
1
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.
REV-03.18.2016.0

Contract-Based
Verification of Timing
Enforcers

Sagar Chaki, Dionisio de Niz

October 6, 2016

2
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering

Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0004050

3
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Motivation

STAC = software that accesses the system clock, exchanges clock
values, and uses these values to set timers and perform
computation

• Key to real-time and cyber-physical systems

• Essential to keep software in sync with the physical world

• Examples = thread schedulers and time budget enforcers,
distributed protocols (e.g., plug-and-play medical devices)

Goal : Formally verify STACs at the source code level using
deductive (aka auto-active) verification

• Target: ZSRM mixed-criticality scheduler

- Performs thread CPU allocation and time budget enforcement

- Available as Linux kernel module implemented in C

- Currently we focus on ZSRM budget enforcement only

4
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Why Verify Source Code?

Push assurance closer to executable level

• Use verified compilers (e.g., CompCERT) to close the final gap

Don’t need to sacrifice performance

• This is a problem when we verify models

• And is a no-go for low-level system software

Easier to integrate with existing systems

• Linux kernel module means anyone using Linux can use it

• Can be modified to work with other OSes, such as SEL4

• What You Verify Is What You Execute!

5
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)

Soundness

Language expressivity

• Pointers, recursion,
loops

Rich specification

• Quantifiers

• Predicates

• Separation

Tool maturity

• Frama-C

- Multiple backend SMT
solvers

Good Balance between
human intuition and brute
force search

Why use Auto-Active Verification?

Program 𝑷 Property 𝝋

No+CEX Yes+Proof

Auto-Active FV

Contract 𝑪
Verification

Condition

SMT Solver

6
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)FRAMA-C

Deductive verifier for ANSI C programs

• https://frama-c.com/

• Used to verify software in a number of projects (NASA, avionics,
container libraries, hypervisors)

User provides function contracts and loop invariants

• Pre-and-post conditions, which variables are modified, etc.

• Expressed via ACSL language

- https://frama-c.com/download/acsl-implementation-Aluminium-
20160501.pdf

- http://www.dcc.fc.up.pt/~nam/aulas/0910/vfs/teoricas/acsl-tutorial.pdf

Frama-C incorporates a number of plugins

• We use the WP (weakest-precondition) plugin

https://frama-c.com/
https://frama-c.com/download/acsl-implementation-Aluminium-20160501.pdf

7
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Quick Intro to

Frama-C

8
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)ZSRM Timing Enforcer Terminology

Threads/tasks

• 𝑇 = {𝜏1, 𝜏2, … }

• Executes with preemption (i.e., broken up into chunks)

• Each task is a periodic sequence of “jobs”

System calls

• Job arrives : 𝑗𝑜𝑏_𝑎𝑟𝑟𝑖𝑣𝑒(𝜏)

• Job departs : 𝑗𝑜𝑏_𝑑𝑒𝑝𝑎𝑟𝑡(𝜏)

Timer handlers

Enforcer Functions 𝐸𝐹 = System calls ∪ Timer handlers

• Execute atomically (i.e., without preemption)

9
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Execution/Timeline

Time = Global “Newtonian” clock

• Flows monotonically, dense real-time

𝒕𝒂(𝝉𝟏) 𝝉𝟏 𝒕𝒂(𝝉𝟐) 𝝉𝟐 𝒕𝒅 𝝉𝟐 𝒕𝒂(𝝉𝟑) 𝝉𝟏 𝒕𝟏. 𝒉() 𝝉_𝟑 𝒕𝒅(𝝉𝟑)

𝑐1 𝑐2 𝑐3 𝑐4

Timestamps

Execution 𝜋 = 𝑠1
𝛼1
𝑠2

𝛼2
𝑠3…𝑠𝑛−1

𝛼𝑛−1
𝑠𝑛

State 𝑠𝑖 = (𝑐𝑖 , 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠)

𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11

10
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)General Verification Strategy

Express property to be verified as an ACSL predicate:

/*@predicate prop = …;*/

For each enforcer function, define an ACSL contract that assumes
and ensures “prop”

/*@requires prop;

@assigns …;

@ensures prop;*/

For initialization function, we only add “@ensures prop”

Verify the contracts using Frama-C

11
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Implementation Details

In ZSRM, each task is a
reservation. Inspired by
resource kernels, such as
Linux-RK.

The “reserve” struct has
pointer fields that enable
construction and
manipulation of linked
lists.

Memory for reservations
allocated statically.
Simplifies verification
considerably since
“separation” between
the array elements is
easy to specify and
sufficient for verification.

12
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Basic Predicates

13
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Linked List Predicates

Pointers are either
NULL or point to
appropriate array
elements.

Two pointer fields used to maintain separate linked lists:
next = list of “ready” tasks in order of decreasing priority
rm_next = list of all tasks maintained in order of increasing period

List of ready tasks
maintained in order
of decreasing priority

List of ready tasks
maintained in order of
increasing period

14
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Time-Related Predicates

Time
Budget

Time
Used

Timer
Offset

Time Left
in Budget

15
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Using Ghost Variable to track execution time

We add a ghost field 𝑟𝑒𝑎𝑙_𝑒𝑥𝑒𝑐𝑡𝑖𝑚𝑒_𝑛𝑠 to the 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 struct

• This is suppose to compute the actual CPU usage of task

• We update this variable in 𝑗𝑜𝑏_𝑎𝑟𝑟𝑎𝑖𝑣𝑒() and 𝑗𝑜𝑏_𝑑𝑒𝑝𝑎𝑟𝑡()

We prove that the time accounting by ZSRM source code is conservative,

i.e., 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑒𝑥𝑒𝑐𝑡𝑖𝑚𝑒_𝑛𝑠 ≥ 𝑟𝑒𝑎𝑙_𝑒𝑥𝑒𝑐𝑡𝑖𝑚𝑒_𝑛𝑠

Overall predicate is the conjunction of all the predicates seen so far

16
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Final Verification

Frama-C Aluminium

• 3 backend SMT solvers : Z3, CVC3, CVC4

• 200s timeout

Dell Blade Server

• 40 cores (20 × 2 hyper-threads)
- Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz

• 128GB RAM

• Ubuntu 14.04

ZSRM implemented in C as user-space program

• 1484 LOC (14549 LOC after preprocessing)

• 33 functions (enforcer functions and others called by them)

Total verification time : approx 18 minutes (real) 25 minutes (user)

17
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)Conclusion and Future Work

Using deductive verification to prove timing and logical correctness

of the ZSRM timing enforcer

• Prove that threads are restricted to CPU budgets

• Formalized property as ACSL contracts

• Used Frama-C to discharge them

Preliminary work but promising results

• Working on formalizing soundness of approach

• Completing implementation of kernel module

• Verification of additional timing property (e.g., zero-slack instant)

18
STAC

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

QUESTIONS?

