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Abstract We develop a learning-based automated
Assume-Guarantee (AG) reasoning framework for ver-

ifying ω-regular properties of concurrent systems. We

study the applicability of non-circular (AG-NC) and
circular (AG-C) AG proof rules in the context of sys-

tems with infinite behaviors. In particular, we show that

AG-NC is incomplete when assumptions are restricted
to strictly infinite behaviors, while AG-C remains

complete. We present a general formalization, called

LAG, of the learning based automated AG paradigm.

We show how existing approaches for automated AG
reasoning are special instances of LAG. We develop

two learning algorithms for a class of systems, called

∞-regular systems, that combine finite and infinite be-
haviors. We show that for ∞-regular systems, both

AG-NC and AG-C are sound and complete. Finally,

we show how to instantiate LAG to do automated AG
reasoning for ∞-regular, and ω-regular, systems using

both AG-NC and AG-C as proof rules.

1 Introduction

Compositional reasoning [8, 13] is a widely used tech-
nique for tackling the statespace explosion problem

while verifying concurrent systems. Assume-Guarantee

(AG) is one of the most well-studied paradigms for com-

positional reasoning [19, 14]. In AG-style analysis, we
infer global properties of a system from the results of

local analysis on its components. Typically, to analyze

a system component C locally, we use an appropriate
“assumption”, a model of the rest of the system that re-

flects the behavior expected by C from its environment
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in order to operate correctly. The goal of the local anal-
yses is then to establish that every assumption made is

also “guaranteed” – hence Assume-Guarantee.

Since its inception [18, 16], the AG paradigm has

been explored in several directions. However, a major

challenge in automating AG reasoning is constructing
appropriate assumptions. For realistic systems, such as-

sumptions are often complicated, and, therefore, con-

structing them manually is impractical. In this context,
Cobleigh et al. [9] proposed the use of learning to auto-

matically construct appropriate assumptions to verify a

system composed of finite automata against a finite au-

tomaton specification (i.e., to verify safety properties).
They used the following sound and complete AG proof

rule:

M1 ‖ A ⊑ S M2 ⊑ A

M1 ‖ M2 ⊑ S

where M1,M2, A and S are finite automata, || is a par-

allel composition, and ⊑ denotes language containment.

The essential idea is to use the L∗ algorithm [2] to
learn an assumption A that satisfies the premises of the

rule, and implement the minimally adequate teacher re-

quired by L∗ via model-checking.

The learning-based automated AG paradigm has

been extended in several directions [5, 1, 21]. However,
the question of whether this paradigm is applicable to

verifying ω-regular properties (i.e., liveness and safety)

of reactive systems is open. In this paper, we answer this
question in the affirmative. An automated AG frame-

work requires: (i) an algorithm that uses queries and

counterexamples to learn an appropriate assumption,

and (ii) a set of sound and complete AG rules. Recently,
a learning algorithm for ω-regular languages has been

proposed by Farzan et al. [10]. However, to our knowl-

edge, the AG proof rules have not been extended to
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ω-regular properties. This is the problem we address in

this paper.

First, we study the applicability of non-circular

(AG-NC) and circular (AG-C) AG proof rules in the
context of systems with infinite behaviors. We assume

that processes synchronize on shared events and pro-

ceeding asynchronously otherwise, i.e., as in CSP [15].

We prove that, in this context,AG-NC is sound but in-
complete when restricted to languages with strictly in-

finite behaviors (e.g., ω-regular). This is surprising and

interesting. In contrast, we show that AG-C is both
sound and complete for ω-regular languages. Second,

we extend our AG proof rules to systems and specifica-

tions expressible in ∞-regular languages (i.e., unions of
regular and ω-regular languages). We show that both

AG-C and AG-NC are sound and complete in this

case. To the best of our knowledge, these soundness and

completeness results are new. We develop two learn-
ing algorithms for ∞-regular languages – one using a

learning algorithm for ω-regular languages (see Theo-

rem 8(a)) with an augmented alphabet, and another
combining a learning algorithm for ω-regular languages

with L∗ (see Theorem 8(b)) without alphabet augmen-

tation. Finally, we present a very general formaliza-
tion, called LAG, of the learning based automated AG

paradigm. We show how existing approaches for auto-

mated AG reasoning are special instances of LAG. Fur-

thermore, we show how to instantiate LAG to develop
automated AG algorithms for ∞-regular and ω-regular

languages using both AG-NC and AG-C as proof rules.

The rest of the paper is structured as follows. We
present the necessary background in Section 2. In Sec-

tion 3, we review our model of concurrency. In Section 4,

we study the soundness and completeness of AG rules,
and present our LAG framework in Section 5. We re-

view the related work in Section 6, and conclude in

Section 7.

2 Preliminaries

We write Σ∗ and Σω for the set of all finite and infinite

words over Σ, respectively, and write Σ∞ for Σ∗ ∪Σω.
We use the standard notation of regular expressions: λ

for empty word, a · b for concatenation, a∗, a+, and aω

for finite, finite and non-empty, and infinite repetition

of a, respectively. When a ∈ Σω, we define a · b = a.
These operations are extended to sets in the usual way,

e.g., X · Y = {x · y | x ∈ X ∧ y ∈ Y }.

Language. A language is a pair (L,Σ) such that Σ

is an alphabet and L ⊆ Σ∞. The alphabet is an in-

tegral part of a language. In particular, ({a}, {a}) and
({a}, {a, b}) are different languages. However, for sim-

plicity, we often refer to a language as L and men-

tion Σ separately. For instance, we write “language L

over alphabet Σ” to mean the language (L,Σ), and

Σ(L) to mean the alphabet of L. Union and intersec-

tion are defined as usual, but only for languages over
the same alphabet. The complement of L, denoted L,

is defined as: L = Σ(L)∞ \ L. A finitary language

(Σ∗-language) is a subset of Σ∗. An infinitary lan-
guage (Σω-language) is a subset of Σω. For L ⊆ Σ∞,

we write ∗(L) for the finitary language L ∩ Σ∗ and

ω(L) for the infinitary language L ∩ Σω. Note that

Σ(L) = Σ(∗(L)) = Σ(ω(L)) = Σ(L).

Transition Systems. A labeled transition system
(LTS) is a 4-tuple M = (S,Σ, Init , δ), where S is a

finite set of states, Σ is an alphabet, Init ⊆ S is the

set of initial states, and δ ⊆ S × Σ × S is a tran-

sition relation. We write s
α

−→ s′ for (s, α, s′) ∈ δ,
and Σ(M) for Σ. M is deterministic if |Init | ≤ 1, and

∀s ∈ S � ∀α ∈ Σ � |{s′ | s
α

−→ s′}| ≤ 1. A run r over a

word w = α0, α1, . . . ,∈ Σ(M)∞ is a sequence of states
s0, s1, . . ., such that ∀i ≥ 0 � si

αi−→ si+1. We write

First(r), Last(r), and Inf (r) to denote the first state

of r, the last state of r (assuming r ∈ S∗), and states
that occur infinitely often in r (assuming r ∈ Sω), re-

spectively. We write Run(w,M) for the set of runs of

w on M .

Automata. A Finite Automaton (FA) is a 5-tuple

A = (S,Σ, Init , δ, F ), where (S,Σ, Init , δ) is an LTS
and F ⊆ S is a set of accepting states. The lan-

guage accepted by A, L(A), is the set of all words

w ∈ Σ∗ s.t. there exists a run r of w on A, with

First(r) ∈ Init∧Last(r) ∈ F . A Büchi Automaton (BA)
is a 5-tuple B = (S,Σ, Init , δ, F ), where (S,Σ, Init , δ)

is an LTS and F ⊆ S is a set of accepting states.

The language accepted by B, L(B), is the set of all
words w ∈ Σω s.t. there exists a run r of w on A with

First(r) ∈ Init ∧ Inf (r) ∩ F 6= ∅. A BA or FA is deter-

ministic if its underlying LTS is deterministic.

Regularity. A language is regular (ω-regular) iff it

is accepted by a FA (BA). A language L ⊆ Σ∞ is
∞-regular iff ∗(L) is regular and ω(L) is ω-regular. De-

terministic FA (DFA) and non-deterministic FA (NFA)

are equally expressive. Deterministic BA are strictly

less expressive than non-deterministic BA.

Learning. A learning algorithm for a regular language
is any algorithm that learns an unknown, but fixed, lan-

guage U over a known alphabet Σ. Such an algorithm is

called active if it works by querying a Minimally Ade-

quate Teacher (MAT). The MAT can answer “Yes/No”
to two types of queries about U :

Membership Query Given a word w, is w ∈ U?
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Candidate Query Given an automaton B, is L(B) =

U? If the answer is “No”, the MAT returns a coun-
terexample (CE ), which is a word such that CE ∈
L(B)⊖ U , where X ⊖ Y = (X \ Y ) ∪ (Y \X).

An active learning algorithm begins by asking member-

ship queries of the MAT until it constructs a candidate,

with which it makes a candidate query. If the candidate

query is successful, the algorithm terminates; otherwise,
it uses the CE returned by the MAT to construct addi-

tional membership queries. The family of active learn-

ing algorithms was originated by Angluin via L∗ [2]
for learning a minimal DFA that accepts an unknown

regular language. L∗ was further optimized by Rivest

and Schapire [20].
The problem of learning a minimal automaton

which accepts an unknown ω-regular language is still

open. It is known [17] that for any language U one

can learn in the limit an automaton that accepts U

via the identification by enumeration approach pro-

posed by Gold [12]. However, the automaton learned via

enumeration may, in the worst case, be exponentially
larger than the minimal automaton accepting U . Fur-

thermore, there may be multiple minimal automata [17]

accepting U . Maler et al. [17] have shown that L∗ can
be extended to learn a minimal (Müller) automaton for

a fragment of ω-regular languages.

Farzan et al. [10] show how to learn a Büchi automa-

ton for an ω-regular language U . Specifically, they use
L∗ to learn the language U$ = {u$v | u ·vω ∈ U}, where
$ is a fresh letter not in the alphabet of U . The language

U$ was shown to be regular by Calbrix et al. [4]. In the
sequel, we refer to this algorithm as L$. The complex-

ity of L$ is exponential in the minimal BA for U . Our

LAG framework can use any active algorithm for learn-
ing ω-regular languages. In particular, L$ is an existing

candidate.

3 Model of Concurrency

Let w be a word and Σ an arbitrary alphabet. We write

w ⇃Σ for the projection of w onto Σ defined recursively

as follows (recall that λ denotes the empty word):

λ ⇃Σ = λ (a · u) ⇃Σ =

{

a · (u ⇃Σ) if a ∈ Σ

u ⇃Σ otherwise

Clearly, both Σ∗ and Σ∞ are closed under projection,

but Σω is not. For example, (a∗ · bω ⇃ {a}) = a∗, and

a∗ consists only of finite words. Projection preservers

regularity. If L is a regular (∞-regular) language and Σ

is any alphabet, then L ⇃Σ is also regular (∞-regular).

A process is modeled by a language of all of its be-

haviors (or computations). Parallel composition (||) of

two processes/languages synchronizes on common ac-

tions while executing local actions asynchronously. For
languages (L1, Σ1) and (L2, Σ2), L1||L2 is the language

over Σ1 ∪Σ2 defined as follows:

L1 ‖ L2 = {w ∈ (Σ1∪Σ2)
∞ | w⇃Σ1 ∈ L1∧w⇃Σ2 ∈ L2}

(def. of ||)

Intuitively, L1||L2 consists of all permutations of words

from L1 and L2 that have a common synchroniza-

tion sequence. For example, (b∗ · a · b∗)||(c∗ · a · c∗) is

(b+c)∗·a·(b+c)∗. Note that when L1 and L2 share an al-
phabet, the composition is their intersection; when their

alphabets are disjoint, the composition is their language

shuffle. The set of Σ∗, Σω, and Σ∞ languages are all
closed under parallel composition. The following theo-

rem illustrates some other useful properties of parallel

composition.

Theorem 1 The || operator is associative, commuta-

tive, distributive over union and intersection. It is also
monotone, i.e., for any two languages L1, L2, and L3:

L2 ⊆ L3 ⇒ (L1||L2) ⊆ (L1||L3).

Let L1 and L2 be two languages such that Σ(L1) ⊇
Σ(L2). We say that L1 is subsumed by L2, written

L1 4 L2, if L1 ⇃ Σ(L2) ⊆ L2. Thus, L1 4 L2 means
that L1 is subsumed by L2 when projected on the al-

phabet of common actions. Let LS be the language of

a specification S, and LM be the language of a system

M . Then, M satisfies S, written M |= S, iff LM 4 LS .

4 Proof Rules for Assume-Guarantee

Reasoning

In this section, we study the applicability of a non-
circular and a circular AG rule to proving properties of

processes with infinite behaviors (e.g., reactive systems

that neither terminate nor deadlock). These rules were

shown to be sound and complete for systems with finite
(i.e., in Σ∗) behaviors by Barringer et al. [3]. In Sec-

tion 4.1, we show that the non-circular AG rule is sound

for both Σ∞ and Σω behaviors. However, it is complete
only when the assumptions are allowed to combine both

finite and infinite behaviors (i.e., inΣ∞). In Section 4.2,

we show that the circular AG rule is sound and com-
plete for Σω and Σ∞ behaviors.

4.1 Non-Circular Assume-Guarantee Rule

The non-circular AG proof rule (AG-NC for short) is

stated as follows:
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(L1 ‖ LA) 4 LS L2 4 LA

(L1 ‖ L2) 4 LS

where L1, L2, LS , and LA are languages with the al-

phabets Σ1, Σ2, ΣS , ΣA, respectively, ΣS ⊆ (Σ1∪Σ2),
and ΣA = (Σ1 ∪ ΣS) ∩ Σ2. AG-NC is known to be

sound and complete for Σ∗-languages. Intuitively, it

says that if there exists an assumption LA such that:
(a) L1 composed with LA is contained in LS , and (b)

L2 is contained in LA, then the composition of L1 with

L2 is contained in LS as well. Note that the alphabet

ΣA is the smallest alphabet containing: (a) actions at
the interface between L1 and L2, i.e., actions common

to the alphabets of L1 and L2, and (b) external ac-

tions of L2, i.e., actions common to the alphabets of
L2 and LS . Any smaller alphabet makes the rule triv-

ially incomplete; any larger alphabet exposes internal

(i.e., non-external) actions of L2. It is not surprising
that AG-NC remains sound even when applied to lan-

guages with infinite words. However,AG-NC is incom-

plete when LA is restricted to Σω-languages:

Theorem 2 There exists L1, L2, LS ⊆ Σω such that

(L1||L2) 4 LS, but there does not exists an assumption
LA ⊆ Σω that satisfies all of the premises of AG-NC.

Proof By example. Let L1, L2, LS , and their alphabets

be defined as follows:

Σ1 = {a, b} Σ2 = {a, c} ΣS = {a, b}

L1 = (a+ b)ω L2 = a∗cω LS = (a+ b)∗bω

The conclusion of AG-NC rule is satisfied since

(L1||L2) ⇃ ΣS = (a + b)∗bω = LS . The alphabet ΣA

of LA is (Σ1 ∪ ΣS) ∩ Σ2 = {a}. Since LA ⊆ Σω
A, it

can only be aω or ∅. The only way to satisfy the first

premise of AG-NC is to let LA = ∅, but this is too

strong to satisfy the second premise. ⊓⊔

Note that the proof of Theorem 2 shows that AG-

NC is incomplete even for ∞-regular languages.

Remark 1 One may conjecture that the AG-NC rule
becomes complete for Σω if subsumption is redefined

to only consider infinite words. That is, by redefining

subsumption as:

L1 4 L2 ⇔ ω(L1 ⇃Σ(L2)) ⊆ L2.

However, under this interpretation, AG-NC is no

longer sound. For example, let the languages L1, L2,

LS , and their alphabets be defined as follows:

Σ1 = {a, b} Σ2 = {a, c} ΣS = {a, b}

L1 = (a+ b)ω L2 = a∗cω LS = bω

Then, the conclusion of AG-NC does not hold:

ω((L1||L2) ⇃ΣS) = (a+ b)∗bω 6⊆ bω.

But, LA = ∅ satisfies both premises: (L1||LA) = bω,
and ω(L2 ⇃ {a}) = LA.

Remark 2 AG-NC is complete if the alphabet ΣA is

redefined to be Σ1 ∪Σ2. However, in this case the rule

is no longer “compositional” since the assumption LA

can be as expressive as the component L2.

Intuitively, AG-NC is incomplete for Σω because Σω

is not closed under projection. However, we show that

the rule is complete for Σ∞ – the smallest projection-

closed extension of Σω. We first show that for any lan-
guages L1 and LS , there always exists a unique weakest

assumption LA, such that L1||LA 4 LS .

Theorem 3 Let L1 and LS be two languages, and ΣA

be any alphabet s.t. Σ(L1) ∪ ΣA = Σ(L1) ∪ Σ(LS).

Then, LA = {w ∈ Σ∞
A | (L1||{w}) 4 LS} satisfies

L1||LA 4 LS, and is the weakest such assumption.

Proof Let us write Σ1, ΣS and Σ1S to mean Σ(L1),

Σ(LS) and Σ(L1) ∪ Σ(LS) respectively. To show that

LA is a valid assumption, pick any w ∈ L1 ‖ LA.
Then w ⇃ ΣA ∈ LA. This implies that w ⇃ ΣS ∈
(L1 ‖ {w ⇃ΣA}) ⇃ ΣS ⊆ LS . Since w is any word in

L1 ‖ LA, we have L1 ‖ LA 4 LS . To show that LA is
the weakest assumption, let L′

A ⊆ Σ∞
A be any language

such that L1 ‖ L′
A 4 LS and let w be any word in L′

A.

Then, (L1 ‖ {w}) ⊆ (L1 ‖ L′
A) 4 LS . But this implies

that w ∈ LA, and, therefore, L
′
A ⊆ LA. ⊓⊔

Note that Σ∞
A subsumes both finite (Σ∗

A) and infi-
nite (Σω

A) words. Thus, if LA is a Σ∞
A weakest assump-

tion, then ∗(LA) and ω(LA) are the weakest Σ∗
A and

Σω
A assumptions, respectively.

Theorem 4 Let L1, L2, LS, and LA be in Σ∞. Then,

the AG-NC rule is sound and complete.

Proof The proof of soundness is trivial and is omit-

ted. For the proof of completeness we only show the
key step. Assume that L1||L2 4 LS , and let LA be

the weakest assumption such that L1||LA 4 LS . By

Theorem 3, LA is well-defined and satisfies the first
premise of AG-NC. The second premise holds because

L2 ⇃ΣA ⊆ Σ∞
A , and LA is the weakest Σ∞

A assumption

(see Theorem 3). ⊓⊔

Theorem 4 implies that AG-NC is sound for any

fragment of Σ∞. Of course, this is not true for com-
pleteness of the rule. For practical purposes, we would

like to know that the rule remains complete when its

languages are restricted to the regular subset. We show
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that this is so by showing that under the assumption

that L1 and LS are regular, the weakest assumption is
regular as well.

Theorem 5 Let L1 and LS be two languages, and ΣA

be any alphabet such that Σ(L1)∪ΣA = Σ(L1)∪Σ(LS).

Then, LA ⊆ Σ∞
A is the weakest assumption such that

L1||LA 4 LS iff LA = (L1 ‖ LS) ⇃ΣA.

Proof Let us write Σ1, ΣS and Σ1S to mean Σ(L1),
Σ(LS) and Σ(L1) ∪ Σ(LS), respectively. For any w ∈
Σ∞

A :

w ∈ (L1 ‖ LS) ⇃ΣA

iff ∀w′ ∈ Σ∞
1S � {w′} 4 {w} =⇒ w′ 6∈ (L1 ‖ LS)

iff ∀w′ ∈ Σ∞
1S � {w′} 4 {w} =⇒

({w′} 64 L1 ∨ {w′} 4 LS)

iff ∀w′ ∈ Σ∞
1S � ({w′} 4 {w} ∧ {w′} 4 L1) =⇒

{w′} 4 LS

iff ∀w′ ∈ Σ∞
1S � ({w′} 4 (L1 ‖ {w})) =⇒ {w′} 4 LS

iff L1 ‖ {w} 4 LS

Together with Theorem 3, this completes the proof.

⊓⊔

Theorem 5 implies AG-NC is complete for any

class of languages closed under complementation and

projection, e.g., regular and ∞-regular languages. In

addition, Theorem 5 implies that learning-based auto-
mated AG reasoning is effective for any class of lan-

guages whose weakest assumptions fall in a “learnable”

fragment. In particular, this holds for regular, ω-regular
and ∞-regular languages.

4.2 Circular Assume-Guarantee Rule

The Circular Assume-Guarantee proof rule (AG-C for

short) is stated as follows:

(L1 ‖ LA1) 4 LS (L2 ‖ LA2) 4 LS (LA1 ‖ LA2) 4 LS

(L1 ‖ L2) 4 LS

where L1, L2, and LS are languages over alphabets Σ1,

Σ2, ΣS , respectively; ΣS ⊆ Σ1 ∪Σ2, and LA1 and LA2

share a common alphabet ΣA = (Σ1∩Σ2)∪ΣS . AG-C

is known to be sound and complete for Σ∗-languages.

Note that in comparison with AG-NC, there are two

assumptions LA1 and LA2 over a larger alphabet ΣA.
Informally, the rule is sound for the following reason.

Let w be a word in L1||L2, and u = w ⇃ ΣA. Then

u ∈ LA1, or u ∈ LA2, or u ∈ LA1 ∪ LA2 = (LA1||LA2).

If u ∈ LA1 then the first premise implies that {w} 4

L1||{u} 4 LS ; if u ∈ LA2 then the second premise

implies that {w} 4 L2||{u} 4 LS ; otherwise, the third

premise implies that {w} 4 {u} 4 LS .

Remark 3 Note that the assumption alphabet for AG-

C is larger than AG-NC. In fact, using ΣA1 = (Σ1 ∪
ΣS) ∩ Σ2 and ΣA2 = (Σ2 ∪ ΣS) ∩ Σ1 makes AG-C

incomplete. Indeed, let L1 = {aa} with Σ1 = {a}, L2 =

{bb} with Σ2 = {b} and LS = {aab, abb, ab}. Note that
L1||L2 4 LS . We show that no LA1

and LA2
can satisfy

the three premises of AG-C. Premise 1 ⇒ b 6∈ LA1
⇒

b ∈ LA1
. Similarly, premise 2 ⇒ a 6∈ LA2

⇒ a ∈ LA2
.

But then ab ∈ LA1||LA2
, violating premise 3.

In this section, we show that AG-C is sound and

complete for both Σω and Σ∞ languages. First, we

illustrate an application of the rule to the example
from the proof of Theorem 2. Let L1, L2, and LS

be Σω languages as defined in the proof of Theo-

rem 2. In this case, the alphabet ΣA is {a, b}. Letting
LA1 = (a+ b)∗bω, and LA2 = (a+ b)ω satisfies all three
premises of the rule.

Theorem 6 Let L1, L2, LS, LA1, and LA2 be in Σω

or Σ∞. Then, the AG-C rule is sound and complete.

Proof The proof of soundness is sketched in the above
discussion. For the proof of completeness we only show

the key steps. Assume that L1||L2 4 LS . Let LA1 and

LA2 be the weakest assumptions such that L1||LA1 4

LS , and L2||LA2 4 LS , respectively. By Theorem 3,
both LA1 and LA2 are well-defined and satisfy the first

and the second premises of AG-C, respectively. We

prove the third premise by contradiction. Since LA1 and
LA2 have the same alphabet, (LA1||LA2) = (LA1∩LA2).

Assume that (LA1 ∩ LA2) 64 LS . Then, there exists a

word w ∈ (LA1||LA2) such that w 6∈ LA1, and w 6∈ LA2,
and w ⇃ΣS 6∈ LS . By the definition of weakest assump-

tion (see Theorem 3), L1||{w} 64 LS and L2||{w} 64
LS . Pick any w1 ∈ L1||{w} and w2 ∈ L2||{w}. Let

w′
1 = w1 ⇃ Σ1 and w′

2 = w2 ⇃ Σ2. We know that
{w′

1}||{w
′
2} ⊆ L1||L2. Also, w ∈ ({w′

1}||{w
′
2})⇃ΣA. Now

since {w′
1}||{w

′
2} ⊆ L1||L2, we have w ∈ (L1||L2) ⇃ΣA.

SinceΣS ⊆ ΣA, w⇃ΣS ∈ (L1||L2)⇃ΣS . But w⇃ΣS 6∈ LS ,
which contradicts L1||L2 4 LS . ⊓⊔

Intuitively, AG-C is complete even for ω-regular

languages because, unlike AG-NC, assumptions al-

ways appear to the left of 4 in the premises of AG-C.
Thus, restricting the assumptions to only infinitary be-

haviors does not invalidate any of the premises of AG-

C. This is true even though the assumptions appear in
negated form in the third premise of AG-C.

The completeness part of the proof of Theorem 6

is based on the existence of the weakest assumption.

We already know from Theorem 5, that the weakest as-
sumption is (∞-,ω-)regular if L1, L2, and LS are (∞-,ω-

)regular, respectively. Thus, AG-C is complete for (∞-

,ω-)regular languages. Since AG-NC is incomplete for
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ω-regular languages, a learning algorithm for ω-regular

languages (such as L$) cannot be applied directly for
AG reasoning for ω-regular systems and specifications.

In the next section, we overcome this challenge by de-

veloping automated AG algorithms for ∞-regular and
ω-regular languages.

5 Automated Assume-Guarantee Reasoning

In this section, we present our LAG framework, and its

specific useful instances. LAG uses membership oracles,

learners, and checkers, which we describe first.

Definition 1 (Membership Oracle and Learner)

A membership oracle Q for a language U over alphabet

Σ is a procedure that takes as input a word u ∈ Σ∞

and returns 0 or 1 such that Q(u) = 1 ⇐⇒ u ∈ U .

We say that Q |= U . The set of all membership or-

acles is denoted by Oracle. Let A be any set of au-

tomata. We write LearnerA to denote the set of all
learners of type A. Formally, a learner of type A
is a pair (Cand,LearnCE) such that: (i) Cand :

Oracle 7→ A is a procedure that takes a membership
oracle as input and outputs a candidate C ∈ A, and (ii)

LearnCE : Σ∞ 7→ LearnerA is a procedure that takes

a counterexample as input and returns a new learner of
type A. For any learner P = (Cand,LearnCE) we

write P.Cand and P.LearnCE to mean Cand and

LearnCE respectively.

Intuitively, a membership oracle is the fragment of
a MAT that only answers membership queries, while a

learner encapsulates an active learning algorithm that

is able to construct candidates via membership queries,
and learn from counterexamples of candidate queries.

Learning. Let U be any unknown language, Q be an

oracle, and P be a learner. We say that (P,Q) learns

U if the following holds: if Q |= U , then there does
not exist an infinite sequence of learners P0, P1, . . . and

an infinite sequence of counterexamples CE 1,CE 2, . . .

such that: (i) P0 = P , (ii) Pi = Pi−1.LearnCE(CE i)
for i > 0, and (iii) CE i ∈ L(Pi−1.Cand(Q)) ⊖ U for

i > 0.

Definition 2 (Checker) Let A be a set of automata,
and k be an integer denoting the number of candidates.

A checker of type (A, k) is a procedure that takes as

input k elements A1, . . . , Ak of A and returns either (i)

SUCCESS, or (ii) a pair (FAILURE,CE ) such that
CE ∈ Σ∞, or (iii) a triple (FEEDBACK, i,CE ) such

that 1 ≤ i ≤ k and CE ∈ Σ∞. We write Checker(A,k)

to mean the set of all checkers of type (A, k).

Input:

P1 . . . Pk : LearnerA;
Q1, . . . , Qk : Oracle;

V : Checker(A,k)

forever do

for i = 1 to k do Ci := Pi.Cand(Qi)
R := V (C1, . . . , Ck)
if (R = (FEEDBACK, i,CE)) then

Pi := Pi.LearnCE(CE)
else return R

Fig. 1 Algorithm for overall LAG procedure.

Intuitively, a checker generalizes the fragment of a

MAT that responds to candidate queries by handling
multiple (specifically, k) candidates. This generaliza-

tion is important for circular proof rules. The checker

has three possible outputs: (i) SUCCESS if the overall
verification succeeds; (ii) (FAILURE,CE ) where CE

is a real counterexample; (iii) (FEEDBACK, i,CE )

where CE is a counterexample for the i-th candidate.

5.1 LAG Procedure

Our overall LAG procedure is presented in Fig. 1. We
writeX : T to mean that “X is of type T”. LAG accepts

a set of k membership oracles, k learners, and a checker,

and repeats the following steps:
1. Constructs candidate automata C1, . . . , Ck using

the learners and oracles.
2. Invokes the checker with the candidates constructed

in Step 1 above.
3. If the checker returns SUCCESS or

(FAILURE,CE ), then exits with this result.

Otherwise, updates the appropriate learner with
the feedback and repeats from Step 1.

Theorem 7 LAG terminates if there exists languages
U1, . . . , Uk such that: (i) Qi |= Ui for 1 ≤ i ≤ k,

(ii) (Pi, Qi) learns Ui for 1 ≤ i ≤ k, and (iii) if

V (C1, . . . , Ck) = (FEEDBACK, i,CE ), then CE ∈
L(Ci)⊖ Ui.

Proof By contradiction. If LAG does not terminate
there exists some Pi such that Pi.LearnCE is called

infinitely often. This, together with assumptions (i) and

(iii), contradicts (ii), i.e., (Pi, Qi) learns Ui. ⊓⊔

5.2 Oracle, Learner, and Checker Instantiations

We now describe various implementations of oracles,

learners and checkers. We start with the notion of an
oracle for weakest assumptions.

Oracle for Weakest Assumption. Let L1, LS

be any languages and Σ be any alphabet. We
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Checker: VNC(L1, L2, LS)

Input: A: A
if (L1 ‖ L(A)) 4 LS then

if L2 4 L(A) then return SUCCESS

else

let w be a CEX to L2 4 L(A)
if L1 ‖ {w} 4 LS then

return (FEEDBACK, 1, w ⇃Σ(A))

else

let w′ be a CEX to L1 ‖ {w} 4 LS

return (FAILURE, w′)
else

let w be a CEX to (L1 ‖ L(A)) 4 LS

return (FEEDBACK, 1, w ⇃Σ(A))

Fig. 2 VNC – a checker based on AG-NC

write Q(L1, LS , Σ) to denote the oracle such that

Q(L1, LS , Σ) |= (L1 ‖ LS) ⇃Σ. Q(L1, LS , Σ) is typi-

cally implemented via model checking since, by Theo-

rems 3 and 5, Q(L1, LS , Σ)(u) = 1 ⇐⇒ u ∈ Σ∞∧L1 ‖
{u} 4 LS .

Learner Instantiations. In general, a learner P (L) is

derived from an active learning algorithm L as follows:

P (L) = (Cand,LearnCE) s.t. Cand = part of L that
constructs a candidate using membership queries, and

LearnCE = part of L that learns from a counterexam-

ple to a candidate query.

Non-circular Checker. Let A be a type of au-

tomata, and L1, L2 and LS be any languages. Then

VNC(L1, L2, LS) is the checker of type (A, 1) defined

in Fig. 2. Note that VNC(L1, L2, LS) is based on the
AG-NC proof rule. The following proposition about

VNC(L1, L2, LS) will be used later.

Proposition 1 If VNC(L1, L2, LS)(A) returns SUC-

CESS, then L1 ‖ L2 4 LS. Otherwise, if

VNC(L1, L2, LS)(A) returns (FAILURE,CE ), then
CE is a valid counterexample to L1 ‖ L2 4 LS. Finally,

if VNC(L1, L2, LS)(A) returns (FEEDBACK, 1,CE ),

then CE ∈ L(A)⊖ (L1 ‖ LS) ⇃Σ.

Circular Checker. Let A be a type of automata, and
L1, L2 and LS be any languages. Then VC(L1, L2, LS)

is the checker of type (A, 2) defined in Fig. 3. Note that

VC(L1, L2, LS) is based on the AG-C proof rule. The

following proposition about VC(L1, L2, LS) will be used
later.

Proposition 2 If VC(L1, L2, LS)(A1, A2) returns

SUCCESS, then L1 ‖ L2 4 LS. Otherwise, if

VC(L1, L2, LS)(A1, A2) returns (FAILURE,CE ),

then CE is a valid counterexample to L1 ‖ L2 4 LS.
Finally, if VC(L1, L2, LS)(A1, A2) returns

(FEEDBACK, i,CE ), then

CE ∈ L(Ai)⊖ (Li ‖ LS) ⇃Σ.

Checker: VC(L1, L2, LS)

Input: A1, A2 : A
for i = 1, 2 do

if Li ‖ L(Ai) 64 LS then

let w be a CEX to Li ‖ L(Ai) 4 LS

return (FEEDBACK, i, w ⇃ΣA)

if L(A1) ‖ L(A2) 4 LS then return SUCCESS

else

let w be a CEX to L(A1) ‖ L(A2) 4 LS

for i = 1, 2 do

if Li ‖ {w} 4 LS then

return (FEEDBACK, i, w ⇃ΣA)
else let wi be a CEX to Li ‖ {w} 4 LS

pick w′ ∈ {w1} ‖ {w2}
return (FAILURE, w′)

Fig. 3 VC – a checker based on AG-C.

5.3 LAG Instantiations

In this section, we present several instantiations of LAG
for checking L1 ‖ L2 4 LS . Our approach extends to

systems with finitely many components, as for example

in [9, 3].

Existing Work as LAG Instances: Regular Trace

Containment. Table 1 instantiates LAG for existing

learning-based algorithms for AG reasoning. The first

row corresponds to the work of Cobleigh et al. [9]; its
termination and correctness follow from Theorem 7,

Proposition 1, and the fact that (P1, Q1) learns the

language (L1 ‖ LS) ⇃Σ. The second row corresponds to
Barringer et al. [3]; its termination and correctness fol-

low from Theorem 7, Proposition 2, and the fact that

(Pi, Qi) learns (Li ‖ LS) ⇃Σ for i ∈ {1, 2}.

New Contribution: Learning Infinite Behavior.

Let Lω be any active learning algorithm for ω-regular

languages (e.g., L$). Since AG-NC is incomplete for

ω-regular languages, Lω is not applicable directly in this

context. On the other hand, both AG-NC and AG-

C are sound and complete for ∞-regular languages.

Therefore, a learning algorithm for∞-regular languages

yields LAG instances for systems with infinite behavior.
We now present two such algorithms. The first (see The-

orem 8 (a)) uses Lω only, but augments the assumption

alphabet. The second (see Theorem 8(b)) combines Lω

and L∗, but leaves the assumption alphabet unchanged.

We present both schemes since neither is objectively su-

perior.

Theorem 8 We can learn a ∞-regular language U us-

ing a MAT for U in two ways: (a) using only Lω but

with alphabet augmentation, and (b) without alphabet
augmentation, but using both L∗and Lω.

Proof Part(a): Let Σ be the alphabet of U . We use Lω

to learn an ω-regular language U ′ over the alphabet
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Σ′ = Σ ∪ {τ} such that U ′ ⇃ Σ = U , and τ 6∈ Σ. Let

U ′ = U · τω. We assume that the MAT X for U accepts
candidate queries of the form (M1,M2) ∈ DFA × BA,

and returns “Yes” if U = L(M1) ∪ L(M2), and a CE

otherwise. Then, a MAT for U ′ is implemented using
X as follows: (i) Membership: u ∈ U ′ iff u ∈ Σ∞ ·
τω ∧ u ⇃ Σ ∈ U , where u ⇃ Σ ∈ U is decided using X;

(ii) Candidate with C ′: If L(C ′) 6⊆ Σ∞ · τω, return
CE ′ ∈ L(C ′) \ Σ∞ · τω. Otherwise, make a candidate

query to X with (M1,M2) such that L(M1) = ∗(C ′ ⇃Σ)

and L(M2) = ω(C ′ ⇃ Σ), and turn any CE to CE ′ =

CE · τω.

Part(b): We use L∗ to learn ∗(U) and Lω to learn
ω(U). We assume that the MAT X for U accepts can-

didate queries of the form (M1,M2) ∈ DFA× BA, and

returns “Yes” if U = L(M1)∪L(M2), and a CE other-

wise. We run L∗ and Lω concurrently, and iterate the
two next steps: (1) answer membership queries with X

until we get candidates M1 and M2 from L∗ and Lω

respectively; (2) make candidate query (M1,M2) to X;
return any finite (infinite) CE back to L∗ (Lω); repeat

from Step 1. ⊓⊔

LAG instances for ∞-regular Trace Contain-

ment. Suppose that L1, L2 and LS are ∞-regular and
we wish to verify L1 ‖ L2 4 LS . The third row of Ta-

ble 1 show how to instantiate LAG to solve this problem

using AG-NC. This instance of LAG terminates with

the correct result due to Theorem 7, Proposition 1, and

the fact that (P1, Q1) learns (L1 ‖ LS) ⇃Σ. The fourth
row of Table 1 show how to instantiate LAG to solve

this problem using AG-C. This instance of LAG ter-

minates correctly due to Theorem 7, Proposition 2, and

because (Pi, Qi) learns (Li ‖ LS) ⇃Σ for i ∈ {1, 2}.

LAG instances for ω-regular Trace Containment.

Suppose that L1, L2 and LS are ω-regular and we wish

to check L1 ‖ L2 4 LS . When using AG-NC, restrict-
ing assumptions to ω-regular languages is incomplete

(cf. Theorem 2). Hence, the situation is the same as for

∞-regular languages (cf. row 5 of Table 1). When us-
ing AG-C, restricting assumptions to be ω-regular is

complete (cf. Theorem 6). Hence, we use Lω without

augmenting the assumption alphabet, as summarized
in row 6 of Table 1. This is a specific benefit of the

restriction to ω-regular languages. This instance termi-

nates with the correct result due to Theorem 7, Propo-

sition 2, and because (Pi, Qi) learns (Li ‖ LS) ⇃Σ for

i ∈ {1, 2}.

6 Related Work

Automated AG reasoning with automata-based learn-
ing was pioneered by Cobleigh et al. [9] for checking

safety properties of finite state systems. In this context,

Barringer et al. [3] investigate the soundness and com-
pleteness of a number of decomposition proof rules, and

Wang [23] proposed a framework for automatic deriva-

tion of sound decomposition rules. Here, we extend the

AG reasoning paradigm to arbitrary ω-regular prop-
erties (i.e., both safety and liveness) using both non-

circular and circular rules.

The idea behind (particular instances of) Theorem 5

is used implicitly in almost all existing work on auto-

mated assume-guarantee reasoning [9, 5, 6]. However,
we are not aware of an explicit closed-form treatment

of the weakest assumption in a general setting such as

ours.

The learning-based automated AG reasoning

paradigm has been extended to check simulation [7] and
deadlock [5]. Alur et al. [1], and Sinha et al. [21], have

investigated symbolic and lazy SAT-based implemen-

tations, respectively. Tsay and Wang [22] show that
verification of safety properties of ∞-regular systems

is reducible the standard AG framework. In contrast,

our focus is on the verification of arbitrary ω-regular-
properties of ω-regular-systems.

For safety properties, further optimizations to
the learning algorithm that reduce the number of

queries [6], and gradually refine the alphabet of the

assumption [11] have been proposed. We believe that
these optimizations are also applicable in the context

of ω-regular-properties.

7 Conclusion

In summary, we present a very general formaliza-
tion, called LAG, of the learning-based automated AG

paradigm. We instantiate LAG to verify ω-regular prop-

erties of reactive systems with ω-regular behavior. We
also show how existing approaches for automated AG

reasoning are special instances of LAG. In addition, we

prove the soundness and completeness of circular and
non-circular AG proof rules in the context of ω-regular

languages. Recently, techniques to reduce the number

of queries [6], and refine the assumption alphabet [11],

have been proposed in the context of using automated
AG to verify safety properties. We believe that these

techniques are applicable for ω-regular-properties as

well.
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Conformance Rule A Learner(s) Oracle(s) Checker

Regular Trace AG-NC DFA P1 = P (L∗) Q1 = Q(L1, LS , ΣNC) VNC(L1, L2, LS)
Containment [9]

Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1, LS , ΣC) VC(L1, L2, LS)

Containment [3] P (L∗) Q2 = Q(L2, LS , ΣC)

∞-regular Trace AG-NC DFA × BA P1 = P (L) Q1 = Q(L1, LS , ΣNC) VNC(L1, L2, LS)

Containment

∞-regular Trace AG-C DFA × BA P1 = P2 = Q1 = Q(L1, LS , ΣC) VC(L1, L2, LS)

Containment P (L) Q2 = Q(L2, LS , ΣC)

ω-regular Trace AG-NC DFA × BA P1 = P (L) Q1 = Q(L1, LS , ΣNC) VNC(L1, L2, LS)
Containment

ω-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1, LS , ΣC) VC(L1, L2, LS)

Containment P (Lω) Q2 = Q(L2, LS , ΣC)

Table 1 Existing learning-based AG algorithms as instances of LAG; ΣNC = (Σ(L1) ∪ Σ(LS)) ∩ Σ(L2); ΣC = (Σ(L1) ∩ Σ(L2)) ∪
Σ(LS); L is a learning algorithm from Theorem 8.
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