
1
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.
REV-03.18.2016.0

Modeling, Verifying, and
Generating Software for
Distributed Cyber-
Physical Systems using
DMPL and AADL

Sagar Chaki, Dionisio de Niz,

Joseph Seibel

October 6, 2016

2
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering

Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0004058

3
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)

Distributed Adaptive Real-Time (DART) systems are key to many

areas of DoD capability (e.g., autonomous multi-UAS missions) with

civilian benefits.

However achieving high assurance DART software is very difficult

• Concurrency is inherently difficult to reason about.

• Uncertainty in the physical environment.

• Autonomous capability leads to unpredictable behavior.

• Assure both guaranteed and probabilistic properties.

• Verification results on models must be carried over to source

code.

High assurance is unachievable via testing or ad-hoc verification

Goal: Create a sound engineering approach for producing high-

assurance software for Distributed Adaptive Real-Time (DART)

Motivation

4
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)

Formal

Description of

System &

Properties

Verification
Code

Generation

1. Use DMPL (a DSL we developed) & AADL
2. Enables compositional and requirement
specific verification
3. Use proactive self-adaptation and mixed
criticality to cope with uncertainty and changing
context

Demonstrate on DoD-relevant model problem
(DART prototype)

• Engaged stakeholders
• Technical and operational validity

1. ZSRM Schedulability (Timing)
2. Software Model Checking (Functional)
3. Statistical Model Checking (Probabilistic)

Brings Assurance to Code
1. Middleware for communication
2. Scheduler for ZSRM
3. Monitor for runtime assurance

DART Approach

https://github.com/cps-sei/dart
http://cps-sei.github.io/dart

5
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Architecture

DMPL

AADL

Proactive
Self-

Adaptation

Statistical
Model

Checking

MADARA
Middleware

ZSRM
Scheduling

Functional
Verification

Constrain the system structure and
behavior to facilitate tractable analysis
and code generation

Program DART systems and
specify properties in a
precise manner

Use probabilistic model
checker to repeatedly
compute optimal adaptation
strategies with bounded
lookahead

Evaluate adaptation
strategy quality over
mission lifetime

Provides efficient
distributed shared
variables with well-defined
data consistency and
quality of service

Ensures high-critical tasks
meet their deadlines
despite CPU overload

- Parameterized Verification
- Combine model checking &
hybrid analysis to ensure end-
to-end CPS correctness

6
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

𝑁𝑜𝑑𝑒1
𝑁𝑜𝑑𝑒𝑘

Environment
– network,
sensors,
atmosphere,
ground etc.

Low-Critical
Threads (LCTs)

High-Critical
Threads (HCTs)

H
C
T

L
C
T

Software for guaranteed

requirements, e.g., collision

avoidance protocol must

ensure absence of collisions

ZSRM Mixed-Criticality Scheduler

OS/Hardware

Sched

OS/HW

MADARA Middleware MADARA

Software for probabilistic

requirements, e.g., adaptive path-

planner to maximize area coverage

within deadline

Sensors &

Actuators

Distributed

Shared

MemoryBaked into the
programming
languages used

Design constraint
enables analysis
tractability

7
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)

AADL : Architecture Analysis and Description Language

DMPL : DART Modeling and Programming Language

AADL : High level architecture + threads + real-time attributes

• Perform ZSRM schedulability via OSATE Plugin

• Contains DMPL code as sub-language (annex)

DMPL : Behavior (standalone or as AADL annex)

• Roles : leader, protector

• Functions : mapped to real-time threads

• Period, priority, criticality (generated from AADL)

• C-style syntax. Invoke external libraries and components

• Functional properties (safety) : software model checking

• Probabilistic properties (expectation) : statistical model checking

AADL and DMPL supports the right level of abstraction at architecture and code level to
formally reason about DART systems

8
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)

DART Modeling and Programming Language (DMPL)

Domain-Specific Language for DART programming and verifying

• C-like syntax

• Balances expressivity with precise semantics

• Supports formal assertions usable for model checking and
probabilistic model checking

• Physical and logical concurrency can be expressed in sufficient detail
to perform timing analysis

• Can invoke external libraries and components

• Generates C++ targeted at a variety of platforms

Developed syntax, semantics, and compiler

AADL and DMPL supports the right level of abstraction at architecture and code level to
formally reason about DART systems

https://github.com/cps-sei/dart

9
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

High
Hazard

Area

Adaptation: Formation
change (loose ⇔ tight)
Loose: fast but high leader
exposure
Tight: slow but low leader
exposure

Low
Hazard

Area

Loose
Formation

Tight
Formation

Challenge: compute the probability of
reaching end of mission in time 𝑻 while
never reducing protection to less than
𝑿.
Challenge: compare between different
adaptation strategies.
Solution: Statistical model checking
(SMC)

Example: Self-Adaptive and Coordinated UAS Protection

10
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

𝐿𝑒𝑎𝑑𝑒𝑟

Waypoint
Collision
Avoidance

ZSRM Mixed-Criticality Scheduler

OS/Hardware

MADARA Middleware

Adaptation
Manager

Threads

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑜𝑟

Waypoint
Collision
Avoidance

ZSRM Scheduler

OS/Hardware

MADARA Middleware

DART
System

Nodes

Consists
of

Can be

Roles

11
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Section (optional)
Picture

(optional)

node uav {

local input int x,y;

local int xp=x, yp=y;

global lock[X][Y] = {…}

role Leader {

thread COLLISION_AVOIDACE {…}

thread WAYPOINT {…}

thread ADAPTATION_MANAGER {…}

}

role Protector {

thread COLLISION_AVOIDACE {…}

thread WAYPOINT {…}

}

}

𝐿𝑒𝑎𝑑𝑒𝑟Waypoint
Collision
Avoidance

Adaptation
Manager

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑜𝑟Waypoint
Collision
Avoidance

Shared between threads on the same node.
Used to communicate next waypoint.

Shared between threads on different
nodes. Used for collision avoidance,

12
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

DMPL file

MISSION file

DMPLC
Compiler C++ file

g++ Binary

Platform
(VREP)

Number of nodes
Roles they play
Initial values of input vars
Mission time …

DART System

Command Line Toolchain

13
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

DMPL file

MISSION file

DMPLC
Compiler C++ file

g++
Binary

Platform
(VREP)

DART System

AADL

DMPL and MISSION files expressed
in AADL as a sub-language (a.k.a.
“annex”) and properties

OSATE

AADL/OSATE Toolchain

OSATE

OSATE performs parsing, syntax checking,
etc., generates DMPL and mission files
and invokes the rest of the toolchain

14
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Guarantees deadlines of high-criticality tasks even in overloads

• e.g. too many obstacles to avoid

Lower criticality tasks meet their deadlines if no overloads in higher criticality

Asymmetric protection: protect higher-criticality from lower-criticality but higher-
criticality can steal CPU cycles from lower-criticality one.

Schedule under RMS, stop lower-criticality tasks at last instant to ensure finishing
overload by the deadline (zero-slack)

2 1

2 ½ 2½

1tLC =(2,2,4,4)

tHC =(2.5,5,8,8)

Normal Mode Critical Mode

Zero-Slack Instant

time

15
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

DMPL file +
Zero Slack
Instants

MISSION file

DMPLC
Compiler C++ file

g++
Binary

Platform
(VREP)

DART System

AADL

DMPL and MISSION files expressed
in AADL as a sub-language (a.k.a.
“annex”) and properties

OSATE

AADL/OSATE Toolchain

OSATE

OSATE performs ZSRM schedulability analysis,
computes Zero-Slack Instants for each thread
and inserts them in the DMPL file

16
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Distributed

Application

Safety

Specification

Sequentialization

(DMPLC)

Single-Threaded

C Program

Software Model Checking

Failure Success

DMPL Program

Assume

Synchronous

Model of

Computation

Round

Invariants

node uav {

local input int x,y;

local int xp=x, yp=y;

role Leader {…}

role Protector {…}

forall_distinct_nodes(i1,i2)

(x@i1 != x@i2 || y@i1 != y@i2);

forall_nodes(i)

(x@i == xp@i || y@i == yp@i);

}

OSATE performs
sequentialization
(via dmplc) and
invokes CBMC

17
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Bounded Model
Checking can prove
correct behavior up
to a finite number
of execution steps
(e.g., rounds of
synchronous
computation.

Useful to find bugs.

But incomplete. Can
miss bugs if we do
not check up to
sufficient depth.

Unbounded Model
Checking can prove
correct behavior up to a
arbitrary number of
execution steps.

Useful for complete
verification. Will never
miss bugs.

But can be expensive to
synthesize inductive
invariants. Cost can be
managed by supplying
invariants manually and
checking that they are
inductive. We have
experimented with both
approaches.

Parameterized Model Checking
can prove correct behavior up
to a arbitrary number of
execution steps and an
arbitrary number of nodes.

Useful for complete
verification. Will never miss
bugs even if you have very
large number of nodes.

Very hard in general but we
have developed a sound and
complete procedure that
works for programs written in
a restricted style and for a
restricted class of properties.
This was sufficient to verify our
collision avoidance protocol.

18
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

No existing tools to verify (source code + hybrid
automata)

• But each domain has its own specialized
tools: software model checkers and hybrid
reachability checkers

• Developing such a tool that combines the
statespace 𝐴 and 𝐶 in a brute-force way will
not scale

Insight: application and controller make assumptions
about each other to achieve overall safe behavior

Approach:

• Use “contract automaton” to express inter-
dependency between 𝐴 and 𝐶

• Separately verify that 𝐴 and 𝐶 implement
desired behavior under the assumption that
the other party does so as well

• Use an “assume-guarantee” style proof rule to
show the 𝐴 ∥ 𝐶 ⊨ Φ

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

Shared Variables
(Cyber & Physical)

API Function
Parameters

Verifying Cyber-Physical Systems by Combining Software Model Checking
with Hybrid Systems Reachability. Stanley Bak, Sagar Chaki. International
Conference on Embedded Software (EMSOFT), 2016

19
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Etimate probability for each property via “Bernoulli Trials”

Number of trials depends on

• desired “relative error” (st.dev. / mean)

• true probability of the property

Running trials in parallel reduces required simulation time.

• SMC Runner invokes Vrep simulation on each node.

• SMC Master collects results and determines if
precision is met.

• Simulations run in “batches” to prevent simulation
time bias.

Importance sampling (focuses simulation effort on faults)

Statistical Model

Checker

DMPL Program ℳ with
random inputs

Probabilistic Property 𝝓
encoded in DMPL

Estimated
Probability that
ℳ ⊨ 𝝓 with
relative error 𝑹𝑬

Target relative error
𝑹𝑬

node uav {

local input int x,y;

local int xp=x, yp=y;

role Leader {…}

role Protector {…}

double coverage() {…}

expect at_end (coverage() > 0.8);

}

3

20
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

𝑅𝑒𝑠𝑢𝑙𝑡1
log-

analyze
log-gen

log-gen
log-gen

log-
analyze

log-
analyze

𝑅𝑒𝑠𝑢𝑙𝑡1𝑅𝑒𝑠𝑢𝑙𝑡𝑛

Update
𝑅𝑒𝑠𝑢𝑙𝑡
and 𝑅𝐸

𝑅𝐸 acceptable?

𝑁𝑜

𝑌𝑒𝑠

𝑅𝑒𝑠𝑢𝑙𝑡

Batch Log and Analyze

SMC Runner

SMC Master

DART Distributed
Statistical MC

DMPL
File

SMC
File

OSATE generates
DMPL and SMC
file from AADL

21
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Goal: Develop parallel infrastructure for SMC of
DART systems

Accomplishments:

• Initial implementation with hand-written
scripts for managing multiple virtual machines

• Created master-client SMC architecture with
web-based control

- Each client runs a simulation managed by master

- Results stored in mysql database.

• Update SMC code generation to new DART/DMPL
syntax

• DEMETER: More robust infrastructure using “docker”

SMC

Master

(Apache+PHP)

Results

(MySQL)

SMC

Job

SMC

Client

(firefox)

SMC

Runner
Simulation

Docker Container

SMC

Runner
Simulation

Docker Container

David Kyle, Jeffery P. Hansen, Sagar Chaki: Statistical Model Checking
of Distributed Adaptive Real-Time Software. RV 2015: 269-274

Jeffery P. Hansen, Sagar Chaki, Scott A. Hissam, James R. Edmondson,
Gabriel A. Moreno, David Kyle: Input Attribution for Statistical Model
Checking Using Logistic Regression. RV 2016: 185-200

22
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Scenarios
Stage 0 – basic 3D collision avoidance
Stage 1 – Navigation of “ensemble” from Point A to Point B
Stage 2 – Navigation of “ensemble” from Point A to Point B through
intermediate waypoints
Stage 3: Add detection of solid objects, obstacles

Assume unobstructed path exists between Point A and Point B
Navigation of “ensemble” from Point A to Point B

Stage 4: “Map” obstructions in a 3D region
Stage 5

Add ability to detect location of potential “threats” (analogous to
identifying IFF transponders)
“Map” threats and obstructions in 3D region

Stage 6
Add mobility to “threats”
Maintain overwatch of region and keep track of location of “threats” that
move in the environment

23
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

QUESTIONS?

