
 Editorial Manager(tm) for Innovations in Systems and Software Engineering
 Manuscript Draft

Manuscript Number:

Title: Software Model Checking without Source Code

Article Type: SI: NFM 2009

Keywords: Software verification; Model checking; Assembly
programs; Abstraction; Iterative Refinement

Corresponding Author: Sagar Chaki,

Corresponding Author's Institution: Carnegie Mellon University

First Author: Sagar Chaki

Order of Authors: Sagar Chaki; James Ivers

Abstract: We present a framework, called AIR, for verifying safety properties of assembly language
programs via software model checking. AIR extends the applicability of predicate abstraction and
counterexample guided abstraction refinement to the automated verification of low-level software. By
working at the assembly level, AIR allows verification of programs for which source code is
unavailable--such as legacy and COTS software--and programs that use features--such as pointers,
structures, and object-orientation--that are problematic for source-level software verification tools. In
addition, AIR makes no assumptions about the underlying compiler technology. We have implemented
a prototype of AIR and present encouraging results on several non-trivial examples.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Innovations in Systems and Software Engineering: a NASA Journal manuscript No.
(will be inserted by the editor)

Software Model Checking without Source Code

Sagar Chaki · James Ivers

Received: date / Accepted: date

Abstract We present a framework, called air, for ver-
ifying safety properties of assembly language programs

via software model checking. air extends the applicabil-

ity of predicate abstraction and counterexample guided

abstraction refinement to the automated verification of
low-level software. By working at the assembly level,

air allows verification of programs for which source

code is unavailable–such as legacy and COTS software–

and programs that use features–such as pointers, struc-

tures, and object-orientation–that are problematic for
source-level software verification tools. In addition, air

makes no assumptions about the underlying compiler

technology. We have implemented a prototype of air

and present encouraging results on several non-trivial
examples.

Keywords Software verification · Model checking ·
Assembly programs · Abstraction · Iterative Refinement

1 Introduction

Over the past decade, there has been considerable ad-

vancement in the theory and practice of automated

This research was conducted as part of the Predictable Assem-
bly from Certifiable Components (PACC) initiative at the SEI.
The SEI is a Federally Funded Research and Development Center
sponsored by the US Dept. of Defense and operated by Carnegie
Mellon University.

Sagar Chaki
Software Engineering Institute, Pittsburgh, PA, USA
Tel.: +1-412-268-1436, Fax: +1-412-268-5758
E-mail: chaki@sei.cmu.edu

James Ivers
Software Engineering Institute, Pittsburgh, PA, USA
Tel.: +1-412-268-7793, Fax: +1-412-268-5758
E-mail: jivers@sei.cmu.edu

Abstraction Verification

ValidationRefinement

P M

M ′

φ

P |= φ

P 6|= φ

CE

Fig. 1 Overview of Software Model Checking (SMC).

formal software verification. One of the most promis-

ing paradigms to emerge in this area is software model

checking (SMC) [3] – a combination of counterexample

guided abstraction refinement [11] with predicate ab-
straction [18]. SMC verifies that a program P satisfies

a specification φ iteratively, as follows:

1. (Abstraction) Construct a conservative model M

from P via predicate abstraction. Go to Step 2.

2. (Verification) Model check M |= φ. If this is the

case, then terminate with result P |= φ. Otherwise
let CE be a counterexample to M |= φ returned by

the model checker. Go to Step 3.

3. (Validation) Check whether CE corresponds to

some concrete behavior of P . If this is the case, then

we obtain a real counterexample and terminate with
P 6|= φ. Otherwise, CE is a spurious counterexam-

ple. Go to Step 4.

4. (Refinement) Construct a more precise model M ′

that does not admit CE as a behavior and repeat
from Step 2 with M = M ′. Typically, M ′ is con-

structed via predicate abstraction of P using a new

set of predicates derived from the spurious coun-

terexample CE.

Manuscript
Click here to download Manuscript: asm-ver.tex

http://www.editorialmanager.com/isse/download.aspx?id=5147&guid=222ac62b-bb6a-43d7-8e1a-5e53f451f84c&scheme=1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

The overall SMC process is shown in Figure 1.

Variations of SMC have been investigated by several

research groups [3,19,9] with considerable success on

source code derived from real-life examples. However,

there has been considerably less work on applying SMC
to verify machine-level programs. In this paper, we

show that in spite of the absence of high-level informa-

tion, such as variable names and branch conditions, the

effectiveness of SMC extends to even low-level software.
More specifically, we present a SMC-based procedure

for verifying safety properties of PowerPCTM assembly

programs. Our approach, which we call Assembly Iter-

ative Refinement or air, consists of two broad phases:

1. Decompilation: In this stage, we translate the tar-

get assembly program A and safety property φA into
an equivalent C program P and safety property φP .

Decompilation is semantics-preserving, and based

on the following core ideas:

– Each register is transformed to a global C vari-

able. The type of the variable is derived from

the type of the corresponding register so that
the bit-width is preserved and appropriate oper-

ations are enabled. For example, 32-bit general

purpose registers are transformed to 32-bit int

variables, and 64-bit floating point registers are
transformed to 64-bit double variables.

– Each procedure in the assembly program A is

transformed to a corresponding procedure in the

C program P . We will see later that proce-

dure blocks in PowerPCTM assembly code can
be identified in a straightforward manner.

– Each assembly instruction is transformed to one

or more C statements. This transformation is

based on the semantics of the assembly instruc-
tion.

We present further details of the decompilation pro-

cess in Section 3. Note that C is particularly suitable

as the target language of decompilation because: (i)

C supports bit-level operations that are critical for
preserving the semantics of assembly instructions

during decompilation; (ii) we are able to build on

existing infrastructures for C verification to perform

the next stage of air.

2. Verification: In this stage, we use SMC to
check P |= φP . Since decompilation is semantics-

preserving, the result obtained in this stage for P

also applies to the original assembly program A.

Furthermore, any counterexample obtained with re-
spect to P is transformed to a corresponding coun-

terexample with respect to A. Further details about

verification can be found in Section 4.

Verification

using SMC
Decompilation

A P

φA φP

A |= φA

CE

Fig. 2 Overview of Assembly Iterative Refinement (air).

Figure 2 gives an overview of air. air extends the

applicability of SMC to assembly program verification,

and yields several tangible benefits. First, air does not

require source code, and thus is applicable to software

– such as legacy, proprietary, and commercial-off-the-
shelf (COTS) software – for which source code is not

available. Second, unlike source code analysis, air an-

alyzes exactly what is to be executed and makes no as-

sumptions about any compiler technology being used.
Thus, it eliminates the need to ensure compiler cor-

rectness, and reduces the size of the trusted computing

base. This is especially desirable when analyzing safety-

critical systems. Third, air is not tied to any specific

high-level programming language, and consequently is
more versatile than source-code verification. In partic-

ular, air is able to sidestep features, such as pointers,

structures, and object-orientation, which are problem-

atic for source-level analysis tools. Finally, since air de-
compilation is semantics-preserving and targets the C

language, it enables us to leverage existing and emerg-

ing C analysis tools for verification. Thus, even though

we experiment with SMC-based tools, other C verifiers

(e.g., CBMC [7] and F-Soft [21]) are also applicable.
We have implemented air and obtained encourag-

ing results on several non-trivial benchmarks derived

from Linux device drivers and an embedded OS. Fur-

ther details can be found in Section 5. The rest of this
paper is organized as follows. In Section 2, we survey

related work. The decompilation and verification stages

of air are described in Sections 3 and 4, respectively.

Finally, we present experimental results in Section 5

and conclude in Section 6.

2 Related Work

Following slam [3], several other projects – e.g.,

magic [9] and blast [19] – have investigated the

use of the SMC paradigm for C source code veri-

fication. A number of projects – such as spin [20],

Java PathFinder [33], bandera [17], bogor [16], Be-
have! [4], and zing [1] – have also looked at software

verification, but not necessarily via SMC. Instead, their

focus has been on other languages, such as Java, and

other program features, such as concurrency. In partic-
ular, both Java PathFinder and SPIN have been used

effectively to analyze low level concurrent programs (in

Java bytecode and Promela, respectively).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Decompilers have been traditionally developed for

binary understanding and reverse engineering, and not

for verification per se. Nevertheless, the use of decompi-

lation for verification has been suggested by Breuer and

Bowen [6], and by Curzon [14] for verifying micro-code.
The verification of low-level software [12,28] has also

received a lot of attention. A number of approaches

are based on either theorem proving, type checking, or

static analysis. For example, Boyer and Yu have veri-
fied object code for the MC68020 processor using the

Nqthm theorem prover [5]. Yu [34] has proposed the

use of certified assembly programming and type pre-

serving translations for ensuring the safety of low-level

code. His techniques are powerful but require consid-
erable manual intervention, e.g., via type annotations

and the use of proof assistants. Yu and Shao [35] have

also proposed a logic based type system for the static

verification of concurrent assembly programs.
Reps et al. [31] have used static analysis algorithms

to recover information about the contents of memory

locations and how they are manipulated by executa-

bles. They have also created CodeSurfer/x86, a proto-

type tool for browsing, inspecting, and analyzing x86
binaries. Our technique is based on model checking,

is completely automated, and targets PowerPCTM as-

sembly code. Balakrishnan et al. [2] have used model

checking to analyze stripped device driver executables.
Their approach is not based on decompilation to C,

but on a tight combination of their own model checker

and control-flow-graph-based internal representations

for the target executables.

Another approach for ensuring the correctness of
low-level programs is source code verification combined

with compiler validation, i.e., proving that the com-

piler always produces a target code which correctly

implements the source code. In practice, proving com-
piler correctness is extremely tedious. Furthermore, any

change in the compiler necessitates its revalidation.

Our technique is impervious to the underlying compiler

technology. A complementary technique is translation

validation [29], where instead of validating the com-
piler, each individual run of the compiler is followed by

a validation phase which checks that the target code

produced on that run correctly implements the sub-

mitted source program. Both compiler validation and
translation validation assume that the source code is

available and has been independently verified. Our ap-

proach does not require such an assumption.

3 Decompilation

The first stage of air is the decompilation of the target

assembly program A into an equivalent C program P .

In this section, we describe the decompilation procedure

using a small assembly program as a running example.

For ease of understanding, we start with the source code

from which A was compiled. Fig. 3 shows a small C

code fragment P0 on the left and the result of compiling
it with gcc on the right. P0 is derived from micro-c,

a lightweight operating system for real-time embedded

applications. For brevity and simplicity, we eliminated

some irrelevant code from the actual micro-c sources.
Also, the assembly A on the right of Fig. 3 does not

contain some book-keeping information generated by

gcc.

3.1 PowerPCTM Assembly Programs

We use the 32-bit variant of the PowerPCTM instruction

set architecture (ISA) and assume little-endian mode.
The PowerPCTM architecture defines thirty-two 32-bit

general purpose registers (GPRs) – referred to in A as

%r0 through %r31. In addition, there are thirty-two 64-

bit floating point registers (FPRs) – referred to as %f0

through %f31 – and a few special registers (SPRs), e.g.,
condition register (%cr), link register (%lr), etc. An as-

sembly program consists of a set of blocks, each begin-

ning with a label. A label is either a procedure name

(OSMemNameSet) or begins with a dot (.L1L4).

In our example, the procedures OS ENTER CRITICAL

and OS EXIT CRITICAL acquire and release a global

lock for achieving mutual exclusion. We wish to verify
whether our program satisfies the following property:

(Safety) OS ENTER CRITICAL and OS EXIT CRITICAL

are invoked alternately, beginning with a call to

OS ENTER CRITICAL. Note that Safety is representative
of a general class of safety specifications with respect to

the acquisition and release of resources. Also, our exam-

ple program does not satisfy Safety. Indeed, if the con-

ditions of the first two if statements are both satisfied,

then OS EXIT CRITICAL gets called twice in a row with-
out any intervening call to OS ENTER CRITICAL. One

possible fix for this problem is to add a return state-

ment as indicated by the comment in the C code.

3.2 From assembly to C

The decompilation process converts the assembly pro-

gram A to a C program, using the following general
strategy:

– The thirty-two GPRs are declared as global int

variables r0 through r31. The thirty-two FPRs are

declared as global double variables f0 through f31.

The SPRs are also declared as int variables cr,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

struct os_mem {

void *OSMemAddr ;
void *OSMemFreeList ;

unsigned int OSMemBlkSize ;
unsigned int OSMemNBlks ;

unsigned int OSMemNFree ;
char OSMemName[32] ;

};

typedef struct os_mem OS_MEM;

void OSMemNameSet(OS_MEM *pmem,
char *pname,unsigned char *err)

{
unsigned char len;

OS_ENTER_CRITICAL();
if ((unsigned int)pmem == (unsigned int)((OS_MEM *)0)) {

OS_EXIT_CRITICAL();
(*err) = 116;
//bug : there should most likely be a return here

//return;
}

if ((unsigned int)pname == (unsigned int)((char *)0)) {
OS_EXIT_CRITICAL();
(*err) = 15;

return;
}

if ((int)len > 31) {
OS_EXIT_CRITICAL();

(*err) = 119;
return;

}

OS_EXIT_CRITICAL();
(*err) = 0;

return;
}

OSMemNameSet:
stwu %r1,-48(%r1)

mflr %r0
stw %r31,44(%r1)

stw %r0,52(%r1)
mr %r31,%r1
stw %r3,8(%r31)

stw %r4,12(%r31)
stw %r5,16(%r31)

bl OS_ENTER_CRITICAL
lwz %r0,8(%r31)

cmpwi %cr7,%r0,0
bne %cr7,.L2
bl OS_EXIT_CRITICAL

lwz %r9,16(%r31)
li %r0,116

stb %r0,0(%r9)
.L2:
lwz %r0,12(%r31)

cmpwi %cr7,%r0,0
bne %cr7,.L3

bl OS_EXIT_CRITICAL
lwz %r9,16(%r31)

li %r0,15
stb %r0,0(%r9)
b .L1

.L3:
lbz %r0,20(%r31)

rlwinm %r0,%r0,0,0xff
cmplwi %cr7,%r0,31
ble %cr7,.L4

bl OS_EXIT_CRITICAL
lwz %r9,16(%r31)

li %r0,119
stb %r0,0(%r9)

b .L1
.L4:
bl OS_EXIT_CRITICAL

lwz %r9,16(%r31)
li %r0,0

stb %r0,0(%r9)
.L1:
lwz %r11,0(%r1)

lwz %r0,4(%r11)
mtlr %r0

lwz %r31,-4(%r11)
mr %r1,%r11

blr

Fig. 3 A running example. A code fragment (left) and the assembly obtained by compiling it (right).

lr and so on. All integer data is assumed to be

in signed (two’s complement) 32-bit format and all

double data is assumed to be in IEEE 64-bit double

precision format.

– Each label corresponding to a procedure name
yields a procedure declaration. Since an assem-

bly program passes and returns all values via reg-

isters (i.e., global variables), our procedures are

void-void, i.e., they have no parameters or return
values. Thus, in our example, we obtain a single pro-

cedure declaration:

void OSMemNameSet(void)

– Each label beginning with a dot results in a corre-

sponding label in the C program. We strip off the

initial dot to conform to valid ANSI-C syntax. Thus,

the C program generated in our example contains
four labels L1 through L4.

– Each assembly instruction gets translated to an

equivalent sequence of C statements. In the rest of

this section, we describe the translation process for

the instructions that appear in our example. Note

that the size of the resulting C program is linear in

the size of the input assembly program.

3.3 Translating assembly instructions

PowerPCTM follows the Reduced Instruction Set Com-

puter (RISC) or the load-store paradigm. Thus, there

are no arithmetic, logical, or control-flow instructions
that operate directly on data stored in memory. All

operations are performed on GPRs, FPRs, and SPRs.

In order to operate on memory data, the operands are

loaded explicitly into registers, and the result is stored
explicitly back to memory.

Fig. 4 shows a table with assembly instructions on
the left and the corresponding C statements on the

right. Among the instructions in Fig. 4, the following

have straightforward translations:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

Assembly C statements

Loads and stores

lwz %r0,8(%r31) r0 = *((int*)(r31 + 8));

li %r0,116 r0 = 116;

lbz %r0,20(%r31) r0 = (*((int*)(r31 + 20))) & (0xff);

stwu %r1,-48(%r1) *((int*)(r1 - 48)) = r1; r1 = r1 - 48;

stw %r31,44(%r1) *((int*)(r1 + 44)) = r31;

stb %r0,0(%r9) *((int*)(r9 + 0)) =

((*((int*)(r9 + 0))) & 0xffffff00) | (r0 & 0xff);

Register operations

mr %r31,%r1 r31 = r1;

mflr %r0 r0 = lr;

mtlr %r0 lr = r0;

rlwinm %r0,%r0,0,255 r0 = (((r0 >> 32) & 0) | ((r0 << 0) & 0xffffffff))

& (0xff);

cmpwi %cr7,%r0,0 cr = (r0 < 0) ? (cr | 0x8) : (cr & 0xfffffff7);

cr = (r0 > 0) ? (cr | 0x4) : (cr & 0xfffffffb);

cr = (r0 == 0) ? (cr | 0x2) : (cr & 0xfffffffd);

cmplwi %cr7,%r0,31 cr = (r0 >= 0) && (r0 < 31) ?

(cr | 0x8) : (cr & 0xfffffff7);

cr = (r0 < 0) || (r0 > 31) ?

(cr | 0x4) : (cr & 0xfffffffb);

cr = (r0 >= 0) && (r0 == 31) ?

(cr | 0x2) : (cr & 0xfffffffd);

Conditional and unconditional jumps

b .L1 goto L1;

ble %cr7,.L4 if(!(cr & 0x4)) goto L4;

bne %cr7,.L2 if(!(cr & 0x2)) goto L2;

bl OS_ENTER_CRITICAL OS_ENTER_CRITICAL();

blr return;

Fig. 4 Translation schema from assembly instructions to C statements.

– li = load immediate: takes a register R as the

first argument and an immediate integral value V

as the second argument; loads V into R; for exam-

ple, li %r0,0 loads the integral value 0 into the

register %r0.

– mr = move register: takes two registers as argu-
ments and copies the contents of the second ar-

gument into the first argument; for example, mr

%r31,%r1 copies the contents of %r1 into %r31.

– mflr = move from link register: takes a single

register R as an argument; copies the contents of %lr
into R; for example, mflr %r0 copies the contents

of %lr into %r0.

– mtlr = move to link register: takes a single

register R as an argument; copies the contents of
R into %lr; for example, mtlr %r0 copies the con-

tents of %r0 into %lr.

– b = branch: takes a label L as an argument; jumps

to L; for example, b .L1 causes the execution to

jump to label .L1.
– bl = branch link: takes a label L as an argument;

jumps to L, while storing the return address in

%lr; for example, bl OS ENTER CRITICAL causes ex-

ecution to jump to label OS ENTER CRITICAL, while

storing the next address in %lr; typically used to

implement a function call.
– blr = branch link register: causes execution to

jump to the address stored in %lr; typically used to

implement a return from a function.

The translations for the other instructions follow

their semantics, as described below:

– lwz = load word and zero: takes a register R as
the first argument and a memory location L as the

second argument; loads a word from L to R; for

example, lwz %r0,8(%r31) loads a word from the

address at 8 bytes offset from the contents of %r31
into %r0.

– lbz = load byte and zero: takes a register R as

the first argument and a memory location L as the

second argument; loads a byte from L to R and

zeroes out the higher-order 24 bits of R; for example,
lbz %r0,20(%r31) loads a byte from the address

at 20 bytes offset from the contents of %r31 into

the least significant byte of %r0, and then zeroes

out the most significant three bytes of %r0. Due to
little-endianness, in the result of decompiling a lbz

instruction, after we load an int from L into R, our

desired byte will be laid out at the lower order end

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

of R, and we have to zero out the higher-order 24

bits of R.

– stwu = store word with update: takes a register

R as the first argument and a memory location L

as the second argument; stores the word in R to
L, and then sets the value of R to L; for example,

stwu %r1,-48(%r1) stores the word in %r1 into the

address L at -48 bytes offset from the contents of %r1

and then stores L into %r1.
– stw = store word: takes a register R as the first

argument and a memory location L as the second

argument; stores the word in R to L; for example,

stw %r31,44(%r1) stores the contents of %r31 into

the address at 44 bytes offset from the contents of
%r1.

– stb = store byte: takes a register R as the first

argument and a memory location L as the second

argument; stores the lowest byte in R to L; for ex-
ample stb %r0,0(%r9) stores the contents of %r0

into the address contained in %r9. Again due to

little-endianness, in the result of decompiling a stb

instruction, we load the current word stored at L,

replace its lowest byte with the lowest byte of R,
and store the new value back to L.

– rlwinm = rotate left word immediate then

AND with mask: takes registers R1 and R2 as the

first two arguments, and immediate integral values
V1 and V2 as the last two arguments; rotates left

the contents of R2 by V1 bits, then logically ANDs

the result with V2, and stores the result in R1; for

example, rlwinm %r0,%r0,0,255 logically ANDs

the contents of %r0 with the bitmask 0xff and
stores the result back to %r0.

To understand the comparison and jump instruc-
tions, we note that the condition register cr is logically

partitioned into eight sub-registers cr0 ... cr7. The

sub-registers are numbered from the higher order bits

to the lower order bits of cr as shown by the following
diagram.

cr0 cr1 cr2 cr3 cr4 cr5 cr6 cr7

Thus, cr7 denotes the lowest four bits of cr. Fur-

ther, suppose that the results of a comparison between
X and Y are stored in a condition sub-register R. Then

the bits of R are interpreted as follows. The highest bit

is 1 if and only if X < Y , the next bit is 1 if and only if

X > Y , and the next bit is 1 if and only if X = Y . The
lowest bit is reserved for overflows. We now present the

translation scheme for the remaining instructions.

– cmpwi = compare word immediate: takes a condi-

tion sub-register SR as the first argument, a reg-

ister R as the second argument, and an immediate

value V as the third argument; compares the con-

tents of R with V , treating both values as signed

integers, and stores the result in SR; for example,

cmpwi %cr7,%r0,0 stores the result of the signed

comparison between the contents of %r0 and 0 into
%cr7.

– cmplwi = compare logical word immediate:

takes a condition sub-register SR as the first argu-

ment, a register R as the second argument, and an
immediate value V as the third argument; compares

the contents of R with V , treating both values as

unsigned integers, and stores the result in SR; for

example, cmplwi %cr7,%r0,31 stores the result

of the unsigned comparison between the contents
of %r0 and 31 into %cr7. Since all our C variables

are signed, the result of decompilation guards the

C statement to be executed on conditions that

check for negative values in addition to the actual
comparison being performed.

– ble = branch less equal: takes a condition sub-

register SR as the first argument and a label L as

the second argument; jumps to L if SR indicates

a “less or equal” comparison result; for example,
ble %cr7,.L4 jumps to label .L4 if either the high-

est or the third highest bit of %cr7 is set to 1.

– bne = branch not equal: takes a condition sub-

register SR as the first argument and a label L

as the second argument; jumps to L if SR indi-

cates a “not equal” comparison result; for example,

ble %cr7,.L2 jumps to label .L2 if the third high-

est bit of %cr7 is set to 0.

3.4 Semantics Preservation

Suppose we obtain the C program P by decompiling

the assembly program A. For each instruction i of A,

let D(i) be the sequence of statements in P obtained
by decompiling i. A memory configuration µ is a func-

tion from integers to bytes. A register valuation ρ is

a function from registers to bit-vectors of appropriate

size. An execution state of A is a pair (µ, ρ) where µ is
a memory configuration and ρ is a register valuation.

A variable valuation σ is a function from the variables

of P to values of appropriate type. An execution state

of P is a pair (µ, σ) where µ is a memory configuration

and σ is a variable valuation.
Let Ψ be a function from register valuations to vari-

able valuations defined as follows: Ψ(ρ) maps each vari-

able v to the value whose bit-vector representation is

ρ(r) where r is the register corresponding to the vari-
able v in accordance with our decompilation scheme.

Then, decompilation is semantics-preserving, as cap-

tured by the following claim.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

Claim Suppose we start executing A from any func-

tion label Func and state (µ0, ρ0), and P from the cor-

responding function Func and state (µ0, Ψ(ρ0)). Then,

an instruction i is executed subsequently in A from a

state (µ, ρ) iff D(i) is executed subsequently in P from
a state (µ, Ψ(ρ)).

This completes the description of the translation

scheme for the instructions appearing in our exam-

ple. In total, to perform our experiments, translations
were written for eighty nine PowerPCTM assembly in-

structions. Complete details of the PowerPCTM ISA are

available [30] online.

4 Verification

Once the target assembly program has been decompiled

to a C program P , the second stage of air involves
the verification of P via SMC. For our experiments, we

used the Copper [13] SMC tool for verification. Cop-

per was developed to verify safety and liveness proper-

ties of multi-threaded C programs communicating via

shared variables and message-passing. However, for the
purpose of air we only required the ability of Cop-

per to check for trace containment between sequen-

tial C programs and finite state machines. In addition,

though our familiarity with Copper lead to its use in
our experiments, any other C verification tool based

on the SMC paradigm, such as slam [3], magic [9], or

blast [19], is suitable for use in the verification stage

of air.

Indeed, the main challenge involved in the use of
SMC for air verification is tool-independent, and arises

from the need for precise handling of bit-level semantics

during SMC1. In all cases, the handling of bit-level se-

mantics is delegated to the theorem prover used during
predicate abstraction. Most often, the theorem prover

(usually Simplify [27] or Vampyre [32]) treats the C bit-

wise operators as uninterpreted functions. For source

code verification, this is not a major roadblock since

many properties verified on source code do not rely on
the precise interpretation of bitwise operators. However,

in the case of air, precise interpretation of bitwise oper-

ations is crucial for verifying the C programs generated

via decompilation. In our initial experiments, not a sin-
gle non-trivial property could be verified by leaving the

bitwise operators uninterpreted. We attempted several

solutions to this problem, as discussed next.

Solution 1: Adding axioms. First, we added extra

axioms about C bitwise operators to assist Simplify, the

1 We note that the C bounded model checker cbmc [10] does
obey precise bit-level semantics but does not use SMC.

default theorem prover used by Copper. For example,

one axiom asserted that for any variable v, the bitwise-

OR of v with 0 is equal to v. Unfortunately, this solution

is ad hoc, since we had no way of knowing if enough ax-

ioms had been added. Moreover, the process of adding
new axioms was completely manual. Also, the perfor-

mance of Simplify, in terms of both time and mem-

ory consumption, degraded dramatically with increas-

ing numbers of axioms. Ultimately, we concluded that
this approach would not scale to realistic programs.

Solution 2: Syntactic simplifications. Next, we

augmented Copper with a set of syntactic bit-level

analyses. Specifically, before invoking Simplify, Cop-

per performs some simplifications on the formula

whose validity has to be checked. The transformations

are targeted at specific patterns that arise in formulas

due to the structure of assembly programs. For exam-
ple, a common query to Simplify is the validity of ((E

| 0x4) >> 2) & (0x1), where E is some C expression.

Our technique is able to convert such formulas to 0x1,

whose validity is then easily decided by Simplify. We

call this solution uninterpreted since all bitwise opera-
tors are left completely uninterpreted by the theorem

prover.

Solution 3: Using a bit-vector decision proce-

dure. We also compared the above approach to the
idea of replacing Simplify with the bit-vector decision

procedure CProver [22] (we also experimented with

CVCLite [15] but found CProver to be faster). To

prove the validity of a formula F , CProver first con-
structs a Boolean propositional formula F ′ (via a pro-

cess known as bit-blasting [22]) such that F ′ is unsatis-

fiable iff F is valid. Next, CProver uses a satisfiability

solver, such as Zchaff [23], to check for the satisfiabil-

ity of F ′. To construct F ′, CProver interprets F as a
C expression, using precise ANSI C semantics.

We tried two approaches of using CProver. In

the interpreted variation, all formulas containing bit-

wise operators are solved using CProver. In the semi-

interpreted variation, formulas containing bitwise oper-

ators are first solved using Simplify. CProver is used

only if Simplify is unable to decide validity conclusively.

When calling Simplify, we do not use any external ax-

ioms or syntactic simplifications. Thus, this approach
is different from both solutions 1 and 2 above. The key

goal behind the semi-interpreted approach is to min-

imize the performance penalty, compared to Simplify,

incurred when using CProver.

In our example, air is able to successfully report the

bug in micro-c. When the bug is fixed, in accordance

with the suggestion in the comment, air successfully

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

verifies the safety property. Also our experiments in-

dicate that the uninterpreted approach yields the best

performance over a set of realistic benchmarks, indicat-

ing that our syntactic simplifications provide the nec-

essary bit-level reasoning. We now present full details
of the empirical validation of our technique.

5 Experimental Validation

We experimented with a set of benchmarks derived
from micro-c and Linux device drivers. All of our ex-

periments were performed on a single core 2.4 GHz Pen-

tium computer running RedHat 9. We imposed a time

limit of one hour, and memory limit of one GB. We
derived a set of eleven benchmarks – one from micro-

c, and the rest from Linux 2.6.11.10 kernel drivers –

by compiling C source code with gcc-3.2. For each

example, we checked that a certain “lock” was being

acquired and released properly. The nature of the lock
varied with the example. For micro-c, the lock was an

invocation of OS ENTER CRITICAL, while for the Linux

drivers it was a call to spin lock, spin lock irq or

spin lock irqsave. The “unlock” was derived accord-
ingly.

We initially observed that Copper is easily able to

verify the safety property for all our benchmarks be-

cause the locks and unlocks are paired up syntactically.

In other words, an analysis of the control flow graph suf-
fices and no further predicate abstraction is necessary.

To make our benchmarks more interesting, we added

data dependencies between the locks and unlocks. Es-

sentially we guarded the locks and unlocks with a non-
deterministic value. Since the same value guards both

lock and unlock, the examples are still correct.

We experimented using the interpreted, semi-

interpreted and uninterpreted approaches presented in

Section 4. In the first two cases, the syntactic simpli-
fications were also applied. As a control, we also used

blast version 1.0. The results of our experiments with

these benchmarks are summarized in Fig. 5. Next, for

each benchmark, we created a buggy version by arti-
ficially inserting errors and repeated our experiments.

The results for our experiments with the the buggy ex-

amples are summarized in Fig. 6.

We observe that the uninterpreted approach ex-

hibits the best overall performance. The interpreted ap-
proach beats the semi-interpreted approach by success-

fully proving more examples. This indicates that almost

all the formulas involving bitwise operators could not

be proved by Simplify and hence had to be further del-
egated to CProver. This is also consistent with our

initial failure with only Simplify (without the syntac-

tic simplifications). blast returns counterexamples for

both the correct and buggy examples. Upon closer in-

spection, all counterexamples returned by blast are

found to be spurious. We note that this is essentially

due to blast’s dependency on Simplify.

We also evaluated the degree of code blowup due to

decompilation by comparing: (i) the sizes of the original

C source file and the C file obtained via decompilation,

and (ii) the sizes of the assembly files obtained by com-
piling the original C source file and the C file obtained

via decompilation. In either case, we observed a blowup

of about 2-3 times across our benchmark suite. File sizes

were not a bottleneck in any of our experiments. Given
the prototypical nature of our implementation, we be-

lieve that this is an encouraging sign.

6 Discussion and Conclusion

We present air, a framework for verifying safety prop-

erties of assembly language programs via SMC. We have

proposed a number of approaches for more precise han-

dling of bit-level semantics during SMC and empirically

validated their relative effectiveness. Overall, our exper-
iments indicate that air is effective on real-life bench-

marks derived from an embedded OS and Linux device

drivers.

It is worthwhile to consider a few issues concerning

the air approach. Decompiling an assembly program,

though much less difficult than verifying the resulting C

program, requires careful attention to detail. Whether
the target platform is big or little endian and whether a

0 or a 1 is shifted in on >> operations on signed integers

are two such intricacies. Correctly modeling elements of

the program’s environment such as the contents of the

PowerPCTM machine state register are more compli-
cated.

Other decisions must be guided by the capabilities of

the model checker; for example, choosing whether to de-
note a comparison that treats two operands as unsigned

quantities by using type casting and a simple compar-

ison or by using more predicates and checking differ-

ent conditions depending on the signs of the operands.

Moreover, the correct handling of pointer aliasing dur-
ing verification is crucial for maintaining the overall

soundness of air.

In the context of pointers and aliasing, the decom-
pilation scheme for assembly instructions that access

memory is particularly critical. The RISC approach

used by PowerPCTM leads to restricted forms of mem-

ory accesses, which in turn leads to limited types of
pointer operations in the decompiled C programs. Such

C programs may be easier to verify via SMC. In con-

trast, a naive decompilation of x86 CISC instructions

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

Name Interpreted Semi-Interpreted Uninterpreted BLAST

KLOC T M I T M I T M I CE T M I

Micro-C 10 * 164 - * 164 - 305 70 31 - * 67 -

aha152x 33 2319 121 16 * 107 - 198 74 16 - * 141 -

DAC960 45 * 193 - * 142 - 520 107 16 × 61 128 6278

devices 17 1018 41 17 3523 45 18 350 40 19 × 202 60 96701

ide 26 510 61 15 557 61 15 25 34 15 - * 105 -

ipr 35 * 285 - * 288 - 310 79 19 × 30 100 1230

message 21 194 28 26 145 28 25 29 27 26 × 16 63 831

mxser 22 699 53 19 547 52 19 129 46 19 × 6 51 1302

synclink 34 123 33 15 106 33 15 15 30 15 × 40 89 4292

tg3 61 988 77 18 907 77 18 168 70 21 × 84 152 11496

tlan 31 312 63 7 242 63 7 73 49 7 × 25 88 2062

Fig. 5 Results for non-buggy benchmarks. KLOC = 1000 lines of assembly; T = time in seconds; M = memory in MB; I = # of
iterations; * means that the resource was exhausted; - means that no measurement was available; × means that the counterexample
returned by blast is spurious. Best figures are highlighted.

Name Interpreted Semi-Interpreted Uninterpreted BLAST

KLOC T M I T M I T M I CE T M I

Micro-C 10 * 164 - * 164 - * 70 - - * 67 -

aha152x 33 357 53 10 321 53 10 84 49 18 × 40 98 8681

DAC960 45 1208 138 13 1017 138 13 388 107 13 × 70 130 6272

devices 17 1260 * 14 * 46 - * 43 - × 281 59 96697

ide 26 * 75 - * 67 - * 39 - - * 105 -

ipr 35 2009 280 6 1949 280 6 205 76 6 × 37 99 1230

message 21 62 26 11 76 26 11 6 24 11 × 16 63 831

mxser 22 115 50 6 108 50 6 76 45 6 × 8 50 1302

synclink 34 120 35 10 212 36 16 27 32 16 × 34 89 4292

tg3 61 2115 77 17 849 77 11 219 68 12 × 88 152 11496

tlan 31 362 63 7 354 63 7 98 49 7 × 34 89 2062

Fig. 6 Results for buggy benchmarks. KLOC = KLOC of assembly; T = time in seconds; M = memory in MB; I = # of iterations;
* means that the resource was exhausted; - means that no measurement was available; × means that the counterexample returned by
blast is spurious. Best figures are highlighted.

with complex memory access features leads to C pro-

grams with complicated pointer operations. Such pro-
grams are likely to be much harder to analyze by SMC.

Instead, treating each CISC instruction as a sequence

of RISC instructions during decompilation may yield C

programs that are more amenable to SMC techniques.

air decompilation results in a C program with only

integer and double variables. We believe that handles
the vast majority of instruction sets, which only admit

general-purpose and floating-point registers. Handling

instruction sets with other, more esoteric registers (like

bool and char), would necessitate the inclusion of cor-

responding variable types. An important requirement
for air is the ability to identify basic blocks in the

target assembly program, and their mapping to pro-

cedures. In our examples, this step was not difficult.

However, in general, this requires additional tooling in-
frastructure.

Finally, though air is applicable to any assembly
program, it is not necessarily a good choice in many

cases. The broad applicability of air comes at a cost

in usability. Encoding properties in terms of elements

of the assembly program may be more difficult then

encoding the same property against, for example, a C
program. In particular, properties like buffer overflows

and illegal memory accesses, incorrect library API us-

age and synchronization, etc., are likely to be much

harder to express and detect at the assembly level. Simi-

larly, interpreting a counterexample expressed in terms
of an assembly program is likely to be more difficult.

Moreover, the steps of air are specific to instruction

set architectures. However, these concerns are much less

important when it is sufficient to know whether a prop-
erty holds (or not), or when source is unavailable.

In summary, we believe that the air approach has

important ramifications for the development of effec-

tive low-level software verification techniques. Specifi-
cally, air is applicable to verifying other low-level lan-

guages such as Java bytecode and MSIL. Programs in

these languages generally contain additional informa-

tion (such as variable names) that should further in-
crease air’s effectiveness. air is also adaptable for the

purpose of using certifying model checking [24] for proof

carrying code (PCC) [26]. Certifying model checking

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

in combination with abstraction has been used [25,8]

to construct invariants and ranking functions for the

purpose of certifying source code. By generating source

code from binaries, air enables us to leverage the above

technology for the PCC-style certification of binaries.
Finally, there is a growing trend of implementing hard-

ware functionality using software, such as microcode, in

the domain of hardware-software co-design. We believe

that air would also be applicable for the verification of
such low-level programs.

References

1. Andrews, T., Qadeer, S., Rajamani, S., Rehof, J., Xie, Y.:
Zing: A model checker for concurrent software. In: R. Alur,
D. Peled (eds.) Proceedings of the 16th International Con-
ference on Computer Aided Verification (CAV ’04), Lecture

Notes in Computer Science, vol. 3114, pp. 484–487. Springer-
Verlag (2004)

2. Balakrishnan, G., Reps, T.: “Analyzing Stripped Device-
Driver Executables”. In: C.R. Ramakrishnan, J. Rehof (eds.)
Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS ’08), Lecture Notes in Computer Science, vol.
4963, pp. 124–140. Springer-Verlag (2008)

3. Ball, T., Rajamani, S.K.: Automatically Validating Tempo-
ral Safety Properties of Interfaces. In: M.B. Dwyer (ed.) Pro-
ceedings of the 8th International SPIN Workshop on Model
Checking of Software (SPIN ’01), Lecture Notes in Computer

Science, vol. 2057, pp. 103–122. Springer-Verlag (2001)

4. BEHAVE! website (2009).
http://research.microsoft.com/behave.

5. Boyer, R.S., Yu, Y.: Automated proofs of object code for a
widely used microprocessor. Journal of the ACM (JACM)
43(1), 166–192 (1996)

6. Breuer, P.T., Bowen, J.P.: Generating Decompilers. RUCS
Technical Report RUCS/1998/TR/010/A, Department of
Computing, The University of Reading (1998)

7. CBMC website (2009). http://www.cprover.org/cbmc.

8. Chaki, S.: SAT-Based Software Certification. In: H. Her-
manns, J. Palsberg (eds.) Proceedings of the 12th Interna-
tional Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS ’06), Lecture Notes in

Computer Science, vol. 3920, pp. 151–166. Springer-Verlag
(2006)

9. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular
Verification of Software Components in C. In: Proceedings of
the 25th International Conference on Software Engineering
(ICSE ’03), pp. 385–395. IEEE Computer Society (2003)

10. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking
ANSI-C Programs. In: K. Jensen, A. Podelski (eds.) Pro-
ceedings of the 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS ’04), Lecture Notes in Computer Science, vol. 2988,
pp. 168–176. Springer-Verlag (2004)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement for symbolic
model checking. Journal of the ACM (JACM) 50(5), 752–794
(2003)

12. Clutterbuck, D.L., Carre, B.A.: The verification of low-level
code. Software Engineering Journal (SEJ) 3(3), 97–111
(1988)

13. Copper website (2009).
http://www.sei.cmu.edu/pacc/copper.html.

14. Curzon, P.: A Structured Approach to the Verification of
Low Level Microcode. Ph.D. thesis, University of Cambridge,
Computer Laboratory (1991). Tech report no. 215

15. CVC Lite website (2009).
http://verify.stanford.edu/CVCL.

16. Dwyer, M.B., Hatcliff, J., Hoosier, M., Robby: Building Your
Own Software Model Checker Using The Bogor Extensible
Model Checking Framework. In: K. Etessami, S.K. Rajamani
(eds.) Proceedings of the 17th International Conference on
Computer Aided Verification (CAV ’05), Lecture Notes in

Computer Science, vol. 3576, pp. 148–152. Springer-Verlag
(2005)

17. Dwyer, M.B., Hatcliff, J., Joehanes, R., Laubach, S.,
Păsăreanu, C., Zheng, H., Visser, W.: Tool-supported pro-
gram abstraction for finite-state verification. In: Proceedings
of the 23rd International Conference on Software Engineering

(ICSE ’01), pp. 177–187. IEEE Computer Society (2001)
18. Graf, S., Säıdi, H.: Construction of Abstract State Graphs

with PVS. In: O. Grumberg (ed.) Proceedings of the 9th
International Conference on Computer Aided Verification
(CAV ’97), Lecture Notes in Computer Science, vol. 1254,
pp. 72–83. Springer-Verlag (1997)

19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy
Abstraction. In: Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
gauges (POPL ’02), SIGPLAN Notices, vol. 37(1), pp. 58–
70. Association for Computing Machinery (2002). URL cite-
seer.nj.nec.com/524901.html

20. Holzmann, G.: The SPIN Model Checker: Primer and Refer-
ence Manual. Addison-Wesley (2003)

21. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I.,
Ashar, P.: F-Soft: Software Verification Platform. In: K. Etes-
sami, S.K. Rajamani (eds.) Proceedings of the 17th Inter-
national Conference on Computer Aided Verification (CAV
’05), Lecture Notes in Computer Science, vol. 3576, pp. 301–
306. Springer-Verlag (2005)

22. Kroening, D.: Application Specific Higher Order Logic The-
orem Proving. In: S. Autexier, H. Mantel (eds.) Proceedings
of the Verification Workshop (VERIFY’02), pp. 5–15 (2002)

23. Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik,
S.: Chaff: Engineering an Efficient SAT Solver. In: Proceed-
ings of the 38th ACM IEEE Design Automation Conference
(DAC ’01), pp. 530–535. Association for Computing Machin-
ery (2001). URL http://doi.acm.org/10.1145/378239.379017

24. Namjoshi, K.S.: Certifying Model Checkers. In: G. Berry,
H. Comon, A. Finkel (eds.) Proceedings of the 13th Inter-
national Conference on Computer Aided Verification (CAV
’01), Lecture Notes in Computer Science, vol. 2102, pp. 2–13.
Springer-Verlag (2001)

25. Namjoshi, K.S.: Lifting Temporal Proofs through Abstrac-
tions. In: L.D. Zuck, P.C. Attie, A. Cortesi, S. Mukhopad-
hyay (eds.) Proceedings of the 4th International Conference
on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI ’03), Lecture Notes in Computer Science, vol.
2575, pp. 174–188. Springer-Verlag (2003)

26. Necula, G.C.: Proof-Carrying Code. In: Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Langauges (POPL ’97), pp. 106–119. Associa-
tion for Computing Machinery (1997)

27. Nelson, G.: Techniques for Program Verification. Ph.D. the-
sis, Stanford University (1980)

28. O’Neill, I.M., Clutterbuck, D.L., Farrow, P.F., Summers,
P.G., Dolman, W.C.: The formal verification of safety-critical
assembly code. In: Proceedings of the International Federa-
tion of Automatic Control Safety of Computer Control Sys-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

tems Conference (SAFECOMP ’88), IFAC Proceedings Se-

ries, vol. 16, pp. 115–120 (1988)
29. Pnueli, A., Siegel, M., Singerman, E.: Translation Validation.

In: B. Steffen (ed.) Proceedings of the 4th International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’98), Lecture Notes in Com-

puter Science, vol. 1384, pp. 151–166. Springer-Verlag (1998)
30. PowerPCTM ISA (2009).

http://www.nersc.gov/vendor_docs/ibm/asm/mastertoc.htm.

31. Reps, T., Balakrishnan, G., Lim, J., Teitelbaum, T.: A Next-
Generation Platform for Analyzing Executables. In: K. Yi
(ed.) Proceedings of the third Asian Symposium on Program-
ming Languages and Systems (APLAS ’05), Lecture Notes in

Computer Science, vol. 3780, pp. 212–229. Springer-Verlag
(2005)

32. Vampyre website (2009).
http://www-cad.eecs.berkeley.edu/~rupak/Vampyre.

33. Visser, W., Havelund, K., Brat, G.P., Park, S.: Model Check-
ing Programs. In: Proceedings of the 15th International Con-
ference on Automated Software Engineering (ASE ’00), pp.
3–12. IEEE Computer Society (2000)

34. Yu, D.: Safety Verification of Low-Level Code. Ph.D. thesis,
Graduate School. of. Yale University (2004)

35. Yu, D., Shao, Z.: Verification of Safety Properties for Con-
current Assembly Code. In: C. Okasaki, K. Fisher (eds.)
Proceedings of the 2004 International Conference on Func-
tional Programming (ICFP ’04), pp. 175–188. Association for
Computing Machinery (2004)

