SMT-based model checking for recursive programs
Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, Formal Methods in System Design (FMSD), volume 48, number 3, page 175-205. This is an extended version of our CAV'14 paper.
Abstract: We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is modular and analyzes procedures individually. Unlike other SMT-based approaches, it maintains both over- and under-approximations of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasible counterexamples and detect convergence to a proof. We show that for programs and properties over a decidable theory, the algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends on an oracle for quantifier elimination (QE). For Boolean programs, the algorithm is a polynomial decision procedure, matching the worst-case bounds of the best BDD-based algorithms. For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algorithm by applying QE lazily. We use existing interpolation techniques to over-approximate QE and introduce Model Based Projection to under-approximate QE. Empirical evaluation on SV-COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.