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ABSTRACT
Understanding, measuring, and leveraging the similarity of
binaries (executable code) is a foundational challenge in soft-
ware engineering. We present a notion of similarity based
on provenance – two binaries are similar if they are com-
piled from the same (or very similar) source code with the
same (or similar) compilers. Empirical evidence suggests
that provenance-similarity accounts for a significant portion
of variation in existing binaries, particularly in malware. We
propose and evaluate the applicability of classification to de-
tect provenance-similarity. We evaluate a variety of classi-
fiers, and different types of attributes and similarity label-
ing schemes, on two benchmarks derived from open-source
software and malware respectively. We present encouraging
results indicating that classification is a viable approach for
automated provenance-similarity detection, and as an aid
for malware analysts in particular.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Restructuring, reverse engineer-
ing, and reengineering

General Terms
Algorithms, Measurement, Security

Keywords
Binary Similarity, Classification, Software Provenance

1. INTRODUCTION
Binary similarity is an important area of software engi-

neering research. Techniques for checking binary similarity
find applications in areas ranging from code clone detec-
tion [18] and software birthmarking [7], to malware analy-
sis [20] and software virology [12]. Several notions of simi-
larity have been proposed and studied in the literature. Our
focus is the similarity, which we call provenance-similarity,
that arises from the fact that many binaries are the result
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of compiling “similar” source code with “similar” compilers.
The term provenance indicates that the similarity originates
not only from the source of the binaries, but also from the
(compilation) process by which they were derived.

The major application area for provenance-similarity is
malware analysis and virology. Empirical evidence [20] sug-
gests that the vast majority of existing malware belong to a
relatively small number of“families”of related instances. For
example, a 2006 Microsoft report [3] states that over 97,000
malware variants were detected in the first six months of
2006. At the same time, according to Symantec [19] and
Microsoft [3], the typical number of malware families en-
countered in any six month period is a few hundred. In fact,
the Microsoft report (see Figure 1 of [20]) further indicates
that the 7 and 25 most common families account for over
50% and 75%, respectively, of detected malware instances.

There are several reasons to believe that many malware
families consist of provenance-similar instances. Similar-
ity in source code stems from two factors. First, mal-
ware authors reuse old programs – it is very unlikely that
the 1,131,335 (presumed) malicious executables with unique
MD5 checksums collected by CERT in the final quarter of
2010 were all written from scratch in 92 days. Second, many
malware families – such as Aliser [1] – generate new instances
by changing a data element (e.g., an encryption key, etc.),
but not other parts of the source code. In addition, similar-
ity in generative compilers arises because a small number of
related compilers are used to produce the vast majority of
malware. For example, we scanned a collection of malware
available within CMU CERT and found that of all the mal-
ware whose generative compilers are known with reasonable
certainty, about 60% were compiled with Microsoft Visual
C++, about 25% with Delphi, and most of the rest with
Microsoft Visual Basic. Such limited variability in compiler
and source code suggests that provenance-similarity is a per-
vasive feature in malware.

Current approaches to checking provenance-similarity of
binaries are largely manual (e.g., forensic analysis done by a
malware analyst). While good tools are available for binary
disassembly and visualization (e.g., IDAPro [14]), most of
the technical analysis is still manual, and, therefore, non-
scalable. Automated analysis tools, when available, are
either not robust (i.e., they have high false positive and
false negative rates) or inefficient. Therefore, developing
an automated, robust, and efficient approach for checking
provenance-similarity is an important and open problem.
Addressing this problem is the subject of our paper.

We begin with a definition of provenance-similarity.



Provenance-similarity between two binaries implies similar-
ity in not only the source code from which they were derived,
but also in the compilers used to generate them. We define
two binaries B1 and B2 to be provenance-similar if: (i) B1

and B2 have been compiled from the same (or very similar)
source code; and (ii) B1 and B2 have been generated by
closely related compilers (or the same compilers with differ-
ent compilation flags).
Note that our definition excludes the situations where the

source code of B1 and B2 are very different, such as when
B1 is derived from B2 via a major patch, or when B1 and
B2 are radically different implementations of the same func-
tionality, e.g., merge-sort and bubble-sort. We also exclude
cases where the compilers involved are very different (e.g.,
Visual C++ versus GCC). These problems are beyond the
scope of this paper.
To understand the challenges in detecting provenance-

similarity, consider Microsoft Visual C++. As a security
feature to guard against buffer-overflow attacks, the com-
piler is able to generate extra code that checks for stack
integrity at runtime, and aborts if an integrity violation is
detected. However, the exact code generated depends on the
compiler context, which includes factors such as the compi-
lation flags used (e.g., /GS to enable the security feature),
the version of the compiler, calling conventions, etc. Con-
sider two binaries, B1 and B2, generated from the same
source code by Microsoft Visual C++ under different con-
texts, and therefore containing different code for runtime
buffer-overflow checks. A typical problem is to detect the
provenance-similarity of B1 and B2 in a robust and efficient
manner.
Developing a Robust and Efficient Provenance-Similarity

Checker. In the general context of binary similarity, the
following two main approaches have been proposed:
(a) Syntactic approaches compare signatures [8] or feature

vectors [18, 21] extracted from the syntactic binary struc-
ture. They resemble techniques used by anti-virus tools,
and thus are efficient. However, they are not robust, and
are foiled by even minor syntactic differences in binaries.
(b) Semantic approaches compute and compare “math-

ematical” descriptions of the semantic meaning of bina-
ries [11, 15]. They are precise, but require considerable
manual interaction, and computationally expensive technol-
ogy for symbolic and mathematical reasoning (e.g., term-
rewriting, symbolic simulation, and theorem proving), and
thus have limited practicability and scalability.
In this paper, we investigate the use of classification to de-

velop a robust and efficient binary similarity checker (BSC)
for provenance-similarity. Classification is particularly suit-
able for problems where: (i) closed form solutions are hard
to develop, and (ii) a solver can be “learned” using a train-
ing set composed of positive and negative samples. Both
conditions apply to provenance-similarity.
Provenance-Similarity as a Classification Problem. At a

high-level, a BSC is a “black box” that accepts a pair of
binaries B1 and B2 as input, and outputs “yes” if B1 and
B2 are similar, and “no” otherwise. This is clearly a bi-
nary classification problem. However, to be effective, a
classification-based BSC must be trained properly and use
the right classification technology. Moreover, proper train-
ing requires good features that are efficiently computable
from binaries. We address these challenges, and make the
following specific contributions.

Features. First, we develop a suite of “semantic”and“syn-
tactic”attributes (a.k.a. features) (cf. Sec. 4). Semantic fea-
tures capture the effect of a binary’s execution on specific
components of the hardware state, viz., registers and mem-
ory locations. Syntactic features represent groups of instruc-
tion opcodes occurring contiguously in the binary. They are
derived from n-grams and n-perms [20]. Second, we extend
these features two pairs of binaries to capture the difference
between two binaries, and not a single binary in isolation.

Benchmark. While malware is a major target domain for
provenance-similarity, it is extremely challenging to develop
good sample (i.e., training and testing) sets from malware
due to the lack of information on source code and gener-
ative compilers. Our second contribution is a benchmark
(cf. Sec. 5) for provenance-similarity using a benchmark de-
rived from 14 commonly downloaded SourceForge projects,
containing more than 21 million LOC.

Empirical Evaluation. Finally, we do a systematic eval-
uation of classification for provenance-similarity over both
open-source and malware benchmarks. Our main results
are: (i) we compare a suite of classifiers implemented in
WEKA [22] on the open-source benchmark, and find Ran-
domForest [4] to be the most effective; (ii) for the mal-
ware benchmark, we develop a suite of labeling schemes
that do not require source-level information; we show very
good classification using these labels and RandomForest;
we argue that this implies applicability of classification for
provenance-similarity in domains, such as malware, without
reliable source-level information; (iii) we compare semantic
and syntactic attributes, and show that 1-grams are almost
as effective as semantic features, while being much less ex-
pensive to compute. Our experiments and results are pre-
sented in Sec. 6.

Function Similarity. We focus on similarity between bi-
nary “functions” instead of complete binaries. Intuitively, a
function is a binary fragment that results from the compila-
tion of a procedure or method at the source code level. We
choose functions because: (i) they are the smallest exter-
nally identifiable units of behavior generated by compilers;
(ii) similarity at the function level is desirable for further
analysis; indeed, malware of similar provenance, will rarely
be identical everywhere, but instead share important func-
tions; thus, malware analysts look for common functions to
judge if two binaries are related; also, information about
function similarity are useful for clustering and as build-
ing blocks for measuring similarity at the binary level; and
(iii) we were able to use extensive function-based malware
datasets from CERT for our experimentation.

The rest of this paper is structured as follows. In Sec. 2,
we survey related work. Sec. 3, we formalize our notion of
functions. In Sec. 4, we present our semantic and syntactic
features, and the procedures for extracting them from func-
tion descriptions. In Sec. 5, we present a benchmark derived
from open-source software, and our methodology for deriv-
ing testing and training sets from the benchmark. In Sec. 6,
we present our experiments and results. In Sec. 7, we con-
clude.

2. RELATED WORK
A number of different approaches have been proposed for

binary similarity. For example, several researchers have
used feature vector comparison to detect code clones [18],
and to protect against malware [21]. Gao et al. [11] use



a control-flow based analysis that combines graph isomor-
phism, symbolic simulation, and theorem proving to detect
semantic differences in binaries. Apel et al. [2] propose met-
rics for measuring similarity of malware. Dullien et al. [9]
and Flake [10] investigate approaches to compare binaries at
the level of graphs derived from their syntax. None of these
approaches use supervised learning. Also, they require ulti-
mately the selection of a threshold to decide similarity. In
contrast, we use supervised learning to automatically com-
pute a threshold that is appropriate for the target binaries.
Rosenblum et al. [17] propose the use of machine learn-

ing to extract compiler provenance from binaries. The goal
of compiler provenance is to correctly identify the compiler
that was used to generate a target binary. Rosenblum et
al. use a specific type of machine learning technology, called
the linear chain conditional random field. They also rely on
syntactic features, known as idiom-features. The research
presented in this paper is different in terms of both the
problem – we consider provenance similarity between two
binaries – and the solution – we explore a wide variety of
classification techniques, and semantic features, to discover
the most effective solution.
Hu et al. [13] present an approach to index malware based

on the syntactic call-graph structure of programs. Our ap-
proach is complementary since it focuses on features ex-
tracted from semantic behavior of functions. Ye et al. [23]
use clustering to categorize malware. In contrast, we focus
on using classification.
Cohen et al. [8] explore the use of cryptographic hashes to

study program similarity. A possible basis for semantic func-
tion signatures are “mathematical functions” extracted [15]
from binaries to describe their behavior. In contrast to these
signature-based approaches, our approach is based on super-
vised learning.
A number of researchers have developed techniques, such

as alias analysis [5] and interface identification [6], for bina-
ries. These techniques are crucial for identifying functions
and their boundaries, a problem that is orthogonal to our
goal of developing effective techniques for binary similarity.

3. FUNCTIONS
In this section, we present the notion of functions we use

for this research. We write Dom(X) to denote the domain
of a mapping X. We write X →֒ Y to denote a (possibly
partial) mapping from X to Y with a finite domain. In-
tuitively, a function is a partial mapping from addresses to
instructions, together with a starting address. We assume
a totally ordered set Addr of addresses, viz. the set of 32-
bit unsigned integers, and a set Inst of instructions, each
comprising of an opcode, and one or more operands.

Definition 1. A function is a pair (Body,S tart) where:
(i) the partial mapping Body : Addr →֒ Inst is its body, and
(ii) S tart ∈ Dom(Body) is its starting address.

In general, a function body is non-contiguous, and com-
prises of a set of instruction blocks that are dispersed
throughout the binary. This is true of code generated by
state-of-the-art compilers and obfuscators which relocate
and reorganize code fragments in non-trivial ways. In prac-
tice, however, many functions are contiguous, i.e., their bod-
ies consist of a single sequence of instructions spanning a
contiguous range of addresses. For such functions, we now
present a more concrete definition.

Address a Instruction ǫ(i) π(i)
i = Body(a)

100026E3 push dword [ebp+0x8] FF7508 FF7508

100026E6 lea eax,[ebp-0x208] 8D85F8FDFFFF 8D85F8FDFFFF

100026EC push eax 50 50

100026ED lea eax,[ebp-0x308] 8D85F8FCFFFF 8D85F8FCFFFF

100026F3 push dword 0x10006470 6870640010 6800000000

100026F8 push eax 50 50

100026F9 call [0x1000509c] FF159C500010 FF1500000000

100026FF add esp,0x10 83C410 83C410

10002702 mov esi,0x100078d2 BED2780010 BE00000000

10002707 push esi 56 56

10002708 call [0x10005064] FF1564500010 FF1500000000

1000270E mov edi,[0x1000501c] 8B3D1C500010 8B3D00000000

10002714 test eax,eax 85C0 85C0

10002716 jz 0xa 7408 7408

Figure 1: A basic block of an example function, with
ǫ and π mapping.

Representing Contiguous Functions as Byte-Sequences.
Let S tr be the set of finite-length byte sequences (or strings),
and • be concatenation. Let ǫ : Inst 7→ S tr and π :
Inst 7→ S tr be mappings such that: (INJ) ǫ is injec-
tive, and (PIC) π(i1) = π(i2) iff i1 and i2 differ only in
their address operands. Intuitively, ǫ(i) and π(i) are the
exact and position-independent representations of i, respec-
tively. For a contiguous function f = (S tart,Body), let
A = 〈a1, . . . , an〉 be the sequence of addresses obtained by
sorting Dom(Body) in increasing order, and I = 〈i1, . . . , in〉
be the sequence of instructions such that: ∀1 ≤ k ≤ n · ik =
Body(ak). Then, the exact, f.EB, and position-independent,
f.PB, representations of f are:

f.EB = ǫ(i1) • · · · • ǫ(in) f.PB = π(i1) • · · · • π(in) .

Example 1. Figure 1 shows a basic block of a function
f with starting address 100025E2, Body, ǫ and π. Note
that while the function starts at 100025E2, the basic block
displayed in the figure starts at 100026E3. There are ad-
ditional addresses in the function both before and after the
displayed basic block. The mapping ǫ(i) follows the Intel
IA-32 instruction definitions, and, thus, satisfies (INJ).
The mapping π(i) is obtained by replacing the bytes in
ǫ(i) which represent address operands with zeros, and, thus,
satisfies (PIC). For instructions i at addresses 100026F3,
100026F9, 10002702, 10002708, and 1000270E, ǫ(i) 6= π(i)
because the operand bytes corresponding to an address have
been replaced with zeros in π(i). Instructions at addresses
100026F9, 10002708, and 1000270E have operands which are
easily identified as memory dereferences by the type of the
operand, while the operands for the instructions at addresses
at 100026F3 and 10002702, can only be identified as ad-
dresses by the observation that the values of these operands
fall inside the defined range of addresses for the program.
This heuristic approach is occasionally flawed (e.g., in in-
valid truncated programs), but we don’t believe this detail
is relevant to our results. For all remaining instructions,
ǫ(i) = π(i) since i does not have any address operands. Fi-
nally, f.EB and f.PB are, respectively, the concatenation
of the elements of the third and fourth columns.

Our approach assumes a reliable way to extract functions
from executables. Identifying function boundaries in bi-
naries is a complex and open problem. This is especially
true for obfuscated (i.e., packed and/or encrypted) malware.
These issues are beyond the scope of this paper.



4. ATTRIBUTES
Recall that our BSC classifies function pairs into two

groups – similar (the “yes” group), and dissimilar (the “no”
group). We now present our approach to extract attribute
vectors from a function pair (f1, f2). Since we are interested
in the degree of similarity between f1 and f2, each attribute
captures the difference between f1 and f2 along some dimen-
sion. More specifically, the attribute vector is constructed
as follows:

1. We apply a function-level attribute extraction scheme
A to extract two attribute vectors: ~v1 = A(f1) and
~v2 = A(f2). We assume that all attributes extracted
by A are numeric.

2. We construct the attribute vector for (f1, f2), denoted
by A∆(f1, f2), by taking the pointwise difference of ~v1
and ~v2. That is:

∀1 ≤ i ≤ |~v1| · A
∆(f1, f2)[i] = ~v1[i]− ~v2[i], .

Note that A∆ is asymmetric, i.e., in general,
A∆(f1, f2) 6= A∆(f2, f1). It is possible to make A∆

symmetric by ordering each function pair such that
f1.EB < f2.EB.

We now present two function-level attribute extraction
schemes, which we use for our experiments:

1. A semantic approach based on the effect of executing
the function on a hardware state.

2. A syntactic approach based on n-grams and n-
perms [21] – this approach represents existing work on
attribute vector extraction from binaries, and serves
as a point of comparison. In Sec. 6, we show empiri-
cally that classification with semantic attributes out-
performs classification with syntactic attributes.

4.1 Semantic Attributes
The semantic attribute vector of a function f , denoted

by SemAtt(f), is a vector of values of semantic attributes.
SemAtt(f) represents the effect of executing f on a state
of the hardware. Moreover, semantic attributes are defined
so that if SemAtt(f1) and SemAtt(f2) are similar, then the
executions of f1 and f2 have similar effects. We assume
that every function f has a control flow graph f.CFG, and
that each execution of f follows a specific path in f.CFG.
The process of extracting a semantic attribute vector from
a path in f.CFG involves simulation, sign abstraction, and
counting abstraction. We now present this process in detail.

4.1.1 Extracting Attribute Vectors from Paths
Let SymConst = {v0, v1, . . . } be a denumerable set of sym-

bolic constants. Let ± denote the set of signs {+,−} and
N = {1, 2, . . . } be the set of numerals representing natu-
ral numbers. Symbolic expressions, denoted by SymExp, are
linear combinations of symbolic constants (with unit or zero
coefficient) and integers. Formally, their syntax has the fol-
lowing BNF form:

SymExp := ±SymConst | ± N | ± SymConst± N

Symbolic State. Let Reg = {r0, r1, . . . } be a denumer-
able set of virtual registers, and Mem = {m0,m1, . . . } be
a denumerable set of memory locations. A symbolic state

is a pair (R,M) where: (i) R : Reg →֒ SymExp maps
registers to the symbolic values of their contents; and (ii)
M : Mem →֒ SymExp × SymExp maps memory locations to
the symbolic values of their addresses and contents.

Sign Abstraction. The sign abstraction of a symbolic ex-
pression e, denoted by Sign(e), is an element of Σ, where
Σ = (± ∪ {0}) × (± ∪ {0}) \ {(0, 0)}. Intuitively, Sign(e)
is obtained by removing all symbolic constants and numer-
als from e, and replacing any missing component with 0.
Formally, it is defined as follows:

Sign(q v) = (q, 0) Sign(q n) = (0, q) Sign(q v q
′
n) = (q, q′)

where q, q′ ∈ ±, v ∈ SymConst, and n ∈ N. Note that
{(0, 0)} is not a valid sign abstraction, and |Σ| = 8. Sign
abstraction extends to pairs of symbolic expressions in the
natural manner: Sign(x, y) = (Sign(x), Sign(y)).

Sign-Abstract State. Applying sign abstraction to a sym-
bolic state s = (R,M) results in the sign-abstract state
Sign(s). Formally, Sign(s), is a pair of functions (R#,M#)
such that for f = R,M , the following holds:

Dom(f) = Dom(f#)
∧

∀x ∈ Dom(f) · f#(x) = Sign(f(x))

Counting Abstraction. Let f : X →֒ Σ be any mapping.
The counting abstraction of f , denoted by Count(f) is the
vector of numbers defined as follows. First we order the
elements of ± ∪ {0} strictly as: − < 0 < +. This induces
the following strict ordering on Σ:

(x, y) < (x′
, y

′) ⇐⇒ (x′
< x

′) ∨ (x = x
′ ∧ y < y

′)

Let ~Σ be the vector of elements of Σ induced by the above
strict ordering on Σ. Thus, ~Σ[1] = (−,−) and ~Σ[8] = (+,+).
Then, Count(f) is the vector such that:

Count(f)[i] = |{x ∈ X | f(x) = ~Σ[i]}|

In other words, the i-th element of Count(f) is the number
of elements of Dom(f) that are mapped by f to the i-th

element of ~Σ. Note that Count(f) always has 8 elements.
For any pair x = (x1, x2), let us write Fst(x) and Snd(x)

to mean x1 and x2 respectively. Let f : X 7→ Σ× Σ be any
mapping. Then the two functions Fst(f), Snd(f) are defined
as follows:

∀x ∈ X · Fst(f)(x) = Fst(f(x)) ∧ Snd(f)(x) = Snd(f(x))

We write ~x • ~y to denote the concatenation of vectors ~x

and ~y. The counting abstraction of a sign abstract state
s# = (R#,M#), denoted by Count(s#), is the vector of
numbers defined as follows:

Count(s#) = Count(R#)•Count(Fst(M#))•Count(Snd(M#))

In other words, we apply counting abstraction to the regis-
ters, memory addresses, and memory data, and concatenate
the resulting vectors. Note that Count(f#) always has 24
elements. Intuitively, each index of Count(f#) corresponds
to a different a semantic attribute.

Post-Condition. A path p in f.CFG is a sequence of as-
sembly instructions. The post-condition of p, denoted by
Post(p), is a symbolic state representing the hardware config-
uration after the execution of p. The exact value of Post(p)
depends on the semantics of the instructions in p. In our
experiments, we rely on the Rose [16] infrastructure to com-
pute Post(p).



Example 2. Consider the path p with three instructions
inc ax, inc ax, and mov [bx] ax. Thus, p increments reg-
ister ax twice, and then copies the contents of ax into the
memory location whose addresses is stored in bx. Then,
Post(p) = (R,M) where:

R(r0) = +v0 + 2 R(r1) = +v1

M(m0) = (+v1,+v0 + 2)

Note that r0 and r1 represent registers ax and bx, respec-
tively. Also, v0 and v1 are the initial values of ax and bx, re-
spectively. Finally, m0 is the memory location whose address
is stored in bx. Also, Sign(Post(p)) = (R#,M#) where:

R#(r0) = (+,+) R#(r1) = (+, 0)

M#(m0) = ((+, 0), (+,+))

Recall that ~Σ[7] = (+, 0) and ~Σ[8] = (+,+). Therefore,
Count(Sign(Post(p))) = ~x • ~y • ~z, where:

~x[7] = ~x[8] = ~y[7] = ~z[8] = 1 ,

and all other elements of ~x, ~y, and ~z are zero.

Extracting Attribute Vectors from Paths. The semantic
attribute vector of a path p, denoted by SemAtt(p), is de-
fined as follows:

SemAtt(p) = Count(Sign(Post(p)))

4.1.2 Extracting Attribute Vectors from Functions
Let f be a function represented by the byte sequence

f.EB. The attribute vector SemAtt(f) is constructed from
f.EB as follows:

1. f.EB is parsed and the control flow graph f.CFG

is constructed. In our implementation, we use the
Rose [16] infrastructure to perform this step.

2. In general, f.CFG has cycles, and therefore infinitely
many paths. We use a bounded-depth-first-search
traversal to extract #p paths of depth at most #d

from f.CFG. The search is randomized, i.e., succes-
sors for traversal are picked randomly. For our experi-
ments, we use #p = 50 and #d = 50. Note that since
the number of possible paths is exponential in #d, we
limit #p as well. Let P be the set of paths extracted.

3. From each p ∈ P , we construct SemAtt(p) as defined
in the previous section. Note, |SemAtt(p)| = 24.

4. Let ⊎ be the element-wise addition of two vectors, i.e.,

∀i · (~x ⊎ ~y)[i] = ~x[i] + ~y[i]

Then, we compute SemAtt(f) as follows:

SemAtt(f) =
⊎

p∈P

SemAtt(p)

Increasing #p or #d also increases the time to extract
semantic attributes. Empirically, we found #p = 50 and
#d = 50 to be a good tradeoff. For example, to extract
semantic attributes from a random sample of 541 functions
in our benchmark using #p = 50 and #d = 50, the time
required is 95 mins. When #d is increased to 100, the time
is 165 mins, a 74% jump. However, the number of attributes
for which values differ between the two cases is only about
1.2% of the total number of attributes.

Example 3. Let f be a function such that f.CFG has
two paths p1 and p2. Let p1 be the same as p from Example 2.
Therefore, SemAtt(p1) = Count(Sign(Post(p1))) = ~x • ~y • ~z,
where:

~x[7] = ~x[8] = ~y[7] = ~z[8] = 1 ,

and all other elements of ~x, ~y, and ~z are zero.
Let p2 have 4 instructions mov [ax] bx, dec ax,

mov bx 10, mov [ax] bx. Then, Post(p2) = (R,M) where:

R(r0) = +v0 − 1 R(r1) = +10

M(m0) = (+v0,+v1) M(m1) = (+v0 − 1,+10)

Note that r0 and r1 represent registers ax and bx, respec-
tively. Also, v0 and v1 are the initial values of ax and bx,
respectively. The addresses of memory locations m0 and
m1 are stored in ax initially and finally, respectively. Also,
Sign(Post(p2)) = (R#,M#) where:

R
#(r0) = (+,−) R

#(r1) = (0,+)

M
#(m0) = ((+, 0), (+, 0)) M

#(m1) = ((+,−), (0,+))

Recall that ~Σ[5] = (0,+) and ~Σ[6] = (+,−). Therefore,
SemAtt(p2) = Count(Sign(Post(p2))) = ~x • ~y • ~z, where:

~x[5] = ~x[6] = ~y[6] = ~y[7] = ~z[5] = ~z[7] = 1 ,

and all other elements of ~x, ~y, and ~z are zero. Finally,
SemAtt(f) = SemAtt(p1) ⊎ SemAtt(p2) = ~x • ~y • ~z, where:

~x[5] = ~x[6] = ~x[7] = ~x[8] = 1 ~y[6] = 1

~z[5] = ~z[7] = ~z[8] = 1 ~y[7] = 2

and all other elements of ~x, ~y, and ~z are zero.

Implementation Details. For our empirical evaluation, we
generalize semantic attributes as follows. First, we split reg-
isters into three sub-categories: general-purpose, segment,
and flag – based on their use by the compiler. We apply
sign and counting abstractions separately to each category.
Since now there are 3 types of registers in addition to mem-
ory addresses and data, |SemAtt(p)| = |Σ|×(3+2) = 40 for
any path p. Second, we consider three ways of combining the
elements of SemAtt(p) to obtain an element of SemAtt(f)
– sum (as described above), minimum, and maximum. We
also consider splitting up a path at call-sites, and replacing
a counting abstraction with a 0-1 abstraction (i.e., replacing
all counts greater than 0 with 1). In all, we have 36 possible
combinations, leading to 40× 36 = 1440 attributes.

4.2 Syntactic Attributes
We present two flavors of syntactic attributes, based on

n-grams and n-perms [20], respectively. Let Mnem be the se-
quence of x86 instruction mnemonics, and Mnemn be the set

of sequences of n elements drawn from Mnem. Let ~Mnemn

be the vector of elements of Mnemn ordered lexicographi-
cally. For any positive value of n, the n-gram vector of f ,
denoted by NGramn(f), is computed as follows:

1. Parse f.EB to construct of sequence of assembly in-
structions I = 〈i1, . . . , ik〉. Extract the mnemonic from
each instruction to obtain a sequence of mnemonics
M = 〈m1, . . . ,mk〉. In our implementation, this step
is performed using Rose.



2. Then, NGramn(f) is the vector of | ~Mnemn| numbers,

such that for any 1 ≤ i ≤ | ~Mnemn|, NGramn(f)[i]

equals the number of times ~Mnemn[i] occurs as a sub-
sequence of M .

Example 4. Let Mnem = {inc, dec, mov}. Then,
Mnem2 = {inc ·inc, . . . , mov ·mov}. Let f be a function such
that f.EB leads to the following sequence of mnemonics:
M = 〈mov, inc, inc, mov, dec, mov〉. For any x ∈ Mnem2, let
us write NGram2(f)[x] to mean NGram2(f)[i] such that

~Mnem2[i] = x. Then,

NGram2(f)[mov · inc] = NGram2(f)[inc · inc] = 1

NGram2(f)[inc · mov] = NGram2(f)[mov · dec] = 1

NGram2(f)[dec · mov] = 1

and all other elements of NGram2(f) are 0.

For any positive value n, the n-perm vector of f is denoted
by NPermn(f). n-perm vectors are similar to n-gram vec-
tors, except that ordering is ignored.

Example 5. For the Mnem and f in Example 4, we have,

NPerm2(f)[inc · mov] = NPerm2(f)[dec · mov] = 2

NPerm2(f)[inc · inc] = 1

and all other elements of NPerm2(f) are 0.

Detailed evaluation of our attributes is presented in Sec. 6.2.

5. TRAINING AND TESTING SETS
Since our training and testing sets are constructed using

the same procedure, we refer to them simply as sample sets.
A (N+, N−)-sample set – consisting of N+ “yes” samples
and N− “no” samples – is constructed as follows:

1. First, we construct a benchmark B comprising of sets
of provenance-similar functions.

2. Next, using B, we create N+ and N− random samples
belonging to “yes” and “no” classes respectively. The
final result is the union of all the samples obtained.

We now describe these two steps in more detail.

5.1 Benchmark Construction
Our benchmark B consists of a set of clusters, where each

cluster is a set of provenance-similar and contiguous func-
tions. B was constructed as follows:

1. We manually selected a set of 14 open-source software
packages (containing collectively over 21 million LOC)
available at SourceForge (http://www.sf.net) that
are among the most downloaded, written in C/C++,
and executable on Windows. Each software yielded a
set of clusters by the following steps.

2. The software was compiled with Microsoft Visual Stu-
dio 2003 .NET, 2005, and 2008 on Windows XP SP3.

3. The binaries were processed with IDAPro 5.6 [14] to-
gether with custom Python extensions to extract a set
of functions. We write f.Name to mean the compiler-
generated name of a function f . We use this name
to relate functions across the different compilers, as
described in the next step.

Table 1: Benchmark summary: KLoC = Kilo Lines
of Code; BSz = size of binaries in MB; #Cl = no. of
equivalence classes; Avg, StD, Med = mean, stan-
dard deviation and median of equivalence class sizes.

Software KLoC BSz #Cl Avg StD Med
7zip 153 2.4 2992 4.4 9.4 3

cppunit 36 26.4 616 15.2 128.4 3
flac 78 5.1 269 4.4 8.4 3

net-snmp 395 5.9 1507 4.6 62.4 3
notecase 48 0.8 228 4.7 7.8 3
NppExec 35 3.8 888 4.1 6.6 3
ogl 285 3.0 1205 2.6 17.7 2
poco 268 4.8 3745 5.1 61.5 3
speed 154 0.3 376 2.9 3.9 3
tcl 251 8.9 872 2.9 1.0 3

tightvnc 138 3.7 1455 5.4 48.9 3
tinyxml 7 1.4 639 4.2 18.9 3
ultravnc 183 6.0 1414 7.4 33.9 2
wincvs 154 27.3 1646 9.8 63.8 3

4. Recall that f.PB is the position-independent byte-
representation of a function f . The functions were
clustered into equivalence classes induced by the
reflexive-transitive closure of the following relation R:

f1Rf2 ⇐⇒ f1.Name = f2.Name ∨ f1.PB = f2.PB

Thus, we assume that if f1Rf2, then f1 and f2 are
provenance-similar. Alternatively, we assume that two
provenance-dissimilar functions have different names
and position-independent byte representations.

5. An equivalence class c was discarded if it satisfied the
following condition:

|c| = 1
∨

Maxf∈c|f.EB| < 50

This eliminates equivalence classes that are: (i) single-
ton – since, as we see later, singletons are not useful
in generating “yes” samples; and (ii) have no functions
with bodies larger than 50 bytes – since we believe
that classification is not applicable to detect similarity
between very small functions. The cutoff of 50 was
chosen empirically.

6. Each remaining equivalence class yields a cluster.

Table 1 summarizes our benchmark B. A median of
(mostly) 3 indicates that the most common case is, as ex-
pected, one function for each of the 3 compilers. The num-
ber of equivalence classes, averages and standard deviations
vary widely, indicating that we have a good mix of clusters
in terms of their sizes.

5.2 Sample Set Construction
We now present our approach to construct a (N+, N−)-

sample set from B. When constructing (either “yes” or
“no”) samples, we ignore function pairs (f1, f2) such that
f1.PB = f2.PB1, since, by assumption, such function pairs

1Without this restriction, the overall trend in our results is
similar, but with even higher F -measures.



are already provenance-similar, and hence need not be clas-
sified. In the following, Ψ is a scheme to extract feature
vectors from function pairs, as described in Sec. 4.
First, to construct a“yes” sample, we use procedure Pick-

Yes, consisting of the following steps: (i) Randomly pick a
cluster c ∈ B. Recall that c contains at least two functions.
(ii) Randomly pick two distinct functions f1, f2 ∈ c s.t.
f1.PB 6= f2.PB. (iii) Output Ψ(f1, f2) labeled with “yes”.
Next, to construct a“no”sample, we use procedure PickNo,
consisting of the following steps: (i) Randomly pick two dis-
tinct clusters c1, c2 ∈ B. (ii) Randomly pick two functions
f1 ∈ c1 and f2 ∈ c2. (iii) Output Ψ(f1, f2) labeled with“no”.
Finally, to construct the desired (N+, N−)-sample set, we
repeat PickYes N+ times, PickNo N− times, and collect
together the resulting samples.
The benchmark B consists of over six million functions,

divided into 17,852 clusters. Therefore, we have over
36 × 1012 possible samples available for training and test-
ing. In our experiments, we use sample sets consisting of
an equal proportion of “yes” and “no” samples. Thus, we
say “(n1, n2)-classification” to mean a classification with a
(n1

2
, n1

2
)-training set, and a (n2

2
, n2

2
)-testing set.

Since our testing and training sets are randomly created,
we repeat our experiments several times, and use the aver-
ages of the measurements for our conclusions. Specifically,
for any metricM , we say“M of (n1⋄k1, n2⋄k2)-classification”
to mean the average of the values of M for k1 × k2 classi-
fications, done by: (i) selecting k1 random training sets of
size n1, and for each training set, (ii) learning a classifier
and testing it with k2 random testing sets of size n2. We
use three main metrics for our evaluation – the F -measure,
training time, and testing time.

6. EXPERIMENTAL RESULTS
We performed three types of experiments: learner se-

lection, feature selection, and to judge the applicability of
our approach to detect similarity in malware. All exper-
iments were performed on a quad-core 2.8 GHz machine.
Each session (training or testing) was run with a time limit
of 1800s and a memory limit of 700MB. Our benchmark
and tools are available at http://www.contrib.andrew.

cmu.edu/user/schaki/binsim.

6.1 Learner Selection
These experiments were done with the semantic attributes

– i.e., with Ψ = SemAtt∆ – on our open-source bench-
mark B. We first evaluated 24 classifiers implemented in
the WEKA [22] tool (version 3.6.2). For each classifier, we
used the default WEKA configuration, and measured F for a
(10000⋄5, 20000⋄5)-classification. We observed a clear sep-
aration between the classifiers: seven are effective – having
F -measures ≥ 0.875; the rest are ineffective – having F -
measures around ≈ 0.5 (like random guessing). The results
for the 7 effective schemes, in order of decreasing F -measure,
are summarized in Table 2.
Comparing Effective Schemes. Next, we compared the

performance of the 7 effective schemes. The IBk and
J48graft schemes are eliminated immediately. They have
worse performance – lower F -measure, and higher train-
ing and testing times – compared to RandomForest. We
evaluated each of the remaining 5 schemes using a series of
(N ⋄ 5, 2N ⋄ 5)-classifications, where the value of N was var-
ied from 10000 to 30000 in increments of 2000. The results

Table 2: Comparison of various classifiers on a
(10000 ⋄ 5, 20000 ⋄ 5)-classification. F-measure =
avg/stdev; Train = training time (avg/stdev in
secs); Test = testing time (avg/stdev in secs).

Classifier F -measure Train Test
RandomForest 0.928/0.002 19.41/0.23 4.56/0.075
J48graft 0.909/0.002 97.96/6.28 6.52/0.301
J48 0.900/0.003 93.74/4.95 3.34/0.056
Ridor 0.895/0.005 266.7/27.1 2.79/0.045
REPTree 0.887/0.003 22.15/0.64 3.08/0.044
RandomTree 0.876/0.003 5.72/0.13 3.89/0.123
IBk 0.861/0.003 164.6/2.97 459.0/26.6

are summarized in Figure 2. All classifiers show increasing
F -measures with increasing N . However, RandomForest is
the clear winner. All classifiers also require more testing
and training time with increasing N . In particular, Ridor’s
training is most expensive, and it times out for training sets
of size 24,000 and up. Overall, we conclude that Random-
Forest is the most effective classifier.

RandomForest. Next, we evaluated RandomForest by
varying its three parameters – (P1) number of trees, (P2)
number of attributes, and (P3) tree depth.

First, we performed (N ⋄ 5, 2N ⋄ 5)-classifications with
increasing P1, and with N ranging from 5 to 150. Figure 3-
(top) summarizes the F -measures we observed. The F -
measure improves rapidly with increasing P1 up to N = 20,
then improves very slowly till N = 40. For N > 40, the
improvement tapers off, and is difficult to ascertain.

Next, we performed (N ⋄ 5, 2N ⋄ 5)-classifications with in-
creasing P2, and with different N . Figure 3-(bottom) sum-
marizes the F -measures we observed. As expected, the F -
measure improves with increasing P2, but the gains taper
off after about 12.

Finally, we performed (N ⋄ 5, 2N ⋄ 5)-classifications with
increasing P3 – starting at 0 (which indicates unlimited
depth), and moving up to 80 in increments of 10 – and with
different N . We saw that P3 ≥ 20 is required for an F -
measure within 0.1 of the F -measure with unlimited P3.
However, at P3 = 20, the training and testing times are
similar to those with unlimited P3. Therefore, unlimited
P3 is the optimal choice.

In all cases, training and testing times increase monoton-
ically with the values of P1, P2, P3, and N .

6.2 Feature Selection
Next, we compared SemAtt∆, NGramn

∆ and NPermn
∆

for n = {1, 2} using our open-source benchmark B. We eval-
uated their performances using a series of (N ⋄ 5, 2N ⋄ 5)-
classifications, where the value of N was varied from 10000
to 30000 in increments of 2000. Table 3 shows our re-
sults. We see that NGram1

∆(= NPerm1
∆) is superior to

SemAtt∆ in terms of training and testing times, and al-
most as good in terms of F -measure. Feature extraction
with NGram1

∆ is also less expensive than SemAtt∆ (e.g.,
about one day vs. a week for our open-source benchmark).
A combination of SemAtt∆ and NGram1

∆ improves negli-
gibly over SemAtt∆ alone.

As expected, classification with NGram2
∆ and

NPerm2
∆ is slower than with NGram1

∆ due to a
greater number of attributes. However, surprisingly, it is
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Figure 2: Comparison of effective classifiers; legend
at the bottom applies to all charts.

also worse in terms of F -measure. This indicates that counts
of pairs of adjacent instruction mnemonics characterize a
function less well than the counts of single mnemonics. We
believe that one reason for this is instruction reordering
due to compiler optimizations and changes in source code,
the two sources of provenance similarity. The same set
of instructions, upon reordering, will lead to different
NGram2

∆ and NPerm2
∆, but the same NGram1

∆.
Overall, we believe NGram1

∆ is the best choice if time is
limited, and SemAtt∆ is best otherwise.
Recall that A∆ computes the element-wise difference of

function-level attribute vectors. We also evaluated A∆

against another approach – denoted by A• – that simply
concatenates the two function-level vectors. Specifically,

A•(f1, f2) = A(f1) • A(f2) [• denotes concatenation]

Note that A•(f1, f2) has more attributes than A∆(f1, f2),
and captures information about the difference between f1
and f2 less directly. Empirically, we found SemAtt∆ to be
superior to SemAtt•, as shown in Table 3.

6.3 Applicability to Malware
To judge the applicability of classification to detect sim-

ilarity in malware, we experimented with a benchmark M
derived from 12 malware families from the CERT database.
To ensure that we only consider true families, we picked a
dozen candidates from cases on which a suite of anti-virus
tools all agree in their family identification. The details of
the families are presented in Table 4.
The main problem with malware is designing a good label-
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Figure 3: Performance of RandomForest with differ-
ent tree numbers (top) and attribute numbers (bot-
tom); legend at the top applies to both charts.

Table 4: Malware families in our benchmark;
#Ehashes and #Phashes = no. of unique exact and
position-independent function byte representations.

Name #Files #Funcs #Ehashes #Phashes
F1 9 6631 1889 487
F2 265 80831 15512 1766
F3 308 9360 2363 1070
F4 7 2410 1053 704
F5 10 1090 112 112
F6 38 5159 3053 346
F7 22 10887 4384 1790
F8 27 10815 431 395
F9 18 1259 1055 581
F10 9 792 180 62
F11 24 49318 19241 1251
F12 6 2400 416 102

ing function for training provenance-similarity. Since source-
level information is rarely available, it is difficult to auto-
matically decide if two functions are similar (or not) with
high confidence. While the labeling problem for malware
is beyond the scope of our paper, as a starting point, we
experimented with a labeling function – denoted LPIC –
based on position-independent (PIC) byte representations.
Specifically, LPIC labels an attribute vector derived from a
function pair (f1, f2) “yes” iff f1 and f2 have the same PIC
byte representation. We don’t claim that LPIC is the best
possible labeling function for malware similarity. However,
we believe that it is a good approximation to the extent that
if classification with LPIC is not accurate, it will likely be
inaccurate with a better labeling function as well.

We created sample sets using our benchmark M and
LPIC , and performed a series of (N⋄5, 2N⋄5)-classifications,
where the value of N was varied from 10000 to 30000 in
increments of 2000. We repeated our experiments with



Table 3: Comparison of SemAtt∆, NGramn
∆, and SemAtt•; SA+NG1 = SemAtt+NGram1; N = size of training

set; Tr = Avg. training time (s); Te = Avg. testing time (s).

N SemAtt∆ NGram1
∆ (SA+NG1)

∆ NGram2
∆ NPerm2

∆ SemAtt•

F Tr Te F Tr Te F Tr Te F Tr Te F Tr Te F Tr Te
10K 0.929 19 4.6 0.919 17 3.3 0.930 22 4.8 0.884 90.9 5.5 0.880 83 5.1 0.905 39 9.1
12K 0.930 25 5.1 0.924 22 3.5 0.933 29 5.3 0.890 118 6.1 0.889 98 5.6 0.909 52 10.5
14K 0.933 28 5.5 0.928 25 3.8 0.935 33 5.8 0.894 145 6.8 0.894 120 6.2 0.914 58 11.9
16K 0.936 34 6.0 0.931 28 4.1 0.939 40 6.3 0.900 155 7.2 0.899 125 6.7 0.918 70 13.2
18K 0.939 40 6.4 0.935 33 4.4 0.943 46 6.8 0.904 185 7.8 0.904 158 7.2 0.922 82 14.6
20K 0.939 45 6.8 0.937 37 4.6 0.944 56 7.3 0.908 211 8.4 0.907 171 7.8 0.926 94 16.0
22K 0.942 50 7.3 0.938 40 4.8 0.947 60 7.8 0.913 233 9.4 0.912 190 8.3 0.926 99 17.5
24K 0.945 55 7.8 0.942 46 5.0 0.947 67 8.3 0.915 261 9.8 0.914 224 9.2 0.928 112 18.7
26K 0.946 60 8.3 0.944 49 5.2 0.949 73 8.8 0.918 292 10.0 0.918 236 9.4 0.932 125 20.0
28K 0.947 63 8.7 0.945 51 5.4 0.950 84 9.4 0.922 310 10.6 0.920 257 9.6 0.935 138 21.6
30K 0.949 73 9.2 0.948 58 5.7 0.952 89 9.8 0.924 362 11.3 0.924 285 10.1 0.936 146 23.0

SemAtt∆ and NGram1
∆. In all cases, we got a high F -

measure (0.998), indicating that classification is a promising
approach for provenance-similarity in malware.

7. CONCLUSION
In this paper, we explore the use of classification to de-

tect provenance-similarity of binaries. Specifically, we use
classification to predict if a pair of functions is “similar” or
“dissimilar”. Our classification uses features that capture
the difference between the target function pair. We evalu-
ate our approach on a benchmark derived from open-source
software, with encouraging results. Preliminary experiments
also indicate that classification is a promising approach to
detect malware similarity. A major challenge with malware
is the difficulty of obtaining sufficiently many samples with
reliable similarity labeling. We believe that semi-supervised
learning is a promising avenue in addressing this issue.
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