Binary Function Clustering using Semantic Hashes

Wesley Jin, Sagar Chaki, Cory Cohen, Arie Gurfinkel, Jefidayrilla, Charles Hines, and Priya Narasimhan
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract—The ability to identify semantically-related func- The goal is tocapture machine-state changes, made at a
tions, in large collections of binary executables, is important for function-level, in a form that facilitates fast comparison
malware detection. Intuitively, two pieces of code are similar This representation reduces the task of comparing a set of
if they have the same effect on a machine’s state. Current . . - I .
state-of-the-art tools employ a variety of pairwise comparisons binaries to identifying collisions among hashes generated
(e.g., template matching using SMT solvers, Value-Set analysis Y members of the set. It also enables analysts to search an

at critical program points, API call matching, etc.) However, index of previously cataloged hashes for a specified functio
these methods are unscalable for clustering large datasets, of) o . .

size N, since they require O(N2) Comparisonsl In this paper, DeteCtIng S|m|lar|ty between functions achieves two pur-
we present an alternative approach based upon “hashing”. We poses. First, it enables us to focus on a restricted, but
propose a scheme that captures the semantics of functions as still useful, sub-problem of whole program comparison.

semantic hashes. Our approach treats a function as a set of - g netions are the basic semantic and syntactic units offwhic
features, each of which represent the input-output behavior of

a basic block. Using a form of locality-sensitive hashing known a blnf’;lry 1S composed. TWO_ b',na”es that share many Slmllar
as MinHashing, functions with many common features can be functions are likely to be similar as well. Second, function
quickly identified, and the complexity of clustering is reduced similarity integrates nicely with existing binary analysi

to O(N). Experiments on functions extracted from the CERT \workflows. Reverse engineers typically reconstruct the-ove
malware catalog indicate that we are able to cluster closely- all behavior of a binary from that of its constituent functso

related code with a low false positive rate. Knowing similarity at the function level is therefore uskefu

Keywords-semantic comparison; malware detection; cluster- to judge similarity at the level of binaries.
ing; reverse engineering; binary static analysis;

Specifically, we make the following contributions. First,
|. INTRODUCTION we design a semantic hash for binary functions such
Malware reverse engineers are bombarded with an ovethat #H(f;) = H(f2) with high probability if f; and f,
whelming number of unique files each day. For examplehave similar input-output behavior over the system state.
the CERT malicious code team at the Software EngineerThe overall similarity-detection algorithm then works by:
ing Institute (SEI) receives nearly a million binaries (i.e (i) hashing each function; (ii) clustering functions based
executable files) each month [4], which must be processedheir hash (i.e., two functions are in the same cluster #&fth
analyzed and indexed. It is estimated that approximatedfy hahave the same semantic hash) and (iii) declaring all funstio
of these samples are identical to, or variants of, malwarén the same cluster to be potentially related. This approach
that have been previously cataloged [4]. Thus, the abitity t is automatable and linear in the number of functions, and
automatically detect similarity among binaries enables th therefore scalable to function collections of realistizesi

faster removal of duplicates, streamlining the malwarexad Second, we evaluate! over functions derived from the

Furthermore, |dent|fy|ng. related b|_nar|es IS an imporamd CERT artifact catalog. We empirically demonstrate that
manual process. Effective detection of similar code allows

imoroved allocation of the analvst's time and effort is effective (i.e., able to detect a large number of dupdisat
P 1€ analy ' on current malware samples. In one case, it is able to reduce
In recent years, a significant amount of research ha

been done on comparing tleemanticsof malicious code e sample size by a_factor O.f over 500 Compar_gd toa
(e.g., [14], [5], [10], [7], [1]). Despite some variation on state-of-the-art competing hashing scheme. In additian, o

S ST . __interactions with expert reverse engineers at CERT indicat
the exact definition of semantic similarity, a common idea

is that related programs make similar changes to the stattgat this technique is sufficiently accurate for operationa

of a system (i.e., registers and memory). Previous work has
focused on comparing pairs of malware binaries. The set of The rest of this paper is structured as follows. In Sec-
system-state changes for a binary is extracted and comparé¢idn Il, we survey related work. In Section Ill, we present
with that of another. Unfortunately, in order to categorie preliminary concepts. In Section 1V, we state the problem.
large collection of NV malware binaries into distinct families, In Section V, we present our semantic and syntactic fea-
this pairwise approach would requi®N?) comparisons. tures, and the procedures for extracting them from function
In this paper, we address this scalability problem bydescriptions. In Section VI, we present our experiments and
introducing the notion of asemantic hashHor functions. results. In Section VII, we conclude.

Il. RELATED WORK mapping between addresses and instructions, and'«(i&

A number of different approaches have been proposedom(Body), Start < a < End . _
for determining binary similarity. For example, several re ~ We view a function as a sequence of bytes representing
searchers have used feature vector comparison to detext cof@ch instruction in its body. This is known as the “exact-
clones [12], and to protect against malware [14]. byte” (or EBYTE) representation, and defined as follows.

Gao et al. [7] use a control-flow based analysis that EBYTE Representatiohet Str be the set of finite-length
combines graph isomorphism, symbolic simulation, andPYte sequences (or strings), amde string concatenation.
theorem proving to detect semantic differences in binariestet € : Inst — Str be the mapping from instructions to
Leder et al. [10] use value-set analysis to characterize aneffings specified in the instruction set. For a functibr-

compare the semantic behavior of programs at various pointg3ody, Start, End), let A = {as, ..., an) be the sequence
of interest. Apel et al. [1] propose metrics for malware Of addresses obtained by sortifpm (Body) in increasing
similarity. order, andl = (i1,...,%,) be the sequence of instructions

Christodorescu et al. [5] represent malware behavior aguch thatiy = Body(ay) for 1 <k <n. Let M D5 be the

plate. A sequence of instructionsis flagged as potentially ©f ./, denoted byf.EB and f.E Hash respectively, are:
malicious if the changes made to _memoryab_js provably FEB=cli1) e oc(in) f.EHash = MD5(f.EB)
the same as that of a template. This work relies on an SMT-
solver to find a bijection between each node of a malware Functions compiled from the same source code often
tuple and the one extracted from the target sequence. Thukave EBYTE representations that differ only in the address
it scales poorly to a large number of files and templates. Vvalues they refer to. This is typically caused by difference

Leder et al. [10] use value set analysis to approximateén the memory layout during compilation. Such functions
the contents of registers and memory at “points of interesttherefore have different EHASH values even though they
in a program. Two sequences of instructions are deemedre identical. To overcome this limitation of EBYTES, we
equivalent if they produce the same set of values at ondefine a “position-independent” (or PBYTE) representation
of these points. Thus, this technique is able to detect PBYTE RepresentatiorLet = : Inst — Str be the
code written with semantically-equivalent, but syntaaitic =~ mapping from instructions to byte sequences suchtiiat
different, instructions. By comparing the sets generatgd bis obtained by replacing all address valueseii) with
known malware with those of unclassified code, a program igeroes. Then the PBYTE representation and PHASH',of
flagged as malicious or not. However, once again, pair-wisglenoted byf.PB and f.P Hash respectively, are:
comparison of value sets scales poorly. . .

Zhang et al. [15] use data-flow analysis to resolve Iibraryf'PB = (i) e om(in) f.PHash = MD5(f.PB)
calls and call sequences for comparison. This approach can Example 1:Figure 1 shows a basic block of a functign
be viewed as comparing the value of the program countewith starting addres80483BC, Body, ¢ and . Zeroed-out
at various points in the execution of a program. Howeverand zero addresses are shown in red and blue, respectively.
sequence comparison suffers from the same pair-wise scafj-EB and f.PB are, respectively, the concatenation of the
ability issue as template matching and set comparison. elements of the third and fourth columns.

Cohen et al. [6] explore the use of cryptographic hashes

TR : f Addressa Instruction e(1) (1)
to study program similarity. This work is (?Iosely 'related i = Body(a)
to ours, and generates hashes from actual instruction.byteS80483BC | push %ebp 55 55
H PN : 80483BD | nov Y%esp, Y%ebp 89E5 89E5
We extgnd this _work by assigning semantic, as opposed tpyr et $0X14 Yesp T 3T
syntactic, meaning to hashes. 80483C2 | nov Ox10(%bp), %eax | 8B4510 8B4510
80483C5 nov %eax, (%esp) 890424 890424
I11. BACKGROUND 80483C8 | cal | 80483b4 ESE/FFFFFF | E800000000
,) , 80483CD | nov %ax, - 0x4(%ebp) | 8945FC 8945FC
We write FF : X — Y to denote a (possibly partial) [8048300 [crpl $0x0, 0x8(%bp) | 837D0800 83700800
mapping fromX to Y, where Dom(F) is a subset ofX 8048314 | je 80483ed 740E 740E
. . 80483D6 nov Oxc(%ebp) , Yeax 8B450C 8B450C
that has a valid mapping t5. 8048300 | mov Yeax, (Yesp) 890424 890424
Functions.Intuitively, a function is characterized by: (i) a 28422&3 call 8048334 — ggD?wEFHF 5200020000
. . . . e 483E1 | nov Y%eax, - Ox4(Yebp 45F 45F
partial mapping from addresses to instructions, (i) a 8{0C 555384 | ov - ox4(vebp) , Yeax | BBASFC SOAETC
start address, and (iii) an end address. We assume a totally-80483E7 | Teave o) (o)
ordered set of addressesddressSpace (i.e., the set of 32- [80483E8 | ret = =

bit unsigned integers), and a sktst of instructions, each Figure 1. A basic block of an example function, wittand = mapping.
comprising of an opcode and zero or more operands.

Definition 1: A function is a tuple(Body, Start, End) PHASH improves over EHASH by eliminating duplica-
where: (i) Body : AddressSpace — Inst is a partial tion due to memory layout differences. However, it fails

Bl

self-modifying code — that complicate the process of meet-

push %ebp B2 L
mov Yesp, Yebp) . ing these dependencies. While deobfuscation/normalizatio
Yes mov %eax,-0x4(%ebp) h . h hni d b h

rsnl;\? ggﬁz‘%b ;3 Yeax cmpl $0x0,0x8(%ebp) (perhaps using the techniques presented by these same

MOV Yeax, (%e‘s)pj Je 80483e4 researchers) is an important step that must be performed

cal | 80483b4 B5 prior to hash generation, it is a concern that is orthogonal
to the work presented in this paper.

B3 {mov %eax,-0x4(%ebp) }

mov 0xc(%ebp),%eax ¢ B4 V. APPROACH

mov %eax,(%esp) mov —0x4(%ebp), %eax Let f = (Start, Body) be a function. The control flow

call 80483b4 'ri?ve ‘ graph (CFG) off, denoted byC' F'G(f), is a directed graph

whose nodes (also known as basic blocks or BBs) are labeled
with a sequence of instructions, and whose edges correspond
to possible flow of control. The key idea is that any execution
of f follows a path inCFG(f). Figure 2 shows the CFG

against two other types of duplication: (i) instruction sub Of the function shown in Figure 1.
stitution. - where_an instruction sequence is replaced“with A SemanticHash
semantically equivalent one, e.g., to obfuscate malwaije; (
instruction sequence reordering — due to compiler optimiza
tions. In the next section, we present our semantic Hésh
designed to eliminate both these duplications.
MinHashing. MinHashing — developed by Andrei
Broder [2] — is a form of locality-sensitive hashing that-per
mits fast set comparison. The MinHash algorithm produce
the same hash for a pair of setsl-and B — with probability
JI(A, B), whereJI(A, B) is the Jaccard Index [8] of and
B is defined as:

Figure 2. An example CF@L1 is the entry node anB4 is the exit node.

Recall thatMinHash is useful for estimating the “dis-
tance” betweersets Thus, in order to usé/inHash for
comparing functions, we first reduce each function to a
set of features. More specifically, we use the input-output
behavior of BBs as a feature. Our choice of BBs is motivated
gy two facts: (i) BB boundaries provide a natural way of
dividing a function by its control flow; and (ii) the input-
output behavior of a BB (in terms of registers and memory)
depends solely on the instructions within the BB. The overal
semantic hash #(f) — of f is then computed as follows:

JI(A,B) = AN Bl 1) Disassemblg’ and constructC' FG(f).
AU B| 2) Let BB(f) be the set of basic blocks of FG(f).

. : Let & be a hash from basic blocks to strings, and let
We use MinHash(A) to denote the MinHash of sed. 2
The MinHash algorithm usesk independent hash func- i(f) = f]@ |db < _BB(f)}' Then, the function hash
tions. Unless otherwise mentioned, our implementation of (f) is defined as:
MinHash uses five hash functions, i.é,= 5. H(f) = MinHash(®(f))

IV. PROBLEM STATEMENT We refer to a hash from basic blocks to strings as a
BBHash. We write#[®] to denote the semantic function
Given a large set of binary function®, out goal is to hash parameterized by the BBHa®h Note that the prob-
generate hashes for each function, such that collisions argyility that #[®](f,) = #[®](f) is equal to the Jaccard
likely to occur for similar functions. More precisely, wema djstance [8] betweer(f;) and ®(f,). Suppose thaf(b)
to construct a Clustering functioh : D — (N), such that has the fo"owing property(PROP) if bl and b2 are input_
for two functionsf, g € D, h(f) = h(g) implies that there output (10) equivalent, them(b,) = ®(b,) with high prob-
is a high probability thatf is similar to g. ability. Then, two functions that share many 10 equivalent
To evaluate our solution, we need a way to determineyasic blocks will also yield the same semantic hash (i.e.,
whether two functions are semantically similar, as for ex-will be clustered together) with high probability. We now
ample, obtained from the same source code by differengefine three BBHashes that sati$fROP. We begin with a

compilers, or by small changes. Because similarity is hardet of concepts that capture the 10 behavior of basic blocks.
to assess objectively, we seek the help of a malware analyst

to validate the similarity declared by our approach. AB. Input-Output Behavior of Basic Blocks

successful outcome is one in which the two are in agreement. We consider the function’s execution state to consist of
Assumptions and LimitationEundamentally, our system values assigned to a set of regist&sand memory)M . Our

relies on the accurate representation of a function’s obntr model of the 10 behavior of a basic bloékconsists of four

flow graph and basic blocks. As others [3][5][13] have components: (i) the effect of executibgn registers; (ii) the

noted, malware authors often employ obfuscation techsiqueeffect of executingg on memory; (iii) the arguments passed

— e.g., insertion of extraneous jumps, dead-code insertiorio any function called at the end @f (iv) the condition

on which any jump instruction at the end bfdepends. We
describe each component separately.

Effect on Registerd~or a register, let regval(b,r) be a
logical formula that expresses the valuerddfter executing
the instructions ob in terms of the initial values oRR and
M. For example, leb be B1 from Figure 2. Then:

regval (b, ebp) £ esp — 4
reguval (b, eax) = Mesp + 12]

regval(b, esp) = esp — 24

Note that we use variabl&/[a] to denote the initial value
of the memory cell at address

Effect on MemoryLet a4, ...,a; be the addresses of the
memory cells modified by executing the instructionsbof
Thenmemuval (b) is the set of pair{(ay,v1),..., (a;,v)}
wherev; is a formula — in terms of the initial values of

m = 48). Let II(X) be the set of all arrays obtained by
permuting the rows ofX. Then A(¢) is defined as:

A9y = |J a@

zell(X)

Note thatA(¢) contains up tan x n! assignments.
Computing Sample-Based HasFo computeSamp(b),

we compute the output af using the set of assignments

computed above as inputs, and hash the result. For a set

of stringsW, let o(1¥) be the concatenation of the lexico-

graphic ordering of//. Formally, the sample-based hash of

a formula¢ is defined as:

h(¢) = MD5(o(| ¢la)))
a€A(d)
In other words, we evaluaté under each assignment in

R and M — denoting the final value of the memory cell at A(¢), sort and concatenate the results, and takeMhe5

addressu; after the execution of. For example, leb be B1
from Figure 2. Then:
mem(b) £ {(esp — 24, Mesp + 12])}

Function Call If the last instruction ob is a function call
with k& arguments, then let; (b), ..., px(b) be formulas that

represent the values of the parameters passed to the called

function in terms of the initial values o and M. For
example, leth be B3 from Figure 2. The function called at

the end has a single argument, which is stored in memor

by the instruction a80483D9. Thus,p; (b) = M[ebp+12].
Branch Condition If the last instruction of is a jump,

then letbrcond(b) be the formula denoting the condition on
which the branch instructions target depends. If the branc

is unconditional, therbrcond(b) = true. For example, let

b be B2 from Figure 2. The target of the jump instruction at
the end depends on the result of the comparison at address]

80483D0. Therefore,brcond(b) = Mlebp + 8] = 0.

C. Sampling-Based Basic Block Hash

The hashSamp(b) is derived from the output ob on
a pseudo-random set of inputs. The key idea is that if

andb, are 1O equivalent, then they produce the same output

on equal inputs, which entaiBROP. Specifically, for any
formula ¢ over the initial values ofR and M, let var(¢)
be the set of variables appearing#n An assignment; of
¢ is a mapping fromvar(¢) to concrete values, angla] is
(a string representation of) the evaluationgotindera.
Computing Pseudo-Random Assignmeritst ¢ be a
formula overn variables, i.e.par(¢) = vy, ..., v,. Letx be
anxm array of concrete values. Each columnwofields an
assignment ofh by mappingv; to the concrete value in the
i-th row of the column. Thusy yields m assignments of.
Let this set of assignments be denotedhiify). We construct
a set of assignmentd(¢) as follows. Create a x m seed

array X of concrete values (for our experiments, we used

hash of the final string. Finally, to defirteump(b), recall the
formulas regval(b,r), memuval(b), p;(b), and brcond(b)
defined in Section V-B. Also recall thanemuval(b) is a
set{(ai,v1),...,(a;,v;)}. Then,Samp(b) is defined as:

MD5(h(/\ reguval(b,r)) @ h(vi) e ... e h(v;) e
reR
h(p1(b))e...eh(pg(b)) e h(brcond(b)))

Example 2:Consider the basic block consisting of

0 instructions:sub ecx,edx and add eax,ecx . Let
¢ = regval(b,eax) = eax + ecx — edx. Thenvar(¢)
{eaz,ecx,edx}. Thus, an assignment o is a map-
ing from wvar(¢) to concrete values. Specifically, let
ﬁ('l}l,UQ,'Ug) be the assignmenfeazr +— wvy,ecx +—
vy, edx — v3]. Assume thatn = 3 and the initial3 x 3 seed
matrix, X, is

20 3
73 15 54
46 23 26

Therefore, A(¢) contains all possible assignments to
v1,v2,v3 from X and matrices formed by permuting the
rows of X. In other words:

A(p) = {«(8,73,46), a(20, 15,23), ..., (73, 8,46), ...}

Then,h(¢) is computed by: (i) evaluating on each assign-
ment in A(¢), (i) concatenating the results in ascending
order, and (iii) computing the MD5 of the final value.

D. Summary-Based Basic Block Hash

The hashSumm(b) is essentially thel/ D5 hash of (the
string representation of) a logical formula that represent
the 10 behavior ofb. Recall the formulasregval(b,r),
memuval(b), p;(b), and brcond(b) defined in Section V-B.
Let reg(b) be the formula:

/\ r’ = regval(b,r)
rER

Note that we use’ to denote the final value of register [_Example | #Funcs [#Samp | g#Summ | #Comb]

. FormCreate 2048 2.24 2.49 2.49

Recall thatmemuval(b) is a set{(a1,v1),...,(a;,v;)}. MemcpyT 10000 017 19 19

Let mem(b) be the formula: Memcpy?2 4479 0.44 51 51
, memmove 355 6.47 8.16 8.16

A M'[a] = v Randomi | 4615 | 8604 | 9674 | 9752

(a,0) Ememual(b) Random2 9390 83.02 96.80 97.48

_ DistName 193 89.11 93.26 93.78

Note that we usell’[a] to denote the final value of the DialogFunc 944 93.43 98.83 99.15
memory cell at address. EnumFunc 961 95.31 98.95 99.27
Let called, a1, . . ., a;, be distinguished variables such that T'msetrFt“”C 2551g8 2:'22 Zi'g‘l" Zg'gi

. ar . . .

called is Boolean, and; has the same type as(b). Then, BIEntryPoint 596 4G5S 5278 5767
call(b) is the formula defined as follows: DriverEntry 915 6852 88.63 92.89
1) if the last instruction ob is a function call, then: onexit 1000 4.4 14.60 14.70
abort 96 64.58 81.25 82.29

call(b) = called A (al _ pi(b)) Ao A (ak _ pk(b)) filebuf 890 57.19 97.41 98.31

. Table |
2) if the last instruction ob is not a function call, then: NUMBER OF CLUSTERS FOR DIFFERENT SEMANTIC HASHES
EXPRESSED AS A PERCENTAGE OF THE NUMBER OF CLUSTERS
call(b) = —called OBTAINED VIA PHash.

Finally, the summary-based hash &f denoted by
Summ(b), is defined as follows:
) _ i , The next six benchmarks were designed to contain few
Summ(b) = M D5(reg(b) Amem(b) Acall(b)\breond(b)) duplications, i.e., mostly of functions that are not simila

E. Combined Basic Block Hash For example DistName consists of functions that were each
Both Samp and Summ can produce identical hashes for identified by IDARRO to be implementations of a different

basic blocks that are not 10 equivalerftamp collisions ~ llPrary routine. _
occur because the set of inputs we use for sampling does The last six benchmarks were constructed by: (i) randomly

not cover the entire input space, and in particular, does not€/€cting six function names; and (ii) collecting funcgon

include any input for which the two basic blocks produceCOrresponding to one name to produce one benchmark.
distinct outputs. In contras§umm collisions occur because 1h€S€ benchmarks are therefore expected to contain varying

of imprecisions in computingeg(b), mem(b), call(b), and ~ |€vels of duplication. .
breond(b). Since the two hashes produce collisions for e evaluated each of our semantic hasheH[Samp],.
different reasons, we propose a third BBHash, callednb, 7t/Summ], andH[Comb] —on each examplé, as follows:

that combinesSamp and Summ as follows: 1) Cluster the functions using/[Samp|(f) as the cluster
id of f. Let the number of clusters be;. Define
Comb(f) = MD5(Samp(f) e Summ(f)) #Samp = {4 x 100. A smaller #Samp means a

By definition, Comb detects no more duplicate functions more similar functions according ®[Samp].
than eitherSamyp or Summ. Nevertheless, our experiments 2) Repeat Step 1 usingH[Summ](f) instead of

indicate that it is effective at detecting function simitgr H[Samp](f). Denote the result byt Summ.
3) Repeat Step 1 usingH[Comb](f) instead of

VI. EXPERIMENTAL EVALUATION H[Samp](f). Denote the result by~ Comb.

We have implemented our semantic hashes on top of Table | summarizes our results. Each row sheéisamp,
the ROSE [11] infrastructure. To evaluate the effective-#Summ, and# Comb obtained for a specific example. As
ness of the hashes, we used them to cluster a series ekpected, the number of clusters is small for the examples
16 benchmarks derived from the CERT Artifact Catalog.designed to contain lots of duplication, while it is large
Each benchmark consists of a set of functions with distincfor the examples designed to contain little duplicationisTh
PHashes. Therefore, aP Hash-based clustering would not indicates that our semantic hashes identify substantal re
identify any duplication in them. The first four benchmarks duplication over and abov® Hash, without incurring too
were designed to contain a lot of duplication, i.e., only amuch false duplication. For the randomly selected bench-
few clusters of similar functions. For example, Memcpyl marks, the degree of detected duplication span a wide range.
and Memcpy?2 each consist of functions that were identified For Memcpyl, our hashes reduce the number of distinct
by IDAPRO to be implementations of theentpy library functions by a factor of 500. Fig. Il shows the difference
routine. These benchmarks were subsequently inspected Ietween two implementations of memcpy that produced the
a malware analyst to confirm that all members of each sesame? but different P Hashes. Note that the first uses an
were in fact the same function. add instruction, while the second uses an inc.

Also, as expectedi Comb is greater than eitheft Samp of a variable at a particular point. One advantage of this
or #Summ. However, the difference is small, indicating approach is that junk instructions will be excluded from the
that duplication among functions discovered BSamp] slices of the malware’s actual code.
and?—[[Summ] overlap significantly. In addition#Summ Acknowledgmentcopyright 2012 Carnegie Mellon University and IEEE.
is, in general, greater thagtSamp. This indicates that This material is based upon work funded and supported by the Department of
H[Summ] detects less duplication (real and false) compareabefense under Contract No. FA8721-05-C-0003 with Carnegie Mellon Uniyesit
to ’H[Samp}. Interestingly, the difference betweehSumm the operation of the Software Engineering Institute, a federally funded research and
and #Samp is small for the benchmarks designed to havedevelopment center. This material has been approved for public release and unlimited
little or lots of duplication. However, it is significant for distribution. CarnegieMellon®, CERT® are registered in the U.S. Patent and
the randomly constructed benchmarks. This may mean thatademark Office by Caregie Mellon University. DM-0000063.

H[Summ] is more precise that#{[Samp|, especially for
function collections where similarity detection is noiwil.

REFERENCES

[1] M. Apel, C. Bockermann, and M. Meier. Measuring similarity

REL INST REZ NSS of malware behavior. IiProc. of SICK 2009.

f 3a5 rep novsd f3ab rep novsd .

TT24957 | jnp [edx=4+ fT2495d | jrp [edx=4+ [2] A. Broder. On the resemblance and containment of docu-
c8b4100 | 0x418b7c] 8b84400 0x44b8d8] ments. InProc. of Compr. and Compl. of Sed.997.

90 nop 90 nop

23d1 and edx, ecx 23d1 and edx, ecx [3] D. Bruschi. Detecting Self-mutating Malware Using Control-
gggs mov Eiledl[]eSIa} gggg mov F‘Lai[fs'a} Flow Graph Matching. Ii.ecture Notes in Computer Science
830601 add esT Ox1 15 TheesT volume 4064, pages 129-143. Springer-Verlag, 2006.

1902 h , 0x2 1e902 h , 0x2 . - .
335701 Zd; 23?1011 276 IsnL ‘;gf : [4] Incoming malware statistics 5/21/2012. Personal communi-
837908 cmp ecx, 0x8 837908 cnp ecx, 0x8 cation.

7288 jc Oxffffffga | 728¢c jc Oxffffffge
f3a5 rep novsd f3ab rep movsd [5] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, and
Table Il R. E. Bryant. Semantics-Aware Malware Detection.Ploc.
PORTIONS OF TWO IMPLEMENTATIONS OF MEMCPY{) WITH MATCHING of IEEE Symposium on Security and Priva2g05.
SEMANTIC HASHES RB1 = MEMCPL RAW BYTES; INS1 = MEMCPY1 . . . -
INSTRUCTIONS RB2 = MEMCP2 RAW BYTES: INS2 = MEMCPY2 [6] C. Cohen and J. Havrilla. Function Hashing for Malicious
INSTRUCTIONS Code Analysis. Technical report, SEI, Pittsburgh, PA, USA,

2009. www.cert.org/research/2009research-report.pdf.

[7] D. Gao, M. K. Reiter, and D. X. Song. BinHunt: Automat-
ically Finding Semantic Differences in Binary Programs. In
VIl. CoNcCLUSION Proc. of ICICS 2008.

We pres_ent an approa_lch for representmg the Semant_lc%] P. Jaccard. Nouvelles recherches sur la distribution florale.
of a machine-code function as a hash. This enables quick ~ gy Soc. Vaudoise Sci. Na#4:223-270, 1908.

identification and clustering of binary code that exhibit a

high-degree of similarity. A function is first representesi a [9] A. Kiss, J. Jsz, G. Lehotai, and T. Gyimthy. Interprocedural

a set of basic block hashes, which are then combined using static slicing of binary executables. Rroc. of SCAM2003.

a form of Locality-Sensitive Hashing, called MinHashing. [10] F. Leder. Classification and detection of metamorphic mal-

We present two basic block hashing algorithms. The first ~ ware using value set analysis. Malicious and Unwanted

produces hashes from the outputs generated by the same Software (MALWARE), 4th International Conference on Mal-

formulas, when fed a reproducible sequence of input values. ware, pages 39-46, 2009.

The second produces hashes directly by hashing the simplit1] ROSE website. http://www.rosecompiler.org.

fied, symbolic formulas of memory and registers contents) i _

at the end of blocks. The proposed algorithms have beeH?] ’;" Sslfe%gzgiteirr\]’ gbgg'léfggg’s;[; gﬁ;?ségcjfaggg%% and

implemented and tested on real-world functions extracted f |SSTA 2009_9 Y T

from the CERT artifact catalog. Our experimental results

indicate that we are able to assign functions that share B3] A- Walenstein, R. Mathur, M. Chouchane, and A. Lakhotia.

high-degree of similarity the same hash value. l;lgén?)l;zg\gAr&eégrggrphuc malware using term rewriting. In
In this paper, we used basic blocks as the unit of division ' '

for generating features for functions. However, to improve[14] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and

the robustness of our system against obfuscations (isic ba A Lakhotia. Exploiting Similarity Between Variants to De-

block splitting using unconditional jumps and dead code), Eﬁg:\ﬂaévrvsr?ém\glowl\fghg? é?_kg&ﬂ%“g%gggfeamhmg

we are currently exploring other possibilities. For exampl y g ' ' '

one could generate semantic hashes from slices [9] of H5] Q. Zhang. MetaAware: Identifying Metamorphic Malware. In

function, which are sets of instructions that affect theueal Proc. of ACSAC2007.

