
Combining Predicate and Numeric Abstraction for
Software Model Checking

(Extended Abstract)⋆

Arie Gurfinkel and Sagar Chaki

Software Engineering Institute, Carnegie Mellon University

Abstract

Predicate abstraction [6] (PA) and Abstract Interpretation [4] (AI) with numeric ab-
stract domains, called Numeric abstraction (NA), are two mainstream techniques for
automatic program verification. Although it is sometimes assumed that the difference
between the two is that of precision versus efficiency, experience of projects based on
PA (such as SLAM [1]) and those based on NA (such as ASTRÉE [3]) indicate that both
techniques can balance efficiency and precision when applied to problems in a particular
domain. However, the two techniques have complimentary strengths and weaknesses.

Predicate abstraction reduces program verification to propositional reasoning via
an automated decision procedure, and then uses a model checker for analysis. This
makes PA well-suited for verifying programs and propertiesthat are control driven
and (mostly) data-independent. An example of such a programis the code fragment
in Fig. 1(a). However, in the worst case, reduction to propositional reasoning is ex-
ponential in the number of predicates. Hence, PA is not as effective for data-driven
and (mostly) control-independent programs and properties, such as the code fragment
shown in Fig. 1(b) In summary, PA is works best for propositional reasoning, and per-
forms poorly for arithmetic.

On the other hand, Numeric abstraction restricts all reasoning to conjunction of lin-
ear constraints. For instance, NA with Intervals is limitedto conjunctions of inequalities
of the formc1 ≤ x ≤ c2, wherex is a variable andc1, andc2 are constants. Instead of
relying on a general-purpose decision procedure, NA leverages a special data structure
– Numeric Abstract Domain. The data structure is designed torepresent and manipulate
sets of numeric constraints efficiently; and provides algorithms to encode statements as
transformers of numeric constraints. Thus, in contrast to PA, NA is appropriate for veri-
fying properties that are (mostly) control-independent, but require arithmetic reasoning.
One example of such a program is the code fragment in Fig. 1(b). On the flip side, NA
performs poorly when propositional reasoning (i.e., precisely representing disjunctions
and negations) is required. For example, the code fragment in Fig. 1(a) is hard for NA.

In practice, precise, efficient, and scalable program analysis requires the strengths
of both predicate and numeric abstraction. Consider the problem of verifying the code
fragment in Fig. 1(c). In this case, propositional reasoning is needed to distinguish

⋆ An article reporting on this research is currently under submission to a conference.

assume(i==1 || i==2);
switch(i)
case 1: a1=3; break;
case 2: a2=-4; break;

switch (i)
case 1: assert(a1>0);
case 2: assert(a2<0);
default: assert(0);

if(3 <= y1 <= 4)
x1 = y1 - 2;
x2 = y2 + 2;

else if(3 <= y2 <= 4)
x1 = y2 - 2;
x2 = y2 + 2;

assert(5 <= (x1+x2) <= 10);

assume(x1==x2);
if (A[y1 + y2] == 3)
x1 = y1 - 2;
x2 = y2 + 2;

else
A[x1 + x2] = 5;

if (A [x1 + x2] == 3)
x1 = x1 + x2;
x2 = x2 + y1;

assert(x1==x2);

assume(x1 = x2);
((assume(p);

x1 := y1 − 2 ∧ q := choice(f, f);
x2 := y2 + 2 ∧ q := choice(x1 + 2 = y1 ∧ p, f)) ∨

(assume(¬p);
q := choice(f, t)));

((assume(q);
x1 := x1 + x2;
x2 := x2 + y1) ∨ assume(¬q));

assert(x1 = x2)

(a) (b)

(c) (d)

Fig. 1. Example programs (a), (b), (c). Part (d) is an abstraction of (c) withVP = {p, q}, VN =
{x1, x2, y1, y2}, wherep , ((A[y1 + y2] = 3), andq , (A[x1 + x2] = 3).

between different program paths, and arithmetic reasoningis needed to efficiently com-
pute strong enough invariant to discharge the assertion. More importantly, the proposi-
tional and numeric reasoning must interact in non-trivial ways. Therefore, a combina-
tion of PA and NA is more powerful and efficient than either technique alone.

Any meaningful combination of PA and NA must have at least twofeatures: (a)
propositional predicates are interpreted as numeric constraints where appropriate, and
(b) abstract transfer functions respect the numeric natureof predicates. The first require-
ment means that, unlike most AI-based combinations, the combined abstract domain
cannot treat predicates as uninterpreted Boolean variables. The second requirement im-
plies that the combination must support abstract transformers that allow the numeric
information to affect the update of the predicate information, and vice versa.

Against this background we make the following contributions. We present the in-
terface of an abstract domain, called NUMPREDDOM, that combines both PA and NA,
and supports a rich set of abstract transfer functions that enables the updates of nu-
meric and predicate state information to be influenced by each other. For example,
an NUMPREDDOM-based abstraction of the code fragment in Fig. 1(c) is shownin
Fig. 1(d). Here, two predicates are used to relate reasoningabout conditions in control-
flow statements with reasoning about numeric variables. Note that the value of the pred-
icates depends on values of numeric constraints.

We propose four data-structures — NEXPoint, NEX, MTNDD and NDD — that
implement NUMPREDDOM. The data structures (summarized in Table 1) differ in their
expressiveness and in the choice of representation for the numeric part of the domain.

Name Value Example Num.

NEXPoint 22
P

× N (p ∨ q) ∧ (0 ≤ x ≤ 5) EXP
NEX 2P 7→ N (p ∧ 0 ≤ x ≤ 3) ∨ (q ∧ 1 ≤ x ≤ 5) EXP
MTNDD 2P 7→ N (p ∧ 0 ≤ x ≤ 3) ∨ (q ∧ 1 ≤ x ≤ 5) SYM
NDD 2P 7→ 2N (p ∧ (x = 0 ∨ x = 3) ∨ (q ∧ (x = 1 ∨ x = 5))) SYM

Table 1. Summary of implementations of NUMPREDDOM; P = predicates;N = numerical ab-
stract values;Value = type of an abstract element;Example = example of allowed abstract value;
Num = numeric part representation (explicit or symbolic).

Our target is PA-based software analysis. Thus, all of the data-structures use BDDs for
efficient (symbolic) propositional reasoning.

Related work. A typical way to combine PA and NA in AI is to use a direct, or
reduced [4] product, possibly extending it with disjunctions (or unions) using a dis-
junctive completion [4]. The domains we develop in this paper are variants of (disjunc-
tive completion of) reduced product between PA and NA. One practical approach for
combining these domains is to combine results of the analyses [7], e.g., by using light-
weight data-flow analyses, such as alias analysis and constant propagation, to simplify a
program prior to applying predicate abstraction. Thus, theinvariants discovered by one
analysis are assumed by the other. Another approach is to runthe analyses over differ-
ent abstract domains in parallel within a single analysis framework, using the abstract
transfer functions of each domain as is [5, 2]. The analyses may influence each other,
but only through conditionals of the program.

The contribution of our work is in adapting, extending, and evaluating existing work
on combining propositional and arithmetic reasoning to theneeds of software model-
checking. We have implemented a general framework for reachability analysis of C
programs on top of our four data structures. Our experimentson non-trivial examples
show that our proposed combination of PA and NA is more powerful and more efficient
than either technique alone. Finally, by coupling PA and NA tightly, our approach opens
up new research directions toward automated abstraction refinement techniques that are
more efficient that existing solutions.

References

1. T. Ball and S.K. Rajamani. “Automatically Validating Temporal Safety Properties of Inter-
faces”. InProc. of SPIN, 2001.

2. Dirk Beyer, Thomas A. Henzienger, and Gregory Theoduloz. ‘Configurable Software Verifi-
cation: Concretizing the Convergence of Model Checking and ProgramAnalysis”‘. In CAV,
2007.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. “A Static Analyzer for Large Safety-Critical Software”. InPLDI, 2003.

4. P. Cousot and R. Cousot. “Abstract Interpretation Frameworks”.JLC, (4), 1992.
5. Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. “Joining dataflow with predicates”. In

FSE, 2005.
6. S. Graf and H. Saı̈di. “Construction of Abstract State Graphs with PVS”. InCAV, 1997.
7. Himanshu Jain, Franjo Ivancic, Aarti Gupta, Ilya Shlyakhter, and Chao Wang. “Using Stati-

cally Computed Invariants Inside the Predicate Abstraction and Refinement Loop”. In CAV,
2006.

