003.

7. Sagar Chaki, Edmund M. Clarke, Nishant Sinha, and Prasanna Thati. Automated assume-guarantee reasoning

for simulation conformance. In Kousha Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th

International Conference on Computer Aided Verification (CAV ’05), volume 3576 of Lecture Notes in Computer

Science, pages 534–547, Edinburgh, Scotland, July 2005. Springer-Verlag.

8. Sagar Chaki, James Ivers, Natasha Sharygina, and Kurt Wallnau. The ComFoRT Reasoning Framework. In

Kousha Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th International Conference on Computer

Aided Verification (CAV ’05), volume 3576 of Lecture Notes in Computer Science, pages 164–169, Edinburgh,

Scotland, July 6–10, 2005. New York, NY, July 2005. Springer-Verlag.

9. Sagar Chaki and Nishant Sinha. Assume-guarantee reasoning for deadlock. In Proc. of FMCAD, 2006.

10. Sagar Chaki and Ofer Strichman. Optimized L* for assume-guarantee reasoning. March 2007. (To be published).

11. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided abstrac-

tion refinement for symbolic model checking. Journal of the ACM (JACM), 50(5):752–794, September 2003.

12. J. M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning assumptions for compositional

verification. In Hubert Garavel and John Hatcliff, editors, Proceedings of the 9th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’03), volume 2619 of Lecture Notes in

Computer Science, pages 331–346, Warsaw, Poland, April 7–11, 2003. New York, NY, April 2003. Springer-Verlag.

24 Sagar Chaki, Ofer Strichman

13. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering likely pro-

gram invariants to support program evolution. In Proceedings of the 21st International Conference on Software

Engineering (ICSE ’99), pages 213–224, Los Angeles, CA, May 1999. IEEE Computer Society.

14. Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina Păsăreanu. Refining Interface Alphabets for Compo-

sitional Verification. In Proc. of TACAS, 2007.

15. D. Giannakopoulou, C. S. Păsăreanu, and H. Barringer. Assumption Generation for Software Component Ver-

ification. In Proceedings of the 17th International Conference on Automated Software Engineering (ASE ’02),

pages 3–12, Edinburgh, Scotland, September 23–27, 2002. Los Alamitos, CA, September 2002. IEEE Computer

Society.

16. A. Groce, D. Peled, and M. Yannakakis. Adaptive Model Checking. In Joost-Pieter Katoen and Perdita Stevens,

editors, Proceedings of the Eighth International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS ’02), volume 2280 of Lecture Notes in Computer Science, pages 357–370, Grenoble,

France, April 8-12, 2002. New York, NY, April 2002. Springer-Verlag.

17. Peter Habermehl and Tomas Vojnar. Regular model checking using inference of regular languages. In Proceedings

of the 6th International Workshop on Verification of Infinite-State Systems (INFINITY ’04), volume 138(3) of

Electronic Notes in Theoretical Computer Science, pages 21–36, December 2005.

18. D. Johnson. Approximation algorithms for combinatorial problems. J. Computer and System Sciences, (9):256–

278, 1974.

19. Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach.

Princeton University Press, Princeton, NJ, 1994.

20. Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. In Jianping Wu, Samuel T. Chanson,

and Qiang Gao, editors, Proceedings of the Joint International Conference on Formal Description Techniques for

Distributed Systems and Communication Protocols (FORTE ’99), volume 156 of IFIP Conference Proceedings,

pages 225–240, Beijing, China, October 1999. Kluwer Academic Publishers.

21. A. Pnueli. In Transition from Global to Modular Temporal Reasoning About Programs. Logics and Models of

Concurrent Systems, 13:123–144, 1985.

22. R. L. Rivest and R. E. Schapire. Inference of Finite Automata Using Homing Sequences. Information and

Computation, 103(2):299–347, 1993.

