Towar ds Engineered Architecture Evolution

Sagar Chaki Andres Diaz-Pace David Garlan Arie Gurfinkel Ipek Ozkaya

CMU/SEI CMU/SEI CMU/CS CMU/SEI CMU/SEI
Abstract from a U.S. Army workshop, which recommends that the

architecture be designed with evolution in mind.
Architecture evolution, a key aspect of software evolu- |n this paper, we outline our position on planning archi-

tion, is typically done in an ad hoc manner, guided only tecture evolution (or evolution, for short) as an engindere
by the competence of the architect performing it. This pro- process. Currently, planning for evolution is ath hocac-
cess lacks the rigor of an engineering discipline. In this tivity. This does not mean that the evolution is chaotic or un
paper, we argue that architecture evolution must be engi- planned, but rather that it is non-generalizable (i.e.ciise
neered — based on rational decisions that are supported byto a particular instance). Sometimes, an ad hoc evolution
formal modelsand objective analysesiVe believe that evo- pegins with an architect producing an evolution plan. More
lutions of a restricted form —elose-ended evolutionvhere often, the plan is constructed as evolution is taking place.
the starting and ending design points are known a priori — This plan is captured in a variety of forms: a list identifyin
are amenable to being engineered. We discuss some of they milestones, timelines to achieve them, work to be done
key challenges in engineering close-ended evolution. Weat each milestone, intermediate release cycles, etc. Slich a
present a conceptual framework in which an architecture hoc planning is, at best, the state-of-the-practice inemirr
evolutionary trajectory is modeled as a sequence of stepsorganizations undergoing evolution. Since such planning
each captured by an operator. The goal of our framework is js not supported by sound engineering methods and tools,

to support exploration and objective evaluation of différe the quality of the result depends, almost completely, on the
evolutionary trajectories. We conclude with open research competence of the architect.

questions in developing this framework. Our aim is to improve this state of affairs through “engi-

neered evolution.” Specifically, we envision that evolatio

is planned in a generalizable and repeatable manner. More-
1. Introduction over, the planning process is backed up by rational decision

based on models and analyses derived from architecture-

The generally accepted definition for software evolution centric pra(_:tices. Our visipn is rooted in the argument made
is the process by which systems change, adapting to the®Y Jazayeri —"Software is more than source code; models
marketplace and inheriting characteristics from preagst and meta-models are important to software evolution” [18].
programs [19]. A key aspect of software evolution is archi- In this paper, we focus on a class of evolutions —
tecture evolution. As a system evolves, its architecture is close-endedor closed) evolutions — which we believe are
impacted. Conversely, planning for architecture evolutio amenable to being engineered. An evolution is closed if the
is a powerful tool to guide and plan for software evolution. Properties of the current and target architectures are know

Most work on software evolution focuses on practices @ Priori. The challenges observed in planning for such evo-
towards managing code. However, the software architec-lution center around lack of tools and practices that can as-
ture is the |inchpin for ensuring that a software intensive sist an architect in better SChedUIing critical aCtiVi,ti&Bal-
system achieves its business and quality goals over the life YSiS of alternate evolution trajectories, and systembyica
time of the system [17, 7]. Thus, the importance of soft- rationalizing the decisions made. We sketch a conceptual
ware architecture practices for evolving systems is becom-framework — based on a set of generic, reusable operators
ing increasingly evident in both Commercial and govern_ — aimed at enab“ng the architect to model and construct a
ment Sectors_ For example’ a recent report from Gartnerfeasible plan fOI‘ eVOlVing an architecture from |tS current
Research [9] highlights that many organizations are mov- & desired state, with appropriate intermediate releasgoi
ing from traditional client-server architectures to other The rest of this paper is organized as follows. We survey
chitectures, prompted by emerging demands for agile busi-the related work in Section 2. We define closed evolution in
ness processes. A similar opinion is echoed by a report [2]Section 3 and identify key challenges in planning for closed

evolution in Section 4. In Section 5, we outline our ap- so as to evaluate which courses of action are economically
proach for modeling an evolution trajectory with operators feasible. Techniques for cost estimation of software syste

Section 6 concludes the paper. have been around for many years, e.g., COCOMO [10] and
function point analysis [1]. Such techniques do not provide
2. Related Work guidance for estimating benefit and uncertainty at the archi

tecture design level. Planning for architecture evoluton

a combination of the need to deal with uncertainty, along
with costs and expected benefits. Real options analysis in
the context of design has been proposed as a technique to
tackle this problem [5]. Real options provide the right, but

The theoretical foundations for software evolution can
be traced to Lehman’s laws of software evolution [19] and
Parnas’ ideas about “software aging” [26]. There is a

large pody of vyork on maintqining and aligning software 0 1ot the obligation, to take some action in the future. For
changing requwemerjts, business goals and pr""Ct'ceseTheﬁnstance, it is possible to estimate the value of a software
efforts, although mainly focused on the (_:ode structures Ofstructure as a function of the flexibility that modular desig
the system, have led to important evolution concepts SUChprovide by using real options [30]. That is, the use of flex-

as. code modularization cr|ter|a_ [25], mamtamabl!lty n ibility mechanisms creates designs that are more (or less)
dicators [19], and code .refactormg [22]. .Lehmans Iaws evolvable. Modularity is not the only way to utilize options
Were.based on observat|o_ns of the evolut,|on of geveral 'Nin software design. Real options have been used for valuing
dustrial software systems in the late 1970's, and influenced,, . stability of middleware [4], and for analyzing the eco-
much work in software evolution [21]. Nevertheless, ar- nomic value of applying certain architectural patterng.[23

czltef_ture 3\\//0Iut|on, by l't?e(ljf' hask re(}ewed scantthre?_e:r However, all these techniques are not yet integrated into an
attention. We survey related work in four areas that influ- _ 1.0 e evolution process.

ence the emergence of engineered evolution: maintenance, Formal modeling.We review two approaches: architec-

planning, cost-benefit analysis, and formal modeling. ture description languages (ADLs) and architectural style

tl_\/lilntilﬁnce.M;mttelr}ance :S ?hflrtu?c-gramed, srrort—‘tjerm An ADL is a formal language to describe a software archi-
activity of the product fite-cycle that focuses on localiz€ ooy e While, there is no agreement on what exactly an

changes [31]. Bennet.t anq Raj!ich [8] have pr.o.posed a SOft'ADL must provide (see a survey in [20]), it is generally ac-
ware model for evo.Iut|on, n Wh'Ch’ after the initial deveio fcepted that the main elements of an ADL are components,
ment (.)f a system, it sequentially goes through the stages O%onnectors, and behavioral interactions. By providing for
_evolu_tlon, servicing, phase-out, and qlose-down. Howe_/t_er mal syntax and semantics, ADLs facilitate analysis, which
if we interpret maintenance as evolution, then only modifi- provide input for engineered evolution. However, existing

cations that preserve the conceptual integrity of the syste - : : :
. . o ADLs do not provide any techniques to specify architectural
are possible. Otherwise evolvability is lost. The ISO/IEC change in the context of evolution [6].

14764:1999 standard categorizes maintenance into perfec- An architecture style “defines a vocabulary of compo-

“"?* correctlye, _adapnve_ ano_l preventive maln_tenanc¢ [16 nents and connector types, and a set of constraints on how
T.h's categonzgﬂon only implies, t.)Ut does not |dgnt|fyspo they can be combined” [29]. Architecture styles provide a
sible engineering aspegts of arch|tectgre evqlut|on. way to capture knowledge about common classes of sys-
. PIa_mn_mg.Thls area is concerned with (_Jlellvery of func- tems, and a leverage for analyzing their properties. Re-
tionality in mc_rements,_and has been mainly ad(_:lres_sed bycently, several researchers have proposed to extend styles
release pla_mnlng techniques [28]. Release planrjm.g |§tabouto architecture evolution and defined a concep\ailution

the allocation of features to ordered releases within aerta styles Garlan [13] defines an evolution style as a set of evo-

con'stralnt.\:, (e.g._,dpzjlotrltltis, r::‘si(: urrlcfds' COS;)' ?featsra ‘ lution paths among classes of systems, e.g., evolutions fro
Selling unit provided fo the staxenolders. Feallres operat o o hased architecture to J2EE. Le Goaer et al. [15] de-

3?{ theﬂ sys:e[ncljetvel Orhf_itt thte |n|fr<'istrl:cture Ilevtehl, buthz:l;e N0 fine an evolution style at a much lower level of abstraction
irectly refated fo architectural structures. in the cxy in terms of the structural changes involved.

IT applications, Erder and Pureur [12] have provided advice

on how to realize a system architecture on a time contin- . .

uum, based on successive states of architecture infrastruc3- Common Ar chitecture Evolutions

ture (called plateaus), each of which provides a stable sub-

strate for delivering a series of functionality (called way. We classify the common types of architecture evolution

Although this approach is useful in theory, the guidelines as follows: maintenance focused, open-ended (or open),

are oriented to information technology and business archi-and close-ended (or closed).

tectures rather than to architectural design. Maintenance focused evolutiorMaintenance focused
Cost-benefit analysisThis area encompasses the esti- evolution aims to ensure an architecture that is fit enough to

mation of cost, resources, benefit, and uncertainty factors weather different classes of changes, fixes, and new require

l Client 1 l l Client 2 l l Client 4 l l Client 3 l

’ Network

Information Resource|1
(city events, news)

- l Client 1 l l Client 2 l l Client 4 l l Client 3 l

[comoonent v v Vv ¥ KEY

lAdapter Cl] [Adapter C2] lAdapterC3] l Adapter CA]] component

Q middleware component

—> local invocation connector

— network request connector

Network

ESB (Enterprise Service Bus)

Network

Business Gatewa

LSB1 (Local Service Bus)
v ’
L]

lAdaplerIRll [Adapt:rlRZal
1

ments. For example, the architecture of the Eclipse Rich X Network
Client Platform is focused on system evolution without key 1
architectural changes, via the plug-in framework. Thus, in
general, maintainability and modifiability are concernatth
architectures need to be designed for. Design decisiohs tha

address these concerns need to be worked into the archigrchitecture (SOA). As a running example, consider the city
tecture [3]. Once such an architecture is specified, most ofinformation system (CIS) website [11, 23]. In CIS, users
the maintenance practices are at a low-level of abstraction retrieve information using a web browser and information
centering on code evolution, component evolution, reguire resources host data about city events, places, weather, etc
ment evolution, and refactoring. When the architecture canThe initial design of the system, based on the CS style, is
no longer handle necessary changes, high-level structurakhown in Fig. 1. In this design, accessing an information re-
modifications are needed. This leads to architecture transsource requires that its location be hard-coded in the serve
formations, hence evolutions, that go beyond maintenance.\yhen the server (information provider) receives a request
Open evolutionOpen evolution is characterized by high from a client, it runs the appropriate service and retures th
uncertainty. While aspects of the new architecture direc- information. The owner of CIS makes a profit based on the
tion are known, business, technical, and market conditionsnumber of hits the website gets, and believes that more in-
prevent architects to shape a clear architecture a priori.formation resources carried in the system will attract more
For example, 3D computer graphics is an important fea- users. The CIS is expected to evolve over time through the
ture in video game software. Many games that are successaddition of new information resources.
ful in particular consoles cannot be easily evolved to dif- Evolving the CIS system to an SOA paradigm changes
ferent consoles, or environments such as handheld deviceshe resulting architecture as shown in Fig. 2. In order to
An added challenge is anticipating the constraints that newachieve this end state the architect needs to describe the
hardware might impose and plan for evolving to those new steps for the evolution. The goal is to find an optimal way
platforms. The architecture focus of open evolution isrfte of keeping the old architecture elements while introducing
flexibility. Management of uncertainty becomes a critical the new ones. Thus, intermediate release points make the
aspect of open evolution. This is exemplified by the work transition easier. In short, the architect must designrthe t
on architecture real options [30, 4, 23]. jectory for the evolution, rationalized by optimal resairc
Closed evolution.Closed evolution is where the char- allocations, release points, and ordering of key tasks.
acteristics of the current and envisioned system'’s archite We believe that closed evolutions are interesting, yet suf-
tures are known. For example, evolution from thick client to ﬁcienﬂy restricted to be engineered_ Nevertheless, there

thin client architecture is an example of a closed evolution many parameters that need to be a|igned in reference to each
Such an evolution is motivated by new technical solutions other. This makes closed evolution challenging.
(e.g. incorporating CORBA for message exchanging), do-
main changes (e.g. need to support distributed call centers . . .
as opposeg to c(en%ral ones), ne\ri)vpbusiness models (e.g. bu3|4' Challengesin Closed Architecture Evolution
nesses selling services as opposed to products), etc. There
are many historical examples of closed evolutions, e.g., The key engineering challenges in closed evolution fall
from mainframe to client-server, from stand-alone applica under the following categories: resource estimation,-eval
tion to web-based, and from text-based to graphical useruation of alternative evolution trajectories, and the latk
interface-based systems. From a modeling perspective, theool support for estimation and evaluation.
two ends of closed evolution can be captured as instances of Resource estimationA common issue in resource esti-
particular architectural styles [13]. mation is the need to differentiate between local changes
Today, a common scenario of closed evolution is the mi- (e.g., to an interface or component) and architectural
gration of client-server systems (CS) to a service-orignte changes (e.g., to the system topology) [7]. Architectural

Network
— network request connector

----» intranet request connector

Information Resource|

(weather)
Information Resourcé:
(maps)

Figure 1. The initial CIS architecture.

Information Resource|2
(traffic, routes)

3

Business Gatewa

LSB2 (Local Service Bus)
, <

\ S

.
[Adaple‘rlRZbl [Ada;:terlR3l [Ada;ter |R4]

2 |Information Resource|3

(weather)

Information Resource

Information Resource
((traffic, routes)

city events, news) (maps)

Information Resourcé‘

Figure 2. The CIS system evolved to an SOA.

changes affect several elements, hence, can have ripple ef{ Cienii | [Ceniz | [Cleni4 | [Clieni3 | | e
fects that need to be accounted for. To account for ripple Adaierm ¥ [AGwiercs] [Adanirca] E e o commectr
effects and estimate the effort involved, every step in an —+ network request connector
evolution plan must be traceable to its source. For exam-

ple, in CIS, a precondition to adding a Local Service Bus
(LSB) is the existence of a gateway for a business domain R e
(see Fig. 2). The gateway, in turn, depends on service idenj (el events, news) F
tification, and the Enterprise Service Bus (ESB). Finaliig, t

ESB requires adapters for the clients. Thus, resource esti- Figure 3. An intermediate CIS system.

mation for adding one LSB element triggers decisions that nects them. However, its benefits — a continuously working
affect the entire architecture. system — may exceed the costs. The third trajectory is more
Another issue in resource estimation is domain knowl- Comp|exy but provides arisk mitiga’[ion by a partiaj dep|oy_
edge. This is especially true when adopting a new technicalment in the early stages of the migration.
infraStrUCtUre, such as when mOVing from CS to SOA. In Lack of tool Support_Rationai decision making for evo-
such cases, the architect needs technical informationeon th jytion requires a combination of quality-attribute baseakr
new domain to capture the key architectural properties of soning, resource estimation, and effective alternatiaduev
the new infrastructure required for resource estimatian. F ation. Practical tools that leverage formal analyses toraid
example, for the CIS evolution from Fig. 1 to Fig. 2, an these aspects of planning and managing evolution are lack-
architect needs to understand the preconditions for remov-ing. While there are commercial and prototypical tools for
ing the connections from weather information resources to modeling with formal (e.g., ADL) and semi-formal (i.e.,
maps, without affecting the system functionality. UML) languages, these tools provide only limited assis-
Evaluation of alternative evolution trajectoriesThere tance for architecture representation. Architects neeH to
are many criteria to evaluate trajectories, e.g., lendtbrts supported analysis to help them make rational decisions.
est vs. longest), risk aversion, managing uncertainty, im- For example, in the trajectories introduced above, the de-
mediacy of benefits, resource utilization (i.e., budgeteti cisjon to pick one over the other requires the architect to
manpower), etc. The choice of which criteria to use is address issues such as dependencies between applying var-
driven by business and mission goals. During evolution ious adapters, added cost due to ripple effects, added de-
planning, the architect needs to decide on the order of theyelopment effort due to redundant connectors, etc. Without
key steps with respect to such criteria. This often leads totoo| support, tracking these categories of information and

an emergence of several alternative eVOlUtionary direstio reasoning about them Coiiectiveiy isa daunting task.
For example, in CIS, the final architecture requires an

ESB. There are many strategies to get there. One is to5
let clients temporarily talk directly to the business gatgw
while the company evaluates different ESB options. An-
other, is to first deploy a subset of services, do a a shart-ter
feasibility demonstration of the infrastructure, and ahign
identify all the services of the SOA design and migrate the
components.

This leads to, at least, the following three evolutionary
trajectories. Note that we only list the steps but not the in-
termediate architectures.

Adapter C2

Adapter IR1 Adapter IR2 Adapter IR4

Adapter IR3

Information Resourcé|
(maps)

Information Resource
(weather)

B3

Information Resource
(traffic, routes)

. Modeling Architecture Evolution

We argue that in order to deal with the challenges out-
lined in Section 4, planning for evolution should be capdure
in an analyzable model with a certain degree of precision.
In this section, we present our vision for such a model for
closed evolution. We assume a closed evolution from an
initial architectureA, to some given final architecturé,, .
Reasoning about such an evolution requires the architect
to also reason about the intermediate architectures g¥tate
1. introduce adapters, ESB, business gateways; These intermediate states need to be planned and archi-
2. introduce adapters, business gateways, connectected as well. Thus, we propose to model an evolutionary
adapters to business gateways, introduce ESB, re-lrajectory asasequence of architectures, Ai, ..., A,).
move connections between adapters and gatewayshis is a simple way to encode a trajectory. It can be used
reconnect adapters and gateways to ESB; to represent releases, keep track of necessary changes, and
3. put basic ESB in place, identify few key services, in- argue for advantages_ of diffe.rent trajectories. .V\./e do riot
troduce adapters to connect these services to informaProPOse that the architect designs each state within airaje
tion resources and clients, test system, migrate rest oftory. The model is intended to provide a means to facilitate

the components, improve ESB capabilities as needed. analysis and to formally capture the evolution process.
For instance, if4, captures the client-server architecture

In comparison, the second trajectory is redundant with re- of Fig. 1 andA,, captures the SOA of Fig. 2, Fig. 3 shows
spect to the first: it first connects adapters and then discon-an intermediary architecturd;. This architecture repre-

sents a point-to-point service integration using adapters and an LSB. An LSB is an instance of ESB that provides
between clients (service users) and information resourcesconnectivity support for a single domain [24]. All these op-
(service providers), rather than a true ESB infrastructase erator instances ultimately boil down to basic changeséan th
discussed by Robinson [27)\; can be part of trajectory 1, architectural specification, such as: delete component, ad
as discussed in Section 4. component, connect two components through a connector,

A trajectory can be constructed with a very high level of remove a connector, etc.
abstraction and coarse granularity, where the architestur To estimate the cost of transforming an architecture us-
within the trajectory are onlyly and A,,. Alternatively, a ing an operator, each abstract operator needs to be analyzed
trajectory can be captured in a very low level of granularity based on itgproperties For example some properties of
by representing every key structural change as a statawithi the AESBare: components affected, new dependencies in-
the trajectory. While the first approach does not provide the troduced, new components introduced (e.g., security man-
architect with the planning path, the second approach is notager, and service registry), interfaces changed, new-inter
feasible and leads to “analysis paralysis.” faces introduced, etc. These properties lead to a cost func-

To find a suitable level of abstraction between these two tion. Each concrete operator provides the arguments to the
extremes, we need a mechanism to capture key structuratost function of its corresponding abstract operator. The
changes (and steps) between intermediate architectuses. Tcost of the trajectory is a combination of the costs of each
do so, we extend the trajectory with operators. Formally, constituent transformation, also taking into account com-
atrajectory is a sequenc¢éy, Og, 41,01, ...,0,_1, Ay), bined affects. For example, in CIS, applyiAgSBrequires
where eachd; is an architecture, as before, and eéths all of the clients and new information providers to have a
an operator. Intuitively, an operat@r; represents the steps connection to the ESB. This affects the dependencies be-
taken between architecturds and A4; ;. tween the clients and the information providers. Further-

What exactly is an operator? On one hand, it is a seman-more, the ripple effects from removing the interfaces on the
tic action, such as “identify a service”, or “adapt a cliemtt information sources must be taken into account
use a service”. On the other hand, itis a structural transfor ~ We envision that the architect will first select a bag of op-
mation of an architecture — some components and connec-erators®, and then construct a s€T; } of trajectories that
tors are introduced and removed. To separate between thesead fromA, to A,, via the application of operators fro.
two views of an operator, we classify operators into abstrac For instance, the three trajectories described in Sectae 4
and concrete. An abstract operator represents only the seebtained by applying some of the operators shown in Fig. 4.
mantic meaning of an architectural transformation. Each Next, the architect uses cost-benefit analysis techniques t
concrete operator is an instance of some abstract operatocompare between thE’s. The costs are computed using
O. ltinherits the semantic meaning 6f and provides the the properties estimated during operator instantiatidme T
additional detail required to implemett on the target ar- benefits are estimated from the results of quality attribute
chitecture. In other words, an abstract operator providesanalysis [3] on the architectures in the trajectories. Ker e
an interface, and the concrete operator provides an imple-ample, Ozkaya et al. [23] outline an approach to compute
mentation of that interface. In our running example, some the cost-benefit of particular types of operators (spedfifica
abstract operators are: architectural patterns) such as: insert a proxy (adaptse),
! . : a broker, or use a client-server-dispatcher; which can-be in
¢ |S: Identify service(s), : . . _

)) tegrated into possible trajectories.

* ACS Adapt client(s) to use service(s), Developing a meaningful and reusable set of operators
e CSSPConvert server(s) into service provider(s), and s a fundamental activity proposed by our approach. We
e AESB Add an Enterprise Service Bus (ESB). believe that, over time, a repertoire of abstract, as well as
domain-specific, sets of operators will emerge. In the case
'bf evolution from client-server to SOA, there are guide-
lines [24, 27] prescribing how an SOA infrastructure can
be progressively designed and deployed. We expect that
abstract operators can be mined from such guidelines.

Several concretizations of the above operators are show
in Fig. 4. OperatotS is instantiated into four services that
capture the main business functionality of CIS. Operator
ACSis instantiated into corresponding adapters for each of
the client components of Fig. 1. Opera@8SHeads to five
adapters that bridge communications with the information)
resources of Fig. 1. We assume that “Information Resource®- Conclusion and Future Work
2” will have to be accessed from two functional domains,
each with its own communication protocol (e.g., XML and In this paper, we argue for planning a closed, architecture
SOAP, respectively). This may justify the use of two sepa- evolution as an engineered activity. We outline a framework
rate adapters. OperatdESBis instantiated into three op- for modeling evolution as a set of trajectories obtained via
erators, which refer to two types of ESB: an ESB per se the application of operators. Operators is a formal way to

IS ldentify service(s)
o Identify service: getCityEventinfo(date,city)
o Identify service: getTrafficRoute (from, to)
o Identify service: getWeather (date, location)
o Identify service: getMap (location)

ACS: Adapt client(s) to use service(s)
e Adapt Client 1 to use services via Adapter C1
e Adapt Client 2 to use services via Adapter C2
e Adapt Client 3 to use services via Adapter C3

CSSP: Convert server(s) into service provider (s)
e Convert Info Resource 1 via Adapter IR1
e Convert Info Resource 2 via Adapter IR2a and IR2b
e Convert Info Resource 3 via Adapter IR3
e Convert Info Resource 4 via Adapter IR4

AESB: Add an Enterprise Service Bus (ESB)

e Add LSB1 and Business Gateway for
getCityEventinfo, and getTrafficRoute
e Add LSB2 and Business Gateway for

getTrafficRoute, getWeather, getMap
e Add ESB to connect clients with domains handled
LSB1andLSB 2

identify and represent key evolutionary steps at a level of

Figure 4. Operators: abstract to concrete.

abstraction that is suitable for objective evaluation of al
ternative trajectories. Moreover, they help identify thie a
chitectural properties needed for cost-benefit analysis. O [16] ISO/IEC. ISO/IEC 14764:1999 — Information Technology

current work focuses on defining and modeling useful oper-

ators, and investigating tool support [14]. It is motivabgd
the following research gquestions:

(5]
(6]
(7]
(8]

[12]

[13]

[14]

[15]

C. Baldwin and K. Clark Design Rules: The Power of Mod-

ularity. MIT, 2000.
O. Barais, A. Le Meur, L. Duchien, and J. Lawall. Software

Architecture Evolution. IrSoftware Evolution2008.
L. Bass, P. Clements, and R. Kazm&uoftware Architecture

in Practice (2nd ed.)AW, 2003.
K. Bennett and V. Rajlich. Software Maintenance and Evo-

lution: A Roadmap. IrProc. of the Conf. on The Future of

Software Engineering2000.
M. Blechar and D. Sholler. Key Issues for Information and

Application Architectures Management. Gartner Res., 2007.
B. Boehm.Software Engineering Economick981.
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal. Pattern-Oriented Software Architecture, Volume 1:

A System of Patterngohn Wiley & Sons, 1996.
M. Erder and P. Pureur. Transitional Architectures for Enter-

prise Evolution.IT Professional8(3), 2006.
D. Garlan. Evolution Styles: Formal Foundations and Tool

Support for Software Architecture Evolution. Tech. Rep.

CMU-CS-08-142, CMU, 2008.
D. Garlan and B. Schmerl. Avol: A Tool for Defining and

Planning Architecture Evolution. IRroc. of ICSE’092009.

Accepted for publication.
O. L. Goaer, D. Tamzalit, M. Oussalah, and A. Seriai. Evolu-

tion Styles to the Rescue of Architectural Evolution Knowl-
edge. InProc. of SHARK’082008.

— Software Maintenance, 1999.

1 M. Jazayeri. On Architectural Stability and Evolution. In

[18]

e Is it possible to define reusable operators for certain [19]

common classes of evolution?

e How can quality attribute theories, such as perfor- [20]

mance, aid cost-benefit analysis of evolution?

e Can operators be grouped under major quality at- [21]
tributes, such as operators that enhance performancej22] w. Opdyke and R. Johnson. Refactoring: An Aid in Design-

modifiability, etc. How does this grouping relate to ex-
isting work in architectural styles and tactics?

We hope to address these questions in future research.

[23]

Proc. of Ada-Europe’022002.

M. Jazayeri. Species Evolve, Individuals Age. Rroc. of
IWPSE’'05 2005.

M. Lehman. Programs, Life Cycles, and Laws of Software
Evolution. Proc. of IEEE 68(9), 1980.

N. Medvidovic and R. Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Lan-
guagesTSE 26(1), 2000.

T. Mens and S. Demeyer, editoiSoftware Evolution2008.

ing Application Frameworks and Evolving Object-Oriented

Systems. IrProc. of SOOPPA'901990.
. Ozkaya, R. Kazman, and M. Klein. Quality-Attribute

Based Economic Valuation of Architectural Patterns. Tech.
Rep. CMU/SEI-2007-TR-003, CMU/SEI, 2007.

Acknowledgment: This work has benefited from numerous [24] A. Papkov. Develop a Migration Strategy from a Legacy

discussions with F. Bachmann, J. Batman, R. Kazman, M.

Klein, R. Nord, and B. Schmerl.

References

[26]
[27] R. Robinson. Understand Enterprise Service Bus Scenarios

[1] A. Albrechtand J. Gaffney. Software Function, Source Lines [28]

(2]

(3]
(4]

of Code, and Development Effort Prediction: A Software

Science ValidationTSE 9(6), 1983.
W. Anderson, J. Bergey, M. Fisher, C. Graettinger,

W. Hansen, and R. Obenza. Army Workshop on Lessons
Learned from Software Upgrade Programs.

CMU/SEI-2001-SR-021, CMU/SEI, 2001.
F. Bachmann, L. Bass, and R. Nord. Maodifiability Tactics.

Tech. Rep. CMU/SEI-2007-TR-002, CMU/SEI, 2007.
R. Bahsoon, W. Emmerich, and J. Macke. Using Real Op-

tions to Select Stable Middleware-Induced Software Archi-
tectures.IEE Proc. Softwargl52(4), 2005.

[31]

Enterprise IT Infrastructure to an SOA-based Enterprise Ar-
chitecture. IBM, 2005.

[25] D. Parnas. On the Criteria To Be Used in Decomposing Sys-

tems into ModulesComm. of the ACIM15(12), 1972.
D. Parnas. Software Aging. Broc. of ICSE'941994.

and Solutions in Service-Oriented Architecture. IBM, 2004.
G. RuheHandbook of Software Engineering and Knowledge

Engineering volume 3, chapter Release Planning. World
Scientific, 2005.

[29] M. Shaw and D. GarlarSoftware Architecture: Perspectives

on an Emerging DisciplinePrentice, 1996.

Tech. Rep. [30] K. Sullivan, W. Griswold, Y. Cai, and B. Hallen. The Struc-

ture and Value of Modularity in Software Design. Rmoc.

of FSE’0], 2001.
N. Weiderman, J. Bergey, D. Smith, and S. Tilley.

Approaches to Legacy System Evolution. Tech. Rep.
CMU/SEI-97-TR-014, CMU/SEI, 1997.

