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Section (optional)
Picture

(optional)

Distributed Adaptive Real-Time (DART) systems are key to many 

areas of DoD capability (e.g., autonomous multi-UAS missions) with 

civilian benefits.

However achieving high assurance  DART software is very difficult 

• Concurrency is inherently difficult to reason about.

• Uncertainty in the physical environment.

• Autonomous capability leads to unpredictable behavior.

• Assure both guaranteed and probabilistic properties.

• Verification results on models must be carried over to source 

code.

High assurance is unachievable via testing or ad-hoc verification

Goal: Create a sound engineering approach for producing high-

assurance software for Distributed Adaptive Real-Time (DART)

Motivation
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Formal 

Description of 

System & 

Properties

Verification
Code 

Generation

1. Use DMPL (a DSL we developed) & AADL
2. Enables compositional and requirement 
specific verification
3. Use proactive self-adaptation and mixed 
criticality to cope with uncertainty and changing 
context

Demonstrate on DoD-relevant model problem 
(DART prototype)

• Engaged stakeholders
• Technical and operational validity

1. ZSRM Schedulability (Timing)
2. Software Model Checking (Functional)
3. Statistical Model Checking (Probabilistic)

Brings Assurance to Code
1. Middleware for communication
2. Scheduler for ZSRM
3. Monitor for runtime assurance

DART Approach

https://github.com/cps-sei/dart
http://cps-sei.github.io/dart
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Architecture

DMPL

AADL

Proactive 
Self-

Adaptation

Statistical 
Model 

Checking

MADARA
Middleware

ZSRM 
Scheduling

Functional 
Verification

Constrain the system structure and 
behavior to facilitate tractable analysis 
and code generation

Program DART systems and 
specify properties in a 
precise manner

Use probabilistic model 
checker to repeatedly 
compute optimal adaptation 
strategies with bounded 
lookahead

Evaluate adaptation 
strategy quality over 
mission lifetime

Provides efficient 
distributed shared 
variables with well-defined 
data consistency and 
quality of service

Ensures high-critical tasks 
meet their deadlines 
despite CPU overload

- Parameterized Verification
- Combine model checking & 
hybrid analysis to ensure end-
to-end CPS correctness
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𝑁𝑜𝑑𝑒1
𝑁𝑜𝑑𝑒𝑘

Environment 
– network, 
sensors, 
atmosphere, 
ground etc.

Low-Critical 
Threads (LCTs)

High-Critical 
Threads (HCTs)

H
C
T

L
C
T

Software for guaranteed 

requirements, e.g., collision 

avoidance protocol must 

ensure absence of collisions

ZSRM Mixed-Criticality Scheduler

OS/Hardware

Sched

OS/HW

MADARA Middleware MADARA

Software for probabilistic 

requirements, e.g., adaptive path-

planner to maximize area coverage 

within deadline

Sensors & 

Actuators

Distributed 

Shared 

MemoryBaked into the 
programming 
languages used

Design constraint 
enables analysis 
tractability
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AADL : Architecture Analysis and Description Language

DMPL : DART Modeling and Programming Language

AADL : High level architecture + threads + real-time attributes

• Perform ZSRM schedulability via OSATE Plugin

• Contains DMPL code as sub-language (annex)

DMPL : Behavior (standalone or as AADL annex)

• Roles : leader, protector

• Functions : mapped to real-time threads

• Period, priority, criticality (generated from AADL)

• C-style syntax. Invoke external libraries and components

• Functional properties (safety) : software model checking

• Probabilistic properties (expectation) : statistical model checking

AADL and DMPL supports the right level of abstraction at architecture and code level to 
formally reason about DART systems
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DART Modeling and Programming Language (DMPL)

Domain-Specific Language for DART programming and verifying

• C-like syntax

• Balances expressivity with precise semantics

• Supports formal assertions usable for model checking and 
probabilistic model checking

• Physical and logical concurrency can be expressed in sufficient detail 
to perform timing analysis

• Can invoke external libraries and components

• Generates C++ targeted at a variety of platforms

Developed syntax, semantics, and compiler

AADL and DMPL supports the right level of abstraction at architecture and code level to 
formally reason about DART systems

https://github.com/cps-sei/dart
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High 
Hazard 

Area

Adaptation: Formation 
change (loose ⇔ tight)
Loose: fast but high leader 
exposure
Tight: slow but low leader 
exposure

Low 
Hazard 

Area

Loose 
Formation

Tight 
Formation

Challenge: compute the probability of 
reaching end of mission in time 𝑻 while 
never reducing protection to less than 
𝑿.
Challenge: compare between different 
adaptation strategies.
Solution: Statistical model checking 
(SMC)

Example: Self-Adaptive and Coordinated UAS Protection
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𝐿𝑒𝑎𝑑𝑒𝑟

Waypoint
Collision 
Avoidance

ZSRM Mixed-Criticality Scheduler

OS/Hardware

MADARA Middleware

Adaptation 
Manager

Threads

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑜𝑟

Waypoint
Collision 
Avoidance

ZSRM Scheduler

OS/Hardware

MADARA Middleware

DART 
System

Nodes

Consists 
of

Can be

Roles
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node uav {

local input int x,y;

local int xp=x, yp=y;

global lock[X][Y] = {…}

role Leader {

thread COLLISION_AVOIDACE {…}

thread WAYPOINT {…}

thread ADAPTATION_MANAGER {…}

}

role Protector {

thread COLLISION_AVOIDACE {…}

thread WAYPOINT {…}

}

}

𝐿𝑒𝑎𝑑𝑒𝑟Waypoint
Collision 
Avoidance

Adaptation 
Manager

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑜𝑟Waypoint
Collision 
Avoidance

Shared between threads on the same node. 
Used to communicate next waypoint.

Shared between threads on different 
nodes. Used for collision avoidance,
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DMPL file

MISSION file

DMPLC 
Compiler C++ file

g++ Binary

Platform 
(VREP)

Number of nodes
Roles they play
Initial values of input vars
Mission time …

DART System

Command Line Toolchain



13
DMPL & AADL

October 6, 2016

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release 

and unlimited distribution.

DMPL file

MISSION file

DMPLC 
Compiler C++ file

g++
Binary

Platform 
(VREP)

DART System

AADL

DMPL and MISSION files expressed 
in AADL as a sub-language (a.k.a. 
“annex”) and properties

OSATE

AADL/OSATE Toolchain

OSATE

OSATE performs parsing, syntax checking, 
etc., generates DMPL and mission files 
and invokes the rest of the toolchain
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Guarantees deadlines of high-criticality tasks even in overloads 

• e.g. too many obstacles to avoid

Lower criticality tasks meet their deadlines if no overloads in higher criticality

Asymmetric protection: protect higher-criticality from lower-criticality but higher-
criticality can steal CPU cycles from lower-criticality one.

Schedule under RMS, stop lower-criticality tasks at last instant to ensure finishing 
overload by the deadline (zero-slack)

2 1

2 ½ 2½

1tLC =(2,2,4,4)

tHC =(2.5,5,8,8)

Normal Mode Critical Mode

Zero-Slack Instant

time
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DMPL file + 
Zero Slack 
Instants

MISSION file

DMPLC 
Compiler C++ file

g++
Binary

Platform 
(VREP)

DART System

AADL

DMPL and MISSION files expressed 
in AADL as a sub-language (a.k.a. 
“annex”) and properties

OSATE

AADL/OSATE Toolchain

OSATE

OSATE performs ZSRM schedulability analysis, 
computes Zero-Slack Instants for each thread 
and inserts them in the DMPL file
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Distributed 

Application

Safety 

Specification

Sequentialization

(DMPLC)

Single-Threaded

C Program

Software Model Checking 

Failure Success

DMPL Program

Assume

Synchronous 

Model of 

Computation

Round

Invariants

node uav {

local input int x,y;

local int xp=x, yp=y;

role Leader {…}

role Protector {…}

forall_distinct_nodes(i1,i2)

(x@i1 != x@i2 || y@i1 != y@i2);

forall_nodes(i)

(x@i == xp@i || y@i == yp@i);

}

OSATE performs 
sequentialization
(via dmplc) and 
invokes CBMC
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Bounded Model 
Checking can prove 
correct behavior up 
to a finite number 
of execution steps 
(e.g., rounds of 
synchronous 
computation.

Useful to find bugs.

But incomplete. Can 
miss bugs if we do 
not check up to 
sufficient depth.

Unbounded Model 
Checking can prove 
correct behavior up to a 
arbitrary number of 
execution steps.

Useful for complete 
verification. Will never 
miss bugs.

But can be expensive to 
synthesize inductive 
invariants. Cost can be 
managed by supplying 
invariants manually and 
checking that they are 
inductive. We have 
experimented with both 
approaches. 

Parameterized Model Checking 
can prove correct behavior up 
to a arbitrary number of 
execution steps and an 
arbitrary number of nodes.

Useful for complete 
verification. Will never miss 
bugs even if you have very 
large number of nodes.

Very hard in general but we 
have developed a sound and 
complete procedure that 
works for programs written in 
a restricted style and for a 
restricted class of properties. 
This was sufficient to verify our 
collision avoidance protocol.
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No existing tools to verify (source code + hybrid 
automata)

• But each domain has its own specialized 
tools: software model checkers and hybrid 
reachability checkers

• Developing such a tool that combines the 
statespace 𝐴 and 𝐶 in a brute-force way will 
not scale

Insight: application and controller make assumptions 
about each other to achieve overall safe behavior

Approach:

• Use “contract automaton” to express inter-
dependency between 𝐴 and 𝐶

• Separately verify that 𝐴 and 𝐶 implement 
desired behavior under the assumption that 
the other party does so as well

• Use an “assume-guarantee” style proof rule to 
show the 𝐴 ∥ 𝐶 ⊨ Φ

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

Shared Variables 
(Cyber & Physical)

API Function 
Parameters

Verifying Cyber-Physical Systems by Combining Software Model Checking 
with Hybrid Systems Reachability. Stanley Bak, Sagar Chaki. International 
Conference on Embedded Software (EMSOFT), 2016
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Etimate probability for each property via “Bernoulli Trials”

Number of trials depends on

• desired “relative error” (st.dev. / mean)

• true probability of the property

Running trials in parallel reduces required simulation time.

• SMC Runner invokes Vrep simulation on each node.

• SMC Master collects results and determines if 
precision is met.

• Simulations run in “batches” to prevent simulation 
time bias.

Importance sampling (focuses simulation effort on faults)

Statistical Model 

Checker

DMPL Program ℳ with 
random inputs

Probabilistic Property 𝝓
encoded in DMPL

Estimated 
Probability that 
ℳ ⊨ 𝝓 with 
relative error 𝑹𝑬

Target relative error 
𝑹𝑬

node uav {

local input int x,y;

local int xp=x, yp=y;

role Leader {…}

role Protector {…}

double coverage() {…}

expect at_end (coverage() > 0.8);

}

3
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𝑅𝑒𝑠𝑢𝑙𝑡1
log-

analyze
log-gen

log-gen
log-gen

log-
analyze

log-
analyze

𝑅𝑒𝑠𝑢𝑙𝑡1𝑅𝑒𝑠𝑢𝑙𝑡𝑛

Update 
𝑅𝑒𝑠𝑢𝑙𝑡
and 𝑅𝐸

𝑅𝐸 acceptable?

𝑁𝑜

𝑌𝑒𝑠

𝑅𝑒𝑠𝑢𝑙𝑡

Batch Log and Analyze

SMC Runner

SMC Master

DART Distributed 
Statistical MC

DMPL 
File

SMC 
File

OSATE generates 
DMPL and SMC 
file from AADL
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Goal: Develop parallel infrastructure for SMC of 
DART systems

Accomplishments:

• Initial implementation with hand-written 
scripts for managing multiple virtual machines

• Created master-client SMC architecture with 
web-based control

- Each client runs a simulation managed by master

- Results stored in mysql database.

• Update SMC code generation to new DART/DMPL 
syntax

• DEMETER: More robust infrastructure using “docker”

SMC

Master

(Apache+PHP)

Results

(MySQL)

SMC

Job

SMC

Client

(firefox)

SMC

Runner
Simulation

Docker Container

SMC

Runner
Simulation

Docker Container

David Kyle, Jeffery P. Hansen, Sagar Chaki: Statistical Model Checking 
of Distributed Adaptive Real-Time Software. RV 2015: 269-274

Jeffery P. Hansen, Sagar Chaki, Scott A. Hissam, James R. Edmondson, 
Gabriel A. Moreno, David Kyle: Input Attribution for Statistical Model 
Checking Using Logistic Regression. RV 2016: 185-200
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Scenarios
Stage 0 – basic 3D collision avoidance
Stage 1 – Navigation of “ensemble” from Point A to Point B
Stage 2 – Navigation of “ensemble” from Point A to Point B through 
intermediate waypoints
Stage 3: Add detection of solid objects, obstacles

Assume unobstructed path exists between Point A and Point B
Navigation of “ensemble” from Point A to Point B

Stage 4: “Map” obstructions in a 3D region
Stage 5

Add ability to detect location of potential “threats” (analogous to 
identifying IFF transponders)
“Map” threats and obstructions in 3D region

Stage 6
Add mobility to “threats”
Maintain overwatch of region and keep track of location of “threats” that 
move in the environment
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