
Binary Function Clustering using Semantic Hashes

Wesley Jin, Sagar Chaki, Cory Cohen, Arie Gurfinkel, JeffreyHavrilla, Charles Hines, and Priya Narasimhan
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract—The ability to identify semantically-related func-
tions, in large collections of binary executables, is important for
malware detection. Intuitively, two pieces of code are similar
if they have the same effect on a machine’s state. Current
state-of-the-art tools employ a variety of pairwise comparisons
(e.g., template matching using SMT solvers, Value-Set analysis
at critical program points, API call matching, etc.) However,
these methods are unscalable for clustering large datasets, of
sizeN , since they requireO(N2) comparisons. In this paper,
we present an alternative approach based upon “hashing”. We
propose a scheme that captures the semantics of functions as
semantic hashes. Our approach treats a function as a set of
features, each of which represent the input-output behavior of
a basic block. Using a form of locality-sensitive hashing known
as MinHashing, functions with many common features can be
quickly identified, and the complexity of clustering is reduced
to O(N). Experiments on functions extracted from the CERT
malware catalog indicate that we are able to cluster closely-
related code with a low false positive rate.

Keywords-semantic comparison; malware detection; cluster-
ing; reverse engineering; binary static analysis;

I. I NTRODUCTION

Malware reverse engineers are bombarded with an over-
whelming number of unique files each day. For example,
the CERT malicious code team at the Software Engineer-
ing Institute (SEI) receives nearly a million binaries (i.e.,
executable files) each month [4], which must be processed,
analyzed and indexed. It is estimated that approximately half
of these samples are identical to, or variants of, malware
that have been previously cataloged [4]. Thus, the ability to
automatically detect similarity among binaries enables the
faster removal of duplicates, streamlining the malware index.
Furthermore, identifying related binaries is an importantand
manual process. Effective detection of similar code allows
improved allocation of the analyst’s time and effort.

In recent years, a significant amount of research has
been done on comparing thesemanticsof malicious code
(e.g., [14], [5], [10], [7], [1]). Despite some variation on
the exact definition of semantic similarity, a common idea
is that related programs make similar changes to the state
of a system (i.e., registers and memory). Previous work has
focused on comparing pairs of malware binaries. The set of
system-state changes for a binary is extracted and compared
with that of another. Unfortunately, in order to categorizea
large collection ofN malware binaries into distinct families,
this pairwise approach would requireO(N2) comparisons.

In this paper, we address this scalability problem by
introducing the notion of asemantic hashfor functions.

The goal is tocapture machine-state changes, made at a
function-level, in a form that facilitates fast comparison.
This representation reduces the task of comparing a set of
binaries to identifying collisions among hashes generated
by members of the set. It also enables analysts to search an
index of previously cataloged hashes for a specified function.

Detecting similarity between functions achieves two pur-
poses. First, it enables us to focus on a restricted, but
still useful, sub-problem of whole program comparison.
Functions are the basic semantic and syntactic units of which
a binary is composed. Two binaries that share many similar
functions are likely to be similar as well. Second, function
similarity integrates nicely with existing binary analysis
workflows. Reverse engineers typically reconstruct the over-
all behavior of a binary from that of its constituent functions.
Knowing similarity at the function level is therefore useful
to judge similarity at the level of binaries.

Specifically, we make the following contributions. First,
we design a semantic hashH for binary functions such
that H(f1) = H(f2) with high probability if f1 and f2
have similar input-output behavior over the system state.
The overall similarity-detection algorithm then works by:
(i) hashing each function; (ii) clustering functions basedon
their hash (i.e., two functions are in the same cluster iff they
have the same semantic hash) and (iii) declaring all functions
in the same cluster to be potentially related. This approach
is automatable and linear in the number of functions, and
therefore scalable to function collections of realistic size.

Second, we evaluateH over functions derived from the
CERT artifact catalog. We empirically demonstrate thatH
is effective (i.e., able to detect a large number of duplicates)
on current malware samples. In one case, it is able to reduce
the sample size by a factor of over 500 compared to a
state-of-the-art competing hashing scheme. In addition, our
interactions with expert reverse engineers at CERT indicate
that this technique is sufficiently accurate for operational
use.

The rest of this paper is structured as follows. In Sec-
tion II, we survey related work. In Section III, we present
preliminary concepts. In Section IV, we state the problem.
In Section V, we present our semantic and syntactic fea-
tures, and the procedures for extracting them from function
descriptions. In Section VI, we present our experiments and
results. In Section VII, we conclude.

II. RELATED WORK

A number of different approaches have been proposed
for determining binary similarity. For example, several re-
searchers have used feature vector comparison to detect code
clones [12], and to protect against malware [14].

Gao et al. [7] use a control-flow based analysis that
combines graph isomorphism, symbolic simulation, and
theorem proving to detect semantic differences in binaries.
Leder et al. [10] use value-set analysis to characterize and
compare the semantic behavior of programs at various points
of interest. Apel et al. [1] propose metrics for malware
similarity.

Christodorescu et al. [5] represent malware behavior as
a 3-tuple (instructions, variables, constants), called a tem-
plate. A sequence of instructionss is flagged as potentially
malicious if the changes made to memory bys is provably
the same as that of a template. This work relies on an SMT-
solver to find a bijection between each node of a malware
tuple and the one extracted from the target sequence. Thus,
it scales poorly to a large number of files and templates.

Leder et al. [10] use value set analysis to approximate
the contents of registers and memory at “points of interest”
in a program. Two sequences of instructions are deemed
equivalent if they produce the same set of values at one
of these points. Thus, this technique is able to detect
code written with semantically-equivalent, but syntactically
different, instructions. By comparing the sets generated by
known malware with those of unclassified code, a program is
flagged as malicious or not. However, once again, pair-wise
comparison of value sets scales poorly.

Zhang et al. [15] use data-flow analysis to resolve library
calls and call sequences for comparison. This approach can
be viewed as comparing the value of the program counter
at various points in the execution of a program. However,
sequence comparison suffers from the same pair-wise scal-
ability issue as template matching and set comparison.

Cohen et al. [6] explore the use of cryptographic hashes
to study program similarity. This work is closely related
to ours, and generates hashes from actual instruction bytes.
We extend this work by assigning semantic, as opposed to
syntactic, meaning to hashes.

III. B ACKGROUND

We write F : X →֒ Y to denote a (possibly partial)
mapping fromX to Y , whereDom(F) is a subset ofX
that has a valid mapping toY .

Functions.Intuitively, a function is characterized by: (i) a
partial mapping from addresses to instructions, (ii) a specific
start address, and (iii) an end address. We assume a totally-
ordered set of addresses,AddressSpace (i.e., the set of 32-
bit unsigned integers), and a setInst of instructions, each
comprising of an opcode and zero or more operands.

Definition 1: A function is a tuple(Body,S tart,End)
where: (i) Body : AddressSpace →֒ Inst is a partial

mapping between addresses and instructions, and (ii)∀a ∈
Dom(Body),S tart ≤ a ≤ End .

We view a function as a sequence of bytes representing
each instruction in its body. This is known as the “exact-
byte” (or EBYTE) representation, and defined as follows.

EBYTE Representation.Let S tr be the set of finite-length
byte sequences (or strings), and• be string concatenation.
Let ǫ : Inst 7→ S tr be the mapping from instructions to
strings specified in the instruction set. For a functionf =
(Body,S tart,End), let A = 〈a1, . . . , an〉 be the sequence
of addresses obtained by sortingDom(Body) in increasing
order, andI = 〈i1, . . . , in〉 be the sequence of instructions
such that:ik = Body(ak) for 1 ≤ k ≤ n. Let MD5 be the
MD5 hash function. The EBYTE representation and EHASH
of f , denoted byf.EB andf.EHash respectively, are:

f.EB = ǫ(i1) • · · · • ǫ(in) f.EHash = MD5(f.EB)

Functions compiled from the same source code often
have EBYTE representations that differ only in the address
values they refer to. This is typically caused by differences
in the memory layout during compilation. Such functions
therefore have different EHASH values even though they
are identical. To overcome this limitation of EBYTES, we
define a “position-independent” (or PBYTE) representation.

PBYTE Representation.Let π : Inst 7→ S tr be the
mapping from instructions to byte sequences such thatπ(i)
is obtained by replacing all address values inǫ(i) with
zeroes. Then the PBYTE representation and PHASH off ,
denoted byf.PB andf.PHash respectively, are:

f.PB = π(i1) • · · · • π(in) f.PHash = MD5(f.PB)

Example 1:Figure 1 shows a basic block of a functionf
with starting address80483BC, Body, ǫ andπ. Zeroed-out
and zero addresses are shown in red and blue, respectively.
f.EB andf.PB are, respectively, the concatenation of the
elements of the third and fourth columns.

Addressa Instruction ǫ(i) π(i)
i = Body(a)

80483BC push %ebp 55 55
80483BD mov %esp,%ebp 89E5 89E5
80483BF sub $0x14,%esp 83EC14 83EC14
80483C2 mov 0x10(%ebp),%eax 8B4510 8B4510
80483C5 mov %eax,(%esp) 890424 890424
80483C8 call 80483b4 E8E7FFFFFF E800000000
80483CD mov %eax,-0x4(%ebp) 8945FC 8945FC
80483D0 cmpl $0x0,0x8(%ebp) 837D0800 837D0800
80483D4 je 80483e4 740E 740E
80483D6 mov 0xc(%ebp),%eax 8B450C 8B450C
80483D9 mov %eax,(%esp) 890424 890424
80483DC call 80483b4 E8D3FFFFFF E800000000
80483E1 mov %eax,-0x4(%ebp) 8945FC 8945FC
80483E4 mov -0x4(%ebp),%eax 8B45FC 8B45FC
80483E7 leave C9 C9
80483E8 ret C3 C3

Figure 1. A basic block of an example function, withǫ andπ mapping.

PHASH improves over EHASH by eliminating duplica-
tion due to memory layout differences. However, it fails

push %ebp

sub $0x14,%esp
mov %esp,%ebp

mov 0x10(%ebp),%eax
mov %eax,(%esp)
call 80483b4

B5

mov %eax,−0x4(%ebp)

mov −0x4(%ebp), %eax
leave
ret

B4

mov %eax,−0x4(%ebp)
cmpl $0x0,0x8(%ebp)
je 80483e4

B2
B1

B3

mov 0xc(%ebp),%eax
mov %eax,(%esp)
call 80483b4

Figure 2. An example CFG.B1 is the entry node andB4 is the exit node.

against two other types of duplication: (i) instruction sub-
stitution – where an instruction sequence is replaced with a
semantically equivalent one, e.g., to obfuscate malware; (ii)
instruction sequence reordering – due to compiler optimiza-
tions. In the next section, we present our semantic hashH
designed to eliminate both these duplications.

MinHashing. MinHashing – developed by Andrei
Broder [2] – is a form of locality-sensitive hashing that per-
mits fast set comparison. The MinHash algorithm produces
the same hash for a pair of sets –A andB – with probability
JI(A,B), whereJI(A,B) is the Jaccard Index [8] ofA and
B is defined as:

JI(A,B) =
|A ∩B|

|A ∪B|

We useM inHash(A) to denote the MinHash of setA.
The M inHash algorithm usesk independent hash func-
tions. Unless otherwise mentioned, our implementation of
M inHash uses five hash functions, i.e.,k = 5.

IV. PROBLEM STATEMENT

Given a large set of binary functionsD, out goal is to
generate hashes for each function, such that collisions are
likely to occur for similar functions. More precisely, we want
to construct a clustering functionh : D → (N), such that
for two functionsf, g ∈ D,h(f) = h(g) implies that there
is a high probability thatf is similar tog.

To evaluate our solution, we need a way to determine
whether two functions are semantically similar, as for ex-
ample, obtained from the same source code by different
compilers, or by small changes. Because similarity is hard
to assess objectively, we seek the help of a malware analyst
to validate the similarity declared by our approach. A
successful outcome is one in which the two are in agreement.

Assumptions and Limitations.Fundamentally, our system
relies on the accurate representation of a function’s control
flow graph and basic blocks. As others [3][5][13] have
noted, malware authors often employ obfuscation techniques
– e.g., insertion of extraneous jumps, dead-code insertion,

self-modifying code – that complicate the process of meet-
ing these dependencies. While deobfuscation/normalization
(perhaps using the techniques presented by these same
researchers) is an important step that must be performed
prior to hash generation, it is a concern that is orthogonal
to the work presented in this paper.

V. A PPROACH

Let f = (S tart,Body) be a function. The control flow
graph (CFG) off , denoted byCFG(f), is a directed graph
whose nodes (also known as basic blocks or BBs) are labeled
with a sequence of instructions, and whose edges correspond
to possible flow of control. The key idea is that any execution
of f follows a path inCFG(f). Figure 2 shows the CFG
of the function shown in Figure 1.

A. SemanticHash

Recall thatM inHash is useful for estimating the “dis-
tance” betweensets. Thus, in order to useM inHash for
comparing functions, we first reduce each function to a
set of features. More specifically, we use the input-output
behavior of BBs as a feature. Our choice of BBs is motivated
by two facts: (i) BB boundaries provide a natural way of
dividing a function by its control flow; and (ii) the input-
output behavior of a BB (in terms of registers and memory)
depends solely on the instructions within the BB. The overall
semantic hash –H(f) – of f is then computed as follows:

1) Disassemblef and constructCFG(f).
2) Let BB(f) be the set of basic blocks ofCFG(f).

Let Φ be a hash from basic blocks to strings, and let
Φ(f) = {Φ(b) | b ∈ BB(f)}. Then, the function hash
H(f) is defined as:

H(f) = M inHash(Φ(f))

We refer to a hash from basic blocks to strings as a
BBHash. We writeH[Φ] to denote the semantic function
hash parameterized by the BBHashΦ. Note that the prob-
ability that H[Φ](f1) = H[Φ](f2) is equal to the Jaccard
distance [8] betweenΦ(f1) andΦ(f2). Suppose thatΦ(b)
has the following property:(PROP) if b1 and b2 are input-
output (IO) equivalent, thenΦ(b1) = Φ(b2) with high prob-
ability. Then, two functions that share many IO equivalent
basic blocks will also yield the same semantic hash (i.e.,
will be clustered together) with high probability. We now
define three BBHashes that satisfyPROP. We begin with a
set of concepts that capture the IO behavior of basic blocks.

B. Input-Output Behavior of Basic Blocks

We consider the function’s execution state to consist of
values assigned to a set of registersR, and memoryM . Our
model of the IO behavior of a basic blockb consists of four
components: (i) the effect of executingb on registers; (ii) the
effect of executingb on memory; (iii) the arguments passed
to any function called at the end ofb; (iv) the condition

on which any jump instruction at the end ofb depends. We
describe each component separately.

Effect on Registers. For a registerr, let regval(b, r) be a
logical formula that expresses the value ofr after executing
the instructions ofb in terms of the initial values ofR and
M . For example, letb be B1 from Figure 2. Then:

regval(b, esp) , esp− 24 regval(b, ebp) , esp− 4

regval(b, eax) , M [esp+ 12]

Note that we use variableM [a] to denote the initial value
of the memory cell at addressa.

Effect on Memory. Let a1, . . . , aj be the addresses of the
memory cells modified by executing the instructions ofb.
Thenmemval(b) is the set of pairs{(a1, v1), . . . , (aj , vj)}
where vi is a formula – in terms of the initial values of
R andM – denoting the final value of the memory cell at
addressai after the execution ofb. For example, letb beB1
from Figure 2. Then:

mem(b) , {(esp− 24,M [esp+ 12])}

Function Call. If the last instruction ofb is a function call
with k arguments, then letp1(b), . . . , pk(b) be formulas that
represent the values of the parameters passed to the called
function in terms of the initial values ofR and M . For
example, letb be B3 from Figure 2. The function called at
the end has a single argument, which is stored in memory
by the instruction at80483D9. Thus,p1(b) , M [ebp+12].

Branch Condition. If the last instruction ofb is a jump,
then letbrcond(b) be the formula denoting the condition on
which the branch instructions target depends. If the branch
is unconditional, thenbrcond(b) = true. For example, let
b beB2 from Figure 2. The target of the jump instruction at
the end depends on the result of the comparison at address
80483D0. Therefore,brcond(b) , M [ebp+ 8] = 0.

C. Sampling-Based Basic Block Hash

The hashSamp(b) is derived from the output ofb on
a pseudo-random set of inputs. The key idea is that ifb1
andb2 are IO equivalent, then they produce the same output
on equal inputs, which entailsPROP. Specifically, for any
formula φ over the initial values ofR andM , let var(φ)
be the set of variables appearing inφ. An assignmenta of
φ is a mapping fromvar(φ) to concrete values, andφ[a] is
(a string representation of) the evaluation ofφ undera.

Computing Pseudo-Random Assignments. Let φ be a
formula overn variables, i.e.,var(φ) = v1, . . . , vn. Letx be
an×m array of concrete values. Each column ofx yields an
assignment ofφ by mappingvi to the concrete value in the
i-th row of the column. Thus,x yieldsm assignments ofφ.
Let this set of assignments be denoted byα(x). We construct
a set of assignmentsA(φ) as follows. Create an×m seed
arrayX of concrete values (for our experiments, we used

m = 48). Let Π(X) be the set of all arrays obtained by
permuting the rows ofX. ThenA(φ) is defined as:

A(φ) =
⋃

x∈Π(X)

α(x)

Note thatA(φ) contains up tom× n! assignments.
Computing Sample-Based Hash. To computeSamp(b),

we compute the output ofb using the set of assignments
computed above as inputs, and hash the result. For a set
of stringsW , let ⋄(W) be the concatenation of the lexico-
graphic ordering ofW . Formally, the sample-based hash of
a formulaφ is defined as:

h(φ) = MD5(⋄(
⋃

a∈A(φ)

φ[a]))

In other words, we evaluateφ under each assignment in
A(φ), sort and concatenate the results, and take theMD5
hash of the final string. Finally, to defineSamp(b), recall the
formulas regval(b, r), memval(b), pi(b), and brcond(b)
defined in Section V-B. Also recall thatmemval(b) is a
set{(a1, v1), . . . , (aj , vj)}. Then,Samp(b) is defined as:

MD5(h(
∧

r∈R

regval(b, r)) • h(v1) • . . . • h(vj) •

h(p1(b)) • . . . • h(pk(b)) • h(brcond(b)))

Example 2:Consider the basic blockb consisting of
two instructions: sub ecx,edx and add eax,ecx . Let
φ = regval(b, eax) = eax + ecx − edx. Then var(φ) =
{eax, ecx, edx}. Thus, an assignment ofφ is a map-
ping from var(φ) to concrete values. Specifically, let
α(v1, v2, v3) be the assignment[eax 7→ v1, ecx 7→
v2, edx 7→ v3]. Assume thatm = 3 and the initial3×3 seed
matrix, X, is





8 20 3
73 15 54
46 23 26





Therefore, A(φ) contains all possible assignments to
v1, v2, v3 from X and matrices formed by permuting the
rows ofX. In other words:

A(φ) = {α(8, 73, 46), α(20, 15, 23), ..., α(73, 8, 46), ...}

Then,h(φ) is computed by: (i) evaluatingφ on each assign-
ment in A(φ), (ii) concatenating the results in ascending
order, and (iii) computing the MD5 of the final value.

D. Summary-Based Basic Block Hash

The hashSumm(b) is essentially theMD5 hash of (the
string representation of) a logical formula that represents
the IO behavior ofb. Recall the formulasregval(b, r),
memval(b), pi(b), and brcond(b) defined in Section V-B.
Let reg(b) be the formula:

∧

r∈R

r′ = regval(b, r)

Note that we user′ to denote the final value of registerr.
Recall thatmemval(b) is a set{(a1, v1), . . . , (aj , vj)}.

Let mem(b) be the formula:
∧

(a,v)∈memval(b)

M ′[a] = v

Note that we useM ′[a] to denote the final value of the
memory cell at addressa.

Let called, a1, . . . , ak be distinguished variables such that
called is Boolean, andai has the same type aspi(b). Then,
call(b) is the formula defined as follows:

1) if the last instruction ofb is a function call, then:

call(b) = called ∧ (a1 = pi(b)) ∧ · · · ∧ (ak = pk(b))

2) if the last instruction ofb is not a function call, then:

call(b) = ¬called

Finally, the summary-based hash ofb, denoted by
Summ(b), is defined as follows:

Summ(b) = MD5(reg(b)∧mem(b)∧call(b)∧brcond(b))

E. Combined Basic Block Hash

Both Samp andSumm can produce identical hashes for
basic blocks that are not IO equivalent.Samp collisions
occur because the set of inputs we use for sampling does
not cover the entire input space, and in particular, does not
include any input for which the two basic blocks produce
distinct outputs. In contrast,Summ collisions occur because
of imprecisions in computingreg(b), mem(b), call(b), and
brcond(b). Since the two hashes produce collisions for
different reasons, we propose a third BBHash, calledC omb,
that combinesSamp andSumm as follows:

C omb(f) = MD5(Samp(f) • Summ(f))

By definition, C omb detects no more duplicate functions
than eitherSamp or Summ. Nevertheless, our experiments
indicate that it is effective at detecting function similarity.

VI. EXPERIMENTAL EVALUATION

We have implemented our semantic hashes on top of
the ROSE [11] infrastructure. To evaluate the effective-
ness of the hashes, we used them to cluster a series of
16 benchmarks derived from the CERT Artifact Catalog.
Each benchmark consists of a set of functions with distinct
PHashes. Therefore, aPHash-based clustering would not
identify any duplication in them. The first four benchmarks
were designed to contain a lot of duplication, i.e., only a
few clusters of similar functions. For example, Memcpy1
and Memcpy2 each consist of functions that were identified
by IDAPRO to be implementations of thememcpy library
routine. These benchmarks were subsequently inspected by
a malware analyst to confirm that all members of each set
were in fact the same function.

Example #Funcs #Samp #Summ #Comb

FormCreate 2048 2.24 2.49 2.49
Memcpy1 10000 0.17 .19 .19
Memcpy2 4479 0.44 .51 .51
memmove 355 6.47 8.16 8.16

Random1 4615 86.04 96.74 97.52
Random2 9390 83.02 96.80 97.48
DistName 193 89.11 93.26 93.78

DialogFunc 944 93.43 98.83 99.15
EnumFunc 961 95.31 98.95 99.27
TimerFunc 517 85.88 98.64 99.41

Start 2568 69.82 84.81 88.31
DllEntryPoint 696 46.55 62.78 67.67
DriverEntry 915 68.52 88.63 92.89

onexit 1000 4.4 14.60 14.70
abort 96 64.58 81.25 82.29
filebuf 890 57.19 97.41 98.31

Table I
NUMBER OF CLUSTERS FOR DIFFERENT SEMANTIC HASHES,

EXPRESSED AS A PERCENTAGE OF THE NUMBER OF CLUSTERS

OBTAINED VIA PHash.

The next six benchmarks were designed to contain few
duplications, i.e., mostly of functions that are not similar.
For example DistName consists of functions that were each
identified by IDAPRO to be implementations of a different
library routine.

The last six benchmarks were constructed by: (i) randomly
selecting six function names; and (ii) collecting functions
corresponding to one name to produce one benchmark.
These benchmarks are therefore expected to contain varying
levels of duplication.

We evaluated each of our semantic hashes –H[Samp],
H[Summ], andH[C omb] – on each exampleE, as follows:

1) Cluster the functions usingH[Samp](f) as the cluster
id of f . Let the number of clusters bex1. Define
#Samp = x1

|E| × 100. A smaller #Samp means a
more similar functions according toH[Samp].

2) Repeat Step 1 usingH[Summ](f) instead of
H[Samp](f). Denote the result by#Summ.

3) Repeat Step 1 usingH[C omb](f) instead of
H[Samp](f). Denote the result by#C omb.

Table I summarizes our results. Each row shows#Samp,
#Summ, and#C omb obtained for a specific example. As
expected, the number of clusters is small for the examples
designed to contain lots of duplication, while it is large
for the examples designed to contain little duplication. This
indicates that our semantic hashes identify substantial real
duplication over and abovePHash, without incurring too
much false duplication. For the randomly selected bench-
marks, the degree of detected duplication span a wide range.

For Memcpy1, our hashes reduce the number of distinct
functions by a factor of 500. Fig. II shows the difference
between two implementations of memcpy that produced the
sameH but differentPHashes. Note that the first uses an
add instruction, while the second uses an inc.

Also, as expected,#C omb is greater than either#Samp

or #Summ. However, the difference is small, indicating
that duplication among functions discovered byH[Samp]
andH[Summ] overlap significantly. In addition,#Summ

is, in general, greater than#Samp. This indicates that
H[Summ] detects less duplication (real and false) compared
to H[Samp]. Interestingly, the difference between#Summ

and#Samp is small for the benchmarks designed to have
little or lots of duplication. However, it is significant for
the randomly constructed benchmarks. This may mean that
H[Summ] is more precise thatH[Samp], especially for
function collections where similarity detection is non-trivial.

RB1 INS1 RB2 INS2
f3a5 rep movsd f3a5 rep movsd
ff24957 jmp [edx*4+ ff2495d jmp [edx*4+
c8b4100 0x418b7c] 8b84400 0x44b8d8]
90 nop 90 nop
23d1 and edx,ecx 23d1 and edx,ecx
8a06 mov al,[esi] 8a06 mov al,[esi]
8807 mov [edi],al 8807 mov [edi],al
83c601 add esi,0x1 46 inc esi
c1e902 shr ecx,0x2 c1e902 shr ecx,0x2
83c701 add edi,0x1 47 inc edi
83f908 cmp ecx,0x8 83f908 cmp ecx,0x8
7288 jc 0xffffff8a 728c jc 0xffffff8e
f3a5 rep movsd f3a5 rep movsd

Table II
PORTIONS OF TWO IMPLEMENTATIONS OF MEMCPY() WITH MATCHING

SEMANTIC HASHES. RB1 = MEMCP1 RAW BYTES; INS1 = MEMCPY1
INSTRUCTIONS; RB2 = MEMCP2 RAW BYTES; INS2 = MEMCPY2

INSTRUCTIONS.

VII. C ONCLUSION

We present an approach for representing the semantics
of a machine-code function as a hash. This enables quick
identification and clustering of binary code that exhibit a
high-degree of similarity. A function is first represented as
a set of basic block hashes, which are then combined using
a form of Locality-Sensitive Hashing, called MinHashing.
We present two basic block hashing algorithms. The first
produces hashes from the outputs generated by the same
formulas, when fed a reproducible sequence of input values.
The second produces hashes directly by hashing the simpli-
fied, symbolic formulas of memory and registers contents
at the end of blocks. The proposed algorithms have been
implemented and tested on real-world functions extracted
from the CERT artifact catalog. Our experimental results
indicate that we are able to assign functions that share a
high-degree of similarity the same hash value.

In this paper, we used basic blocks as the unit of division
for generating features for functions. However, to improve
the robustness of our system against obfuscations (i.e., basic
block splitting using unconditional jumps and dead code),
we are currently exploring other possibilities. For example,
one could generate semantic hashes from slices [9] of a
function, which are sets of instructions that affect the value

of a variable at a particular point. One advantage of this
approach is that junk instructions will be excluded from the
slices of the malware’s actual code.

Acknowledgment.Copyright 2012 Carnegie Mellon University and IEEE.

This material is based upon work funded and supported by the Department of

Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for

the operation of the Software Engineering Institute, a federally funded research and

development center. This material has been approved for public release and unlimited

distribution.CarnegieMellon R©, CERT R© are registered in the U.S. Patent and

Trademark Office by Carnegie Mellon University. DM-0000063.

REFERENCES

[1] M. Apel, C. Bockermann, and M. Meier. Measuring similarity
of malware behavior. InProc. of SICK, 2009.

[2] A. Broder. On the resemblance and containment of docu-
ments. InProc. of Compr. and Compl. of Seq., 1997.

[3] D. Bruschi. Detecting Self-mutating Malware Using Control-
Flow Graph Matching. InLecture Notes in Computer Science,
volume 4064, pages 129–143. Springer-Verlag, 2006.

[4] Incoming malware statistics 5/21/2012. Personal communi-
cation.

[5] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, and
R. E. Bryant. Semantics-Aware Malware Detection. InProc.
of IEEE Symposium on Security and Privacy, 2005.

[6] C. Cohen and J. Havrilla. Function Hashing for Malicious
Code Analysis. Technical report, SEI, Pittsburgh, PA, USA,
2009. www.cert.org/research/2009research-report.pdf.

[7] D. Gao, M. K. Reiter, and D. X. Song. BinHunt: Automat-
ically Finding Semantic Differences in Binary Programs. In
Proc. of ICICS, 2008.

[8] P. Jaccard. Nouvelles recherches sur la distribution florale.
Bull. Soc. Vaudoise Sci. Nat., 44:223–270, 1908.

[9] A. Kiss, J. Jsz, G. Lehotai, and T. Gyimthy. Interprocedural
static slicing of binary executables. InProc. of SCAM, 2003.

[10] F. Leder. Classification and detection of metamorphic mal-
ware using value set analysis. InMalicious and Unwanted
Software (MALWARE), 4th International Conference on Mal-
ware, pages 39–46, 2009.

[11] ROSE website. http://www.rosecompiler.org.

[12] A. Sæbjørnsen, J. Willcock, T. Panas, D. J. Quinlan, and
Z. Su. Detecting code clones in binary executables. InProc.
of ISSTA, 2009.

[13] A. Walenstein, R. Mathur, M. Chouchane, and A. Lakhotia.
Normalizing metamorphic malware using term rewriting. In
Proc. of SCAM, 2006.

[14] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and
A. Lakhotia. Exploiting Similarity Between Variants to De-
feat Malware: “Vilo” Method for Comparing and Searching
Binary Programs. InProc. of BLACKHAT DC, 2007.

[15] Q. Zhang. MetaAware: Identifying Metamorphic Malware. In
Proc. of ACSAC, 2007.

