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ABSTRACT
A timing enforcer not only allocates CPU cycles to threads
but also uses timers to enforce time budgets. An approach
for verifying safety properties of timing enforcers at the
source code level is presented. We assume that the enforcer
is implemented as a set of entry functions that are executed
atomically on critical system-level events, such as arrival and
departure of periodic jobs. The key idea is to express the
safety property as an invariant, and prove that it is inductive
across all the entry functions. The approach is validated by
proving correctness of the enforcement of CPU cycle budgets
for tasks by a mixed-criticality scheduler called zsrm that is
implemented in C. The inductiveness of the necessary zsrm
invariants is proved by expressing them as function contracts
using the acsl specification language, and verifying the con-
tracts using the frama-c tool.
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1. INTRODUCTION
We focus on the verification of a class of software that rely

on the use of timers and clocks to implement their func-
tionality. We call them Software with Timers and Clocks
(STACs). STACs are at the heart of many real-time embed-
ded software that perform safety-critical functions in sys-
tems we use in our daily lives (e.g., automobiles). A prime
example is a real-time thread scheduler. Verifying their cor-
rect behavior is therefore very important.

This challenge is complicated by several factors. First, the
semantics of STACs involve time. Timers and clocks are im-
plemented by an OS sub-system that keeps track of time us-
ing special hardware (e.g., High Precision Event Timer and
the time stamp counters). This must be modeled soundly.
Second, STACs can behave incorrectly due to numeric over-
flows, which can violate monotonicity of timestamps main-
tained in variables with finite program types (such as int).
Many software verification tools treat finite types as un-
bounded ones (e.g., ints as integers) which is unsound for
detecting numeric overflows. Finally, STACs use pointers
and memory operations substantially since they are often
high-performance system software. For example, a scheduler
typically maintains active threads as a linked list which is
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dynamically updated as threads are created and destroyed.
Verifying correctness of pointer-manipulating programs is
known to be challenging for software verification tools.

In this paper, we propose an approach to verify STACs
at the source code level. In particular, we focus on verify-
ing the correctness of timing enforcers that not only allocate
CPU cycles to threads, but also enforce timing budgets. Our
target is the zsrm [5] mixed-criticality scheduler. ZSRM
schedules threads (a.k.a. tasks) that execute a procedure
periodically (such a periodic execution is called a job). For
instance, a video processing tasks executes a frame process-
ing procedure (job) every 50ms for a video running at 20
frames per second. Our approach works as follows:

– We model the enforcer as a set of three functions: (i)
init is invoked once at the very beginning to initialize the
enforcer to a proper state; (ii) job_arrive is invoked when
a job arrives, i.e., when the time reached the next period of
the corresponding job; and (iii) job_depart is invoked when
a job departs, i.e., the corresponding job function completes
execution. These functions execute atomically, i.e., all in-
terrupts are disabled during their execution.

– An execution of the enforcer consists of an initial ex-
ecution of init followed by arbitrary many executions of
job_arrive and job_depart. The correctness of the en-
forcer is expressed as an invariant Inv that it must main-
tain. To this end, we need to prove that: (a) init ensures
Inv ; and (b) job_arrive and job_depart preserve Inv , i.e.,
assuming they are invoked in a state where Inv holds, they
terminate in a state where Inv also holds. We can express
this using the following three Hoare triples: {>}init{Inv},
{Inv}job_arrive{Inv}, and {Inv}job_depart{Inv}.

– Given an implementation of the enforcer in C, we use
the acsl contract language to express these Hoare triples
as function contracts. We then use the frama-c [6] tool
to discharge the contracts. frama-c essentially constructs
a verification condition from the C code and the acsl [2]
annotations and then proves it using a backend SMT solver.

Our approach overcomes the challenges mentioned ear-
lier as follows. First, acsl and frama-c enable us to be
sound w.r.t. numeric overflows, since the semantics of acsl
handles these correctly. Second, acsl and frama-c also en-
able us to verify enforcer implementations in the presence
of pointers and memory operations. In particular, the ex-
pressiveness of acsl allows us to specify loop invariants and
supporting assertions involving pointers and structures. Fi-
nally, we handle time by encoding the semantics of timers
and clocks as part of our invariant. In this rest of this pa-
per, we present our approach and some preliminary results.
We conclude with a survey of related work, and thoughts on
ongoing and future work.

2. ZSRM SCHEDULING
As introduced before, zsrm schedules threads (aka tasks)

that execute a specific procedure periodically. Each such



execution is called a job. Formally, a task τi is a tuple
(Ti, Ci,W

0
i ,W

1
i ), where Ti is its period, Ci is its criticality,

W 0
i is the nominal worst-case execution time of a job, and

W 1
i is the overload worst-case execution of a job. Tasks are

scheduled under preemptive fixed-priority scheduling policy
where the job of a task is allowed to run until it completes or
a job of a higher-priority task arrives and preempts it. This
ensures that the job executing is the one with the highest
priority ready to execute. Priorities are assigned to tasks
at creation time and never changed. These priorities are as-
signed in a rate-monotonic [9] fashion, i.e., tasks with shorter
periods are assigned higher priorities.

zsrm schedulability. Consider any job Ji of task τi
(Ti, Ci,W

0
i ,W

1
i ) zsrm provides the following guarantee: Ji

is guaranteed to receive W 1
i units of CPU time by its dead-

line if no job Jj of any other task τj with a criticality higher
than τi (Cj > Ci) executes for more than W 0

j .
zsrm works in two stages. First, an offline analysis is per-

formed to either declare the system to be unschedulable, or
compute for each task τi a zero-slack instance Zi. Informally,
this is the last time at which jobs Jk of tasks τk with lower
criticality than τi (Ck < Ci) must be stopped to guarantee
that τi can execute for W 1

i before its deadline. Next, at run-
time the zsrm scheduler uses timers to enforce the zero-slack
instants (stopped lower-criticality tasks) as well as enforce
that no job of any task τi exceeds its W 1

i execution time.
In this paper we focus on proving the correctness of the

budget enforcement that guarantees that no task τi executes
beyond its W 1

i .

3. ZSRM SCHEDULER
The zsrm scheduler is implemented in C as a Linux kernel

module. The main global data structure used is an array of
reserve structures (cf. Fig. 1), where each element repre-
sents a CPU budget (or CPU reservation) associated with
a specific task. The scheduler maintains two linked lists of
reserve structures: (i) the list of all tasks ordered by prior-
ity: this is maintained via the rm_next field; and (ii) the list
of all reserves (and hence tasks) with active jobs (i.e., ready
to execute) sorted by priority: this is maintained via the
next field. Pointers to the heads of the two lists are stored
in global variables rm_head and readyq respectively. Note
that while the lists are updated dynamically by modifying
their heads and the next and rm_next fields, the memory
for the list elements are allocated statically via the array.

The other fields of struct reserve are: (i) pid stores the
task’s process id; (ii) rid stores the element’s index, i.e.,
for any i, we have reserve_table[i].rid == i; (iii) since
zsrm schedules preemptively, a job’s execution can be split
up into segments by jobs with higher priority; start_ns

and stop_ns record the starting and stopping times (in
nanoseconds) of the most recently completed or ongoing
job segment; these are used to compute a running count
of the actual time allocated to the job, which is recorded
in current_exectime_ns; (iv) exectime_ns is the maxi-
mum time that can be allocated to the job; (v) period and
priority are self-explanatory; (vi) period_timer is used to
enforce periodic job arrivals; and (vii) enforcement_timer

is used to limit the job’s execution time.
Even though the reserve_table array has a fixed size,

not all its elements are used at all times. Unused ele-
ments are identified by distinguished field values, usually
0 or NULL. Initially, all elements are unused. As new tasks

struct reserve {

pid_t pid;

int rid;

unsigned long long start_ns;

unsigned long long stop_ns;

unsigned long long current_exectime_ns;

unsigned long long exectime_ns;

struct timespec period;

unsigned long long period_ns;

struct timespec execution_time;

int priority;

struct zs_timer period_timer;

struct zs_timer enforcement_timer;

struct reserve *next;

struct reserve *rm_next;

} reserve_table[MAX_RESERVES];

Figure 1: The global reserve structure array. Each
element represents a task.

are added dynamically at runtime, via an entry function
create_reserve, they are assigned to unused elements.

The scheduler has three other entry functions besides
create_reserve: (i) init is called once when the kernel
module is loaded; (ii) job_arrive is called every time a
new job is activated periodically with the index of the cor-
responding task in reserve_table as argument; and (iii)
job_depart is called when the currently executing job com-
pletes, again with the index of the corresponding task as
argument. All entry functions execute without preemption,
and the call to job_arrive preempts the currently execut-
ing job if its priority is lower than the arriving job. Once an
entry function terminates, the job corresponding to *readyq

is executed.

4. ZSRM SCHEDULER INVARIANTS
Semantically, the zsrm scheduler can be modeled as a

sequential C program that first calls init, and then the other
three entry functions in arbitrary order. It behaves correctly
if it maintains a specific set of invariants across invocations
of its entry functions. In this section, we describe these
invariants and show how they are expressed via predicates
and contracts in acsl [2]. The predicates presented in this
paper assume that the size of the reserve_table array (i.e.,
MAX_RESERVES) is 10. This can be changed to any positive
integer, and our approach would still be applicable.

Basic Predicates. The following predicates represent basic
useful concepts:

– A pointer is either the address of an element of
reserve_table or NULL.

/*@predicate elem(struct reserve *p) = \exists int i;

(0 <= i < 10 && p == &(reserve_table[i]));*/

/*@predicate elemNull(struct reserve *p) =

(p == \null) || elem(p);*/

– Variables readyq and rm_head are either the address of
an element of reserve_table or NULL.

/*@predicate fp11 = elemNull(readyq);*/

/*@predicate fp12 = elemNull(rm_head);*/



– The rid fields of reserve_table elements are correct
(note that ==> denotes logical implication in acsl):

/*@predicate fp14 = \forall int i; 0 <= i < 10 ==>

reserve_table[i].rid == i;*/

Linked List Predicates. Recall that the scheduler main-
tains two linked lists of tasks via the next and rm_next fields
of the reserve structure. The following two predicates state
that these fields are either NULL or point to some element of
reserve_table:

/*@predicate fp21 = \forall struct reserve *p;

elem(p) ==> elemNull(p->next);*/

/*@predicate fp22 = \forall struct reserve *p;

elem(p) ==> elemNull(p->rm_next);*/

The next predicate states that if there are two elements p
and q of reserve_table such that p->next points to q then
p->priority >= q->priority.

/*@predicate fp31 = \forall struct reserve *p, *q;

elem(p) ==> elem(q) ==> (p->next == q) ==>

(p->priority >= q->priority);*/

Note that predicates fp11 and fp31 together imply that
the linked list obtained by starting with readyq and fol-
lowing the next field has monotonically non-increasing
priority values. This shows that the scheduler correctly
implements the preemptive fixed priority policy since the
task corresponding to *readyq is the one scheduled at the
end of each entry function. In fact, fp31 is a stronger
condition than we need since it holds even for elements of
reserve_table that are unreachable from readyq. How-
ever, it is easier to verify. Note also that since the memory
for the linked list is statically allocated, we do not have to
define and prove list-reachability predicates, which are sub-
stantially harder, and require reasoning about separation
among heap fragments.

The next predicate states that if there are two elements p
and q of reserve_table such that p->rm_next points to q

then p->period_ns <= q->period_ns.

/*@predicate fp32 = \forall struct reserve *p, *q;

elem(p) ==> elem(q) ==> (p->rm_next == q) ==>

(p->period_ns <= q->period_ns);*/

Thus, the list of tasks starting with rm_head and following
the rm_next field is sorted in increasing order of periods. We
now turn our attention to predicates that involve time.

Time-Related Predicates. In this paper, we focus on ver-
ifying that the scheduler correctly enforces the maximum
time budget W 1

i of each job. This time budget is precom-
puted and stored in the exectime_ns field of the reserve

structure corresponding to the job’s task. In addition, a
running count of the actual time used by the job is main-
tained in the current_exectime_ns field, which is updated
every time the job is preempted. The enforcement of the
time budget is then expressed by the following predicate:

/*@predicate zsrm3 = \forall int i; 0 <= i < 10 ==>

reserve_table[i].current_exectime_ns <=

reserve_table[i].exectime_ns;*/

The actual enforcement of the budget is achieved by ensur-
ing that whenever a job is scheduled, its enforcement_timer
is set to go off at the job’s time budget expiry time, and
that the handler function for this timer terminates the job
by sending an appropriate signal. Recall that the job to
be scheduled is always pointed to by readyq. Hence, this
condition is expressed by the following predicate:

/*@predicate zsrm2 = elem(readyq) ==>

(readyq->enforcement_timer.expiration.tv_sec

* 1000000000L +

readyq->enforcement_timer.expiration.tv_nsec) <=

(readyq->exectime_ns - readyq->current_exectime_ns);*/

We verify that current_exectime_ns records the “actual”
time allocated to a job correctly as follows: (i) we introduce
a global “ghost” variable now to represent physical time, fol-
lowing Abadi and Lamport [1]; (ii) we introduce a function
stac_time and ensure that it is the only function used by the
scheduler to obtain the current clock value; (iii) we provide
the following acsl contract for stac_time:

/*@requires \true; @assigns now;

@ensures now > \old(now) && \result == now;*/

In essence, this contract states that stac_time returns
the “actual time” and time increases strictly across mul-
tiple invocations. Next, we add another ghost field
real_exectime_ns to the reserve structure to represent
the “actual” time allocated to a job. We also add
ghost code to update real_exectime_ns of the active job,
whenever it is preempted, in a trivially correct way us-
ing the now variable directly. The following predicate
states that current_exectime_ns always over-approximates
real_exectime_ns, which is sufficient to prove that the
scheduler enforces W 1

i correctly.

/*@predicate zsrm1 = \forall int i; 0 <= i < 10 ==>

reserve_table[i].real_exectime_ns <=

reserve_table[i].current_exectime_ns;*/

Verifying Predicate Inductiveness. The overall predicate
that prove inductive across each entry function is the con-
junction of all the predicates presented so far. We refer to
this predicate as zsrm. To prove that zsrm is inductive across
a function foo we add the following acsl contract to foo.

/*@requires zsrm; @assigns assigns-list;

@ensures zsrm; */

Informally, this contract states that if foo is executed in a
state that satisfies zsrm then the state after its execution also
satisfies zsrm, in effect that zsrm is inductive across foo’s ex-
ecution. We then verify that the implementation of foo sat-
isfies this contract using frama-c. Note that assigns-list
in the contract denotes a set of locations potentially modi-
fied by foo and is specific to the body of foo itself.

5. VERIFICATION
We verified the inductiveness of the predicate zsrm pre-

sented in Sec. 4 across all four entry functions of the zsrm
scheduler. We used frama-c, a deductive verifier for ANSI
C programs annotated with function contracts and loop in-
variants using acsl. frama-c works by generating Floyd-
Hoare [7] style verification conditions (VCs) from the anno-
tated C program, and proving that the VCs are valid using



backend theorem provers, such as Coq, Z3, or CVC. frama-
c uses why3 programs as an intermediate format to repre-
sent and prove the VCs. We used frama-c Aluminium,
and why3 version 0.87.1, the latest available at the time
of our experiments. frama-c can use multiple SMT solver
in parallel to discharge each VC. We used Z3 v4.4.2, CVC3
v2.4.1 and CVC4 v1.4, with a timeout of 200 seconds. Since
frama-c runs multiple solvers in parallel, it benefits from
multi-core processors. All our experiments were done on a
Intel Xeon E5-2687W v3 machine with 20 cores (40 hyper-
threads) running at 3.1 GHz, and 120 GB RAM.

The implementation of zsrm we verified consisted of
about 20 functions (4 entry functions and 16 supporting
ones) spread over 1100 lines of pure C (i.e., no assembly) and
340 lines of acsl annotations. In the end, frama-c could
verify all contracts in about 17 minutes. We now present
some salient aspects of this verification effort.

– We annotated all functions in the scheduler with con-
tracts derived from the zsrm predicate. Each function’s con-
tract was verified separately, but the verification was compo-
sitional. Thus, if function foo calls bar, then when verifying
the contract of foo frama-c uses the contract of bar at its
callsite. This makes our verification more tractable.

– To successfully prove the inductiveness of zsrm, we
needed to strengthen it with the following extra predicate:

/*@predicate zsrm4 = \forall int i; 0 <= i < 10 ==>

(reserve_table[i].enforcement_timer.expiration.tv_sec

* 1000000000L +

reserve_table[i].enforcement_timer.expiration.tv_nsec)

<= reserve_table[i].exectime_ns;*/

This is necessary to rule out numeric overflows and un-
derflows when timestamp counters are updated. Note that
sound C semantics used by frama-c enables us to explicitly
detect and fix such issues.

– We detected three bugs in the scheduler implementation.
One was an “off-by-one” error where we had a > comparison
instead of a ≥. Another was a potential NULL pointer deref-
erence. The last was a missing return statement. Unlike
model checking, we do not get counterexamples during de-
ductive verification. Instead, a bug results in a failed proof
for a VC, and is discovered by inspecting the VC manually.

– In addition to function contracts, we added 10 loop in-
variants to enable frama-c to complete verification success-
fully. In most cases, the loop invariants were simple, and
required modest effort to construct. One particularly com-
plicated case involved multiple nested loops.

– In some cases, frama-c required “supporting asser-
tions” to complete successful verification. In essence, this
allows the use of Hoare’s chaining rule. For example, con-
sider a program c1; c2 where ; denotes sequential compo-
sition. Suppose we have to prove {P}c1; c2{Q}. The VC
generated for this may be too difficult for an SMT solver.
However, suppose we add an assertion α after c1. Then
proving {P}c1;α; c2{Q} is reduced by frama-c to proving
{P}c1{α} and {α}c2{Q} separately. The VCs for these two
sub-proofs are simpler and in practice easier to discharge.

We believe that both the annotation level and the verifica-
tion effort are comparable to other recent deductive source
code verification efforts. Moreover, the effort is justified
since it targets a critical, continuously used, and rarely-
updated component of safety-critical systems and the effort
is amortized over the long deployment of such systems.

Related Work. There has been a recent resurgence of
deductive software verification [10] driven by well-designed
contract specification languages such as acsl and Ada
2012 [3], SMT solvers such as Z3 and CVC, and auto-active
verifiers such as frama-c and Boogie. This technique has
been used to verify complex software ranging from container
libraries, numeric programs, to full-fledged operating sys-
tems [4, 8]. Our work aims to build on this work to ver-
ify timing enforcers. Timing enforcers, such as zsrm [5],
are typically verified at the protocol/algorithmic level. Our
goal is to push verification closer to its actual implementa-
tion. Finally, the use of deductive verification for real-time
systems has been performed [1] but the focus has been on
models. In contrast, we focus on source code.

Ongoing and Future Work. We are currently finishing
up the verification of zsrm. Currently, we assume that
stac_time returns the precise value of physical time. Of
course, this is impossible since all computation takes time,
and the value returned by stac_time must be less that phys-
ical time at the point where control returns to its caller. We
must model this appropriately using contracts. This in turn
requires defining a formal semantics of STACs, which is one
of our goals. Finally, we aim to validate our approach on
other timing enforcers besides zsrm.
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