
Towards Engineered Architecture Evolution

Sagar Chaki
CMU/SEI

Andres Diaz-Pace
CMU/SEI

David Garlan
CMU/CS

Arie Gurfinkel
CMU/SEI

Ipek Ozkaya
CMU/SEI

Abstract

Architecture evolution, a key aspect of software evolu-
tion, is typically done in an ad hoc manner, guided only
by the competence of the architect performing it. This pro-
cess lacks the rigor of an engineering discipline. In this
paper, we argue that architecture evolution must be engi-
neered — based on rational decisions that are supported by
formal modelsandobjective analyses. We believe that evo-
lutions of a restricted form —close-ended evolution, where
the starting and ending design points are known a priori —
are amenable to being engineered. We discuss some of the
key challenges in engineering close-ended evolution. We
present a conceptual framework in which an architecture
evolutionary trajectory is modeled as a sequence of steps,
each captured by an operator. The goal of our framework is
to support exploration and objective evaluation of different
evolutionary trajectories. We conclude with open research
questions in developing this framework.

1. Introduction

The generally accepted definition for software evolution
is the process by which systems change, adapting to the
marketplace and inheriting characteristics from preexisting
programs [19]. A key aspect of software evolution is archi-
tecture evolution. As a system evolves, its architecture is
impacted. Conversely, planning for architecture evolution
is a powerful tool to guide and plan for software evolution.

Most work on software evolution focuses on practices
towards managing code. However, the software architec-
ture is the linchpin for ensuring that a software intensive
system achieves its business and quality goals over the life-
time of the system [17, 7]. Thus, the importance of soft-
ware architecture practices for evolving systems is becom-
ing increasingly evident in both commercial and govern-
ment sectors. For example, a recent report from Gartner
Research [9] highlights that many organizations are mov-
ing from traditional client-server architectures to otherar-
chitectures, prompted by emerging demands for agile busi-
ness processes. A similar opinion is echoed by a report [2]

from a U.S. Army workshop, which recommends that the
architecture be designed with evolution in mind.

In this paper, we outline our position on planning archi-
tecture evolution (or evolution, for short) as an engineered
process. Currently, planning for evolution is anad hocac-
tivity. This does not mean that the evolution is chaotic or un-
planned, but rather that it is non-generalizable (i.e., specific
to a particular instance). Sometimes, an ad hoc evolution
begins with an architect producing an evolution plan. More
often, the plan is constructed as evolution is taking place.
This plan is captured in a variety of forms: a list identifying
key milestones, timelines to achieve them, work to be done
at each milestone, intermediate release cycles, etc. Such ad
hoc planning is, at best, the state-of-the-practice in current
organizations undergoing evolution. Since such planning
is not supported by sound engineering methods and tools,
the quality of the result depends, almost completely, on the
competence of the architect.

Our aim is to improve this state of affairs through “engi-
neered evolution.” Specifically, we envision that evolution
is planned in a generalizable and repeatable manner. More-
over, the planning process is backed up by rational decisions
based on models and analyses derived from architecture-
centric practices. Our vision is rooted in the argument made
by Jazayeri — “Software is more than source code; models
and meta-models are important to software evolution” [18].

In this paper, we focus on a class of evolutions –
close-ended(or closed) evolutions – which we believe are
amenable to being engineered. An evolution is closed if the
properties of the current and target architectures are known
a priori. The challenges observed in planning for such evo-
lution center around lack of tools and practices that can as-
sist an architect in better scheduling critical activities, anal-
ysis of alternate evolution trajectories, and systematically
rationalizing the decisions made. We sketch a conceptual
framework — based on a set of generic, reusable operators
— aimed at enabling the architect to model and construct a
feasible plan for evolving an architecture from its currentto
a desired state, with appropriate intermediate release points.

The rest of this paper is organized as follows. We survey
the related work in Section 2. We define closed evolution in
Section 3 and identify key challenges in planning for closed

evolution in Section 4. In Section 5, we outline our ap-
proach for modeling an evolution trajectory with operators.
Section 6 concludes the paper.

2. Related Work

The theoretical foundations for software evolution can
be traced to Lehman’s laws of software evolution [19] and
Parnas’ ideas about “software aging” [26]. There is a
large body of work on maintaining and aligning software to
changing requirements, business goals and practices. These
efforts, although mainly focused on the code structures of
the system, have led to important evolution concepts such
as: code modularization criteria [25], maintainability in-
dicators [19], and code refactoring [22]. Lehman’s laws
were based on observations of the evolution of several in-
dustrial software systems in the late 1970’s, and influenced
much work in software evolution [21]. Nevertheless, ar-
chitecture evolution, by itself, has received scant research
attention. We survey related work in four areas that influ-
ence the emergence of engineered evolution: maintenance,
planning, cost-benefit analysis, and formal modeling.

Maintenance.Maintenance is a fine-grained, short-term
activity of the product life-cycle that focuses on localized
changes [31]. Bennett and Rajlich [8] have proposed a soft-
ware model for evolution, in which, after the initial develop-
ment of a system, it sequentially goes through the stages of
evolution, servicing, phase-out, and close-down. However,
if we interpret maintenance as evolution, then only modifi-
cations that preserve the conceptual integrity of the system
are possible. Otherwise evolvability is lost. The ISO/IEC
14764:1999 standard categorizes maintenance into perfec-
tive, corrective, adaptive and preventive maintenance [16].
This categorization only implies, but does not identify, pos-
sible engineering aspects of architecture evolution.

Planning. This area is concerned with delivery of func-
tionality in increments, and has been mainly addressed by
release planning techniques [28]. Release planning is about
the allocation of features to ordered releases within certain
constraints (e.g., priorities, resources, cost). A feature is a
selling unit provided to the stakeholders. Features operate
at the system level or at the infrastructure level, but are not
directly related to architectural structures. In the context of
IT applications, Erder and Pureur [12] have provided advice
on how to realize a system architecture on a time contin-
uum, based on successive states of architecture infrastruc-
ture (called plateaus), each of which provides a stable sub-
strate for delivering a series of functionality (called waves).
Although this approach is useful in theory, the guidelines
are oriented to information technology and business archi-
tectures rather than to architectural design.

Cost-benefit analysis.This area encompasses the esti-
mation of cost, resources, benefit, and uncertainty factors,

so as to evaluate which courses of action are economically
feasible. Techniques for cost estimation of software systems
have been around for many years, e.g., COCOMO [10] and
function point analysis [1]. Such techniques do not provide
guidance for estimating benefit and uncertainty at the archi-
tecture design level. Planning for architecture evolutionis
a combination of the need to deal with uncertainty, along
with costs and expected benefits. Real options analysis in
the context of design has been proposed as a technique to
tackle this problem [5]. Real options provide the right, but
not the obligation, to take some action in the future. For
instance, it is possible to estimate the value of a software
structure as a function of the flexibility that modular designs
provide by using real options [30]. That is, the use of flex-
ibility mechanisms creates designs that are more (or less)
evolvable. Modularity is not the only way to utilize options
in software design. Real options have been used for valuing
the stability of middleware [4], and for analyzing the eco-
nomic value of applying certain architectural patterns [23].
However, all these techniques are not yet integrated into an
architecture evolution process.

Formal modeling.We review two approaches: architec-
ture description languages (ADLs) and architectural styles.
An ADL is a formal language to describe a software archi-
tecture. While, there is no agreement on what exactly an
ADL must provide (see a survey in [20]), it is generally ac-
cepted that the main elements of an ADL are components,
connectors, and behavioral interactions. By providing for-
mal syntax and semantics, ADLs facilitate analysis, which
provide input for engineered evolution. However, existing
ADLs do not provide any techniques to specify architectural
change in the context of evolution [6].

An architecture style “defines a vocabulary of compo-
nents and connector types, and a set of constraints on how
they can be combined” [29]. Architecture styles provide a
way to capture knowledge about common classes of sys-
tems, and a leverage for analyzing their properties. Re-
cently, several researchers have proposed to extend styles
to architecture evolution and defined a concept ofevolution
styles. Garlan [13] defines an evolution style as a set of evo-
lution paths among classes of systems, e.g., evolutions from
a web-based architecture to J2EE. Le Goaer et al. [15] de-
fine an evolution style at a much lower level of abstraction
in terms of the structural changes involved.

3. Common Architecture Evolutions

We classify the common types of architecture evolution
as follows: maintenance focused, open-ended (or open),
and close-ended (or closed).

Maintenance focused evolution.Maintenance focused
evolution aims to ensure an architecture that is fit enough to
weather different classes of changes, fixes, and new require-

Client 1 Client 3 Client 2 Client 4

Server 1 Server 2

Information Resource 1
(city events, news)

Information Resource 2
(traffic, routes)

Information Resource 3
(weather)

Information Resource 4
(maps)

Network

KEY

component

network request connector
Network

Figure 1. The initial CIS architecture.

ments. For example, the architecture of the Eclipse Rich
Client Platform is focused on system evolution without key
architectural changes, via the plug-in framework. Thus, in
general, maintainability and modifiability are concerns that
architectures need to be designed for. Design decisions that
address these concerns need to be worked into the archi-
tecture [3]. Once such an architecture is specified, most of
the maintenance practices are at a low-level of abstraction,
centering on code evolution, component evolution, require-
ment evolution, and refactoring. When the architecture can
no longer handle necessary changes, high-level structural
modifications are needed. This leads to architecture trans-
formations, hence evolutions, that go beyond maintenance.

Open evolution.Open evolution is characterized by high
uncertainty. While aspects of the new architecture direc-
tion are known, business, technical, and market conditions
prevent architects to shape a clear architecture a priori.
For example, 3D computer graphics is an important fea-
ture in video game software. Many games that are success-
ful in particular consoles cannot be easily evolved to dif-
ferent consoles, or environments such as handheld devices.
An added challenge is anticipating the constraints that new
hardware might impose and plan for evolving to those new
platforms. The architecture focus of open evolution is often
flexibility. Management of uncertainty becomes a critical
aspect of open evolution. This is exemplified by the work
on architecture real options [30, 4, 23].

Closed evolution.Closed evolution is where the char-
acteristics of the current and envisioned system’s architec-
tures are known. For example, evolution from thick client to
thin client architecture is an example of a closed evolution.
Such an evolution is motivated by new technical solutions
(e.g. incorporating CORBA for message exchanging), do-
main changes (e.g. need to support distributed call centers
as opposed to central ones), new business models (e.g. busi-
nesses selling services as opposed to products), etc. There
are many historical examples of closed evolutions, e.g.,
from mainframe to client-server, from stand-alone applica-
tion to web-based, and from text-based to graphical user
interface-based systems. From a modeling perspective, the
two ends of closed evolution can be captured as instances of
particular architectural styles [13].

Today, a common scenario of closed evolution is the mi-
gration of client-server systems (CS) to a service-oriented

Adapter C1 Adapter C4 Adapter C3

Information Resource 1
(city events, news)

Information Resource 2
(traffic, routes)

Information Resource 3
(weather)

Information Resource 4
(maps)

Client 1 Client 3 Client 2 Client 4

Adapter IR1 Adapter IR2a Adapter IR2b Adapter IR3 Adapter IR4

LSB1 (Local Service Bus)

Business Gateway Business Gateway

ESB (Enterprise Service Bus)

Adapter C2

LSB2 (Local Service Bus)

Network

Network

Network

KEY

 component

network request connector

middleware component

intranet request connector

local invocation connector

Figure 2. The CIS system evolved to an SOA.

architecture (SOA). As a running example, consider the city
information system (CIS) website [11, 23]. In CIS, users
retrieve information using a web browser and information
resources host data about city events, places, weather, etc.
The initial design of the system, based on the CS style, is
shown in Fig. 1. In this design, accessing an information re-
source requires that its location be hard-coded in the server.
When the server (information provider) receives a request
from a client, it runs the appropriate service and returns the
information. The owner of CIS makes a profit based on the
number of hits the website gets, and believes that more in-
formation resources carried in the system will attract more
users. The CIS is expected to evolve over time through the
addition of new information resources.

Evolving the CIS system to an SOA paradigm changes
the resulting architecture as shown in Fig. 2. In order to
achieve this end state the architect needs to describe the
steps for the evolution. The goal is to find an optimal way
of keeping the old architecture elements while introducing
the new ones. Thus, intermediate release points make the
transition easier. In short, the architect must design the tra-
jectory for the evolution, rationalized by optimal resource
allocations, release points, and ordering of key tasks.

We believe that closed evolutions are interesting, yet suf-
ficiently restricted to be engineered. Nevertheless, thereare
many parameters that need to be aligned in reference to each
other. This makes closed evolution challenging.

4. Challenges in Closed Architecture Evolution

The key engineering challenges in closed evolution fall
under the following categories: resource estimation, eval-
uation of alternative evolution trajectories, and the lackof
tool support for estimation and evaluation.

Resource estimation.A common issue in resource esti-
mation is the need to differentiate between local changes
(e.g., to an interface or component) and architectural
changes (e.g., to the system topology) [7]. Architectural

changes affect several elements, hence, can have ripple ef-
fects that need to be accounted for. To account for ripple
effects and estimate the effort involved, every step in an
evolution plan must be traceable to its source. For exam-
ple, in CIS, a precondition to adding a Local Service Bus
(LSB) is the existence of a gateway for a business domain
(see Fig. 2). The gateway, in turn, depends on service iden-
tification, and the Enterprise Service Bus (ESB). Finally, the
ESB requires adapters for the clients. Thus, resource esti-
mation for adding one LSB element triggers decisions that
affect the entire architecture.

Another issue in resource estimation is domain knowl-
edge. This is especially true when adopting a new technical
infrastructure, such as when moving from CS to SOA. In
such cases, the architect needs technical information on the
new domain to capture the key architectural properties of
the new infrastructure required for resource estimation. For
example, for the CIS evolution from Fig. 1 to Fig. 2, an
architect needs to understand the preconditions for remov-
ing the connections from weather information resources to
maps, without affecting the system functionality.

Evaluation of alternative evolution trajectories.There
are many criteria to evaluate trajectories, e.g., length (short-
est vs. longest), risk aversion, managing uncertainty, im-
mediacy of benefits, resource utilization (i.e., budget, time,
manpower), etc. The choice of which criteria to use is
driven by business and mission goals. During evolution
planning, the architect needs to decide on the order of the
key steps with respect to such criteria. This often leads to
an emergence of several alternative evolutionary directions.

For example, in CIS, the final architecture requires an
ESB. There are many strategies to get there. One is to
let clients temporarily talk directly to the business gateway,
while the company evaluates different ESB options. An-
other, is to first deploy a subset of services, do a a short-term
feasibility demonstration of the infrastructure, and onlythen
identify all the services of the SOA design and migrate the
components.

This leads to, at least, the following three evolutionary
trajectories. Note that we only list the steps but not the in-
termediate architectures.

1. introduce adapters, ESB, business gateways;
2. introduce adapters, business gateways, connect

adapters to business gateways, introduce ESB, re-
move connections between adapters and gateways,
reconnect adapters and gateways to ESB;

3. put basic ESB in place, identify few key services, in-
troduce adapters to connect these services to informa-
tion resources and clients, test system, migrate rest of
the components, improve ESB capabilities as needed.

In comparison, the second trajectory is redundant with re-
spect to the first: it first connects adapters and then discon-

Adapter C1 Adapter C4 Adapter C3

Information Resource 1
(city events, news)

Information Resource 2
(traffic, routes)

Information Resource 3
(weather)

Information Resource 4
(maps)

Client 1 Client 3 Client 2 Client 4

Adapter IR1 Adapter IR2 Adapter IR3 Adapter IR4

Adapter C2

Network

KEY

 component

network request connector

local invocation connector

Figure 3. An intermediate CIS system.

nects them. However, its benefits – a continuously working
system – may exceed the costs. The third trajectory is more
complex, but provides a risk mitigation by a partial deploy-
ment in the early stages of the migration.

Lack of tool support.Rational decision making for evo-
lution requires a combination of quality-attribute based rea-
soning, resource estimation, and effective alternative evalu-
ation. Practical tools that leverage formal analyses to aidin
these aspects of planning and managing evolution are lack-
ing. While there are commercial and prototypical tools for
modeling with formal (e.g., ADL) and semi-formal (i.e.,
UML) languages, these tools provide only limited assis-
tance for architecture representation. Architects need tool-
supported analysis to help them make rational decisions.
For example, in the trajectories introduced above, the de-
cision to pick one over the other requires the architect to
address issues such as dependencies between applying var-
ious adapters, added cost due to ripple effects, added de-
velopment effort due to redundant connectors, etc. Without
tool support, tracking these categories of information and
reasoning about them collectively is a daunting task.

5. Modeling Architecture Evolution

We argue that in order to deal with the challenges out-
lined in Section 4, planning for evolution should be captured
in an analyzable model with a certain degree of precision.
In this section, we present our vision for such a model for
closed evolution. We assume a closed evolution from an
initial architectureA0 to some given final architectureAn.
Reasoning about such an evolution requires the architect
to also reason about the intermediate architectures (states).
These intermediate states need to be planned and archi-
tected as well. Thus, we propose to model an evolutionary
trajectory as a sequence of architectures:〈A0, A1, . . . , An〉.
This is a simple way to encode a trajectory. It can be used
to represent releases, keep track of necessary changes, and
argue for advantages of different trajectories. We do not
propose that the architect designs each state within a trajec-
tory. The model is intended to provide a means to facilitate
analysis and to formally capture the evolution process.

For instance, ifA0 captures the client-server architecture
of Fig. 1 andAn captures the SOA of Fig. 2, Fig. 3 shows
an intermediary architectureA1. This architecture repre-

sents a point-to-point service integration using adaptersin
between clients (service users) and information resources
(service providers), rather than a true ESB infrastructure, as
discussed by Robinson [27].A1 can be part of trajectory 1,
as discussed in Section 4.

A trajectory can be constructed with a very high level of
abstraction and coarse granularity, where the architectures
within the trajectory are onlyA0 andAn. Alternatively, a
trajectory can be captured in a very low level of granularity
by representing every key structural change as a state within
the trajectory. While the first approach does not provide the
architect with the planning path, the second approach is not
feasible and leads to “analysis paralysis.”

To find a suitable level of abstraction between these two
extremes, we need a mechanism to capture key structural
changes (and steps) between intermediate architectures. To
do so, we extend the trajectory with operators. Formally,
a trajectory is a sequence〈A0, O0, A1, O1, . . . , On−1, An〉,
where eachAi is an architecture, as before, and eachOi is
an operator. Intuitively, an operatorOi represents the steps
taken between architecturesAi andAi+1.

What exactly is an operator? On one hand, it is a seman-
tic action, such as “identify a service”, or “adapt a client to
use a service”. On the other hand, it is a structural transfor-
mation of an architecture — some components and connec-
tors are introduced and removed. To separate between these
two views of an operator, we classify operators into abstract
and concrete. An abstract operator represents only the se-
mantic meaning of an architectural transformation. Each
concrete operator is an instance of some abstract operator
O. It inherits the semantic meaning ofO and provides the
additional detail required to implementO on the target ar-
chitecture. In other words, an abstract operator provides
an interface, and the concrete operator provides an imple-
mentation of that interface. In our running example, some
abstract operators are:

• IS: Identify service(s),

• ACS: Adapt client(s) to use service(s),

• CSSP: Convert server(s) into service provider(s), and

• AESB: Add an Enterprise Service Bus (ESB).

Several concretizations of the above operators are shown
in Fig. 4. OperatorIS is instantiated into four services that
capture the main business functionality of CIS. Operator
ACSis instantiated into corresponding adapters for each of
the client components of Fig. 1. OperatorCSSPleads to five
adapters that bridge communications with the information
resources of Fig. 1. We assume that “Information Resource
2” will have to be accessed from two functional domains,
each with its own communication protocol (e.g., XML and
SOAP, respectively). This may justify the use of two sepa-
rate adapters. OperatorAESBis instantiated into three op-
erators, which refer to two types of ESB: an ESB per se

and an LSB. An LSB is an instance of ESB that provides
connectivity support for a single domain [24]. All these op-
erator instances ultimately boil down to basic changes in the
architectural specification, such as: delete component, add
component, connect two components through a connector,
remove a connector, etc.

To estimate the cost of transforming an architecture us-
ing an operator, each abstract operator needs to be analyzed
based on itsproperties. For example some properties of
theAESBare: components affected, new dependencies in-
troduced, new components introduced (e.g., security man-
ager, and service registry), interfaces changed, new inter-
faces introduced, etc. These properties lead to a cost func-
tion. Each concrete operator provides the arguments to the
cost function of its corresponding abstract operator. The
cost of the trajectory is a combination of the costs of each
constituent transformation, also taking into account com-
bined affects. For example, in CIS, applyingAESBrequires
all of the clients and new information providers to have a
connection to the ESB. This affects the dependencies be-
tween the clients and the information providers. Further-
more, the ripple effects from removing the interfaces on the
information sources must be taken into account

We envision that the architect will first select a bag of op-
eratorsO, and then construct a set{Ti} of trajectories that
lead fromA0 to An via the application of operators fromO.
For instance, the three trajectories described in Section 4are
obtained by applying some of the operators shown in Fig. 4.
Next, the architect uses cost-benefit analysis techniques to
compare between theTi’s. The costs are computed using
the properties estimated during operator instantiation. The
benefits are estimated from the results of quality attribute
analysis [3] on the architectures in the trajectories. For ex-
ample, Ozkaya et al. [23] outline an approach to compute
the cost-benefit of particular types of operators (specifically,
architectural patterns) such as: insert a proxy (adapter),use
a broker, or use a client-server-dispatcher; which can be in-
tegrated into possible trajectories.

Developing a meaningful and reusable set of operators
is a fundamental activity proposed by our approach. We
believe that, over time, a repertoire of abstract, as well as
domain-specific, sets of operators will emerge. In the case
of evolution from client-server to SOA, there are guide-
lines [24, 27] prescribing how an SOA infrastructure can
be progressively designed and deployed. We expect that
abstract operators can be mined from such guidelines.

6. Conclusion and Future Work

In this paper, we argue for planning a closed, architecture
evolution as an engineered activity. We outline a framework
for modeling evolution as a set of trajectories obtained via
the application of operators. Operators is a formal way to

IS: Identify service(s)
• Identify service: getCityEventInfo(date,city)
• Identify service: getTrafficRoute (from, to)
• Identify service: getWeather (date, location)
• Identify service: getMap (location)

ACS: Adapt client(s) to use service(s)
• Adapt Client 1 to use services via Adapter C1
• Adapt Client 2 to use services via Adapter C2
• Adapt Client 3 to use services via Adapter C3

CSSP: Convert server(s) into service provider(s)
• Convert Info Resource 1 via Adapter IR1
• Convert Info Resource 2 via Adapter IR2a and IR2b
• Convert Info Resource 3 via Adapter IR3
• Convert Info Resource 4 via Adapter IR4

AESB: Add an Enterprise Service Bus (ESB)
• Add LSB 1 and Business Gateway for

getCityEventInfo, and getTrafficRoute
• Add LSB 2 and Business Gateway for

getTrafficRoute, getWeather, getMap
• Add ESB to connect clients with domains handled by

LSB 1 and LSB 2

Figure 4. Operators: abstract to concrete.

identify and represent key evolutionary steps at a level of
abstraction that is suitable for objective evaluation of al-
ternative trajectories. Moreover, they help identify the ar-
chitectural properties needed for cost-benefit analysis. Our
current work focuses on defining and modeling useful oper-
ators, and investigating tool support [14]. It is motivatedby
the following research questions:

• Is it possible to define reusable operators for certain
common classes of evolution?

• How can quality attribute theories, such as perfor-
mance, aid cost-benefit analysis of evolution?

• Can operators be grouped under major quality at-
tributes, such as operators that enhance performance,
modifiability, etc. How does this grouping relate to ex-
isting work in architectural styles and tactics?

We hope to address these questions in future research.

Acknowledgment: This work has benefited from numerous
discussions with F. Bachmann, J. Batman, R. Kazman, M.
Klein, R. Nord, and B. Schmerl.

References

[1] A. Albrecht and J. Gaffney. Software Function, Source Lines
of Code, and Development Effort Prediction: A Software
Science Validation.TSE, 9(6), 1983.

[2] W. Anderson, J. Bergey, M. Fisher, C. Graettinger,
W. Hansen, and R. Obenza. Army Workshop on Lessons
Learned from Software Upgrade Programs. Tech. Rep.
CMU/SEI-2001-SR-021, CMU/SEI, 2001.

[3] F. Bachmann, L. Bass, and R. Nord. Modifiability Tactics.
Tech. Rep. CMU/SEI-2007-TR-002, CMU/SEI, 2007.

[4] R. Bahsoon, W. Emmerich, and J. Macke. Using Real Op-
tions to Select Stable Middleware-Induced Software Archi-
tectures.IEE Proc. Software, 152(4), 2005.

[5] C. Baldwin and K. Clark.Design Rules: The Power of Mod-
ularity. MIT, 2000.

[6] O. Barais, A. Le Meur, L. Duchien, and J. Lawall. Software
Architecture Evolution. InSoftware Evolution. 2008.

[7] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice (2nd ed.). AW, 2003.

[8] K. Bennett and V. Rajlich. Software Maintenance and Evo-
lution: A Roadmap. InProc. of the Conf. on The Future of
Software Engineering, 2000.

[9] M. Blechar and D. Sholler. Key Issues for Information and
Application Architectures Management. Gartner Res., 2007.

[10] B. Boehm.Software Engineering Economics. 1981.
[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal. Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. John Wiley & Sons, 1996.

[12] M. Erder and P. Pureur. Transitional Architectures for Enter-
prise Evolution.IT Professional, 8(3), 2006.

[13] D. Garlan. Evolution Styles: Formal Foundations and Tool
Support for Software Architecture Evolution. Tech. Rep.
CMU-CS-08-142, CMU, 2008.

[14] D. Garlan and B. Schmerl. Ævol: A Tool for Defining and
Planning Architecture Evolution. InProc. of ICSE’09, 2009.
Accepted for publication.

[15] O. L. Goaer, D. Tamzalit, M. Oussalah, and A. Seriai. Evolu-
tion Styles to the Rescue of Architectural Evolution Knowl-
edge. InProc. of SHARK’08, 2008.

[16] ISO/IEC. ISO/IEC 14764:1999 — Information Technology
– Software Maintenance, 1999.

[17] M. Jazayeri. On Architectural Stability and Evolution. In
Proc. of Ada-Europe’02, 2002.

[18] M. Jazayeri. Species Evolve, Individuals Age. InProc. of
IWPSE’05, 2005.

[19] M. Lehman. Programs, Life Cycles, and Laws of Software
Evolution. Proc. of IEEE, 68(9), 1980.

[20] N. Medvidovic and R. Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Lan-
guages.TSE, 26(1), 2000.

[21] T. Mens and S. Demeyer, editors.Software Evolution. 2008.
[22] W. Opdyke and R. Johnson. Refactoring: An Aid in Design-

ing Application Frameworks and Evolving Object-Oriented
Systems. InProc. of SOOPPA’90, 1990.

[23] I. Ozkaya, R. Kazman, and M. Klein. Quality-Attribute
Based Economic Valuation of Architectural Patterns. Tech.
Rep. CMU/SEI-2007-TR-003, CMU/SEI, 2007.

[24] A. Papkov. Develop a Migration Strategy from a Legacy
Enterprise IT Infrastructure to an SOA-based Enterprise Ar-
chitecture. IBM, 2005.

[25] D. Parnas. On the Criteria To Be Used in Decomposing Sys-
tems into Modules.Comm. of the ACM, 15(12), 1972.

[26] D. Parnas. Software Aging. InProc. of ICSE’94, 1994.
[27] R. Robinson. Understand Enterprise Service Bus Scenarios

and Solutions in Service-Oriented Architecture. IBM, 2004.
[28] G. Ruhe.Handbook of Software Engineering and Knowledge

Engineering, volume 3, chapter Release Planning. World
Scientific, 2005.

[29] M. Shaw and D. Garlan.Software Architecture: Perspectives
on an Emerging Discipline. Prentice, 1996.

[30] K. Sullivan, W. Griswold, Y. Cai, and B. Hallen. The Struc-
ture and Value of Modularity in Software Design. InProc.
of FSE’01, 2001.

[31] N. Weiderman, J. Bergey, D. Smith, and S. Tilley.
Approaches to Legacy System Evolution. Tech. Rep.
CMU/SEI-97-TR-014, CMU/SEI, 1997.

