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Abstract. We present an approach, based on model-driven verifying
compilation, to construct distributed applications that satisfy user-
specified safety specifications, assuming a ”synchronous network” model
of computation. Given a distributed application P, and a safety specifi-
cation ¢ in a domain specific language DASL (that we have developed), we
first use a combination of sequentialization and software model checking
to verify that P, satisfies ¢. If verification succeeds, we generate an im-
plementation of P, that uses a novel barrier-based synchronizer protocol
(that we have also developed) to implement the synchronous network se-
mantics. We present the syntax and semantics of DASL. We also present,
and prove correctness of, two sequentialization algorithms, and the syn-
chronizer protocol. Finally, we evaluate the two sequentializations on a
collection of distributed applications with safety-critical requirements.

1 Introduction

Distributed applications (i.e., software implementing distributed algorithms)
play a critical, often silent, role in our day-to-day lives. Increasingly, they are
being used in safety-critical domains. For example, Cyber-Physical intersection
protocols [4] have been developed for ground-based vehicles that rely on vehicle-
to-vehicle (V2V) communication. Safety-critical distributed applications must
be subjected to rigorous verification & validation (V&V) before deployment. In-
deed, incorrect operation of such applications can lead to damage or destruction
of property, personal injury, and even loss of life.

The state-of-the-art in V&V of distributed applications relies heavily on test-
ing. This has two problems. First, testing has poor coverage. This is particularly
severe for distributed applications, since concurrency enables a large number
of possible executions . Second, safety-critical applications are often produced
via model-driven development (MDD), e.g., using Simulink in the automotive
domain. While some form of testing is applied at each level of MDD, the as-
surance obtained at one level is not transferred to the next. In this paper, we
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present and empirically evaluate an approach, called DIVER, for producing ver-
ified distributed applications, that addresses both these challenges. Specifically,
DIVER uses software model checking, an exhaustive and automated technique,
for verification. It also uses a single “model” of the application to perform both
verification and code generation, thus transferring the results of one to the other.

DIVER targets the synchronous network model of computation [16], or SN-
MOC, where each node executes in rounds. Nodes communicate via single-writer-
multiple-reader shared variables!. The final value of a variable at its writer node
in any round (i) becomes visible to its reader nodes in the next round (i + 1).
SNMOC makes both programming and verification simpler, and is used in safety-
critical domains, e.g., it reduced [17] verification time of an active-standby pro-
tocol (used in avionics systems) from 35 hours to 30 seconds.

DIVER is a verifying compiler [11]. The input to DIVER is a program P; written
in a domain specific language we have developed called Distributed Application
Specification Language (DASL). P; describes both a distributed application App
and its correctness specification . DIVER outputs an executable for each node
of App but only if it satisfies . It works in two steps:

1. Verification: Verify whether App satisfies ¢. The verification is automated
and exhaustive, and consists of two sub-steps:

(a) Sequentialization: Construct a sequential (i.e., single threaded) program
P; that is semantically equivalent to App w.r.t. . Specifically, Ps is a C
program containing an assertion « such that Ps Ea <= Py E ¢, i.e.,
all legal executions of P, satisfy « iff P; satisfies ¢.

(b) Model Checking: Verify whether P, = «a using software model check-
ing [13] (SMC). We chose C and assertions for expressing Ps and « since
these are the de-facto standards for describing SMC problems, and sup-
ported by state-of-the-art SMC engines. If SMC successfully verifies that
P, = « then proceed to Step 2, otherwise declare App ~= ¢ and abort.

2. Code Generation: Generate C++ code for each node of App that relies on
the MADARA [8] middleware for communication. We choose MADARA due to
prior expertise, and our ability to implement SNMOC on top of its primitives.

However, DIVER is compatible with other middleware that either support

SNMOC natively, or provide an API on top of which SNMOC is implementable.

Our ultimate goal is to verify distributed applications running on mobile
robots communicating over wireless networks. Such networks are not only asyn-
chronous but have unbounded message delay. Therefore, we have also developed
a protocol, called 2BSYNC, that implements SNMOC over asynchronous networks
without relying on clock synchronization. To our knowledge, it is a new synchro-
nizer protocol for wirelessly connected systems, and of independent interest.

The rest of this paper is organized as follows. After surveying related work
(Sec. 2), we focus on our specific contributions. In Sec. 3, we present the syntax
and semantics of DASL. The semantics leads immediately to a sequentialization
we call SEQSEM. However SEQSEM produces a program with O(n?) variables

1 A version of SNMOC based on message-passing also appears in the literature.



(where n = number of nodes). This is undesirable from a verification perspec-
tive since the statespace of a program grows exponentially with the number of
variables. Therefore, in Sec. 4 we develop, and prove correctness of, a more so-
phisticated sequentialization, called SEQDBL, that only requires O(n) variables.
In Sec. 5, we present and prove correctness of our synchronizer protocol 2BSYNC.
In Sec. 6, we present code generation from DASL to MADARA/C++. In Sec. 7,
we compare SEQSEM and SEQDBL on a collection of distributed applications. Our
results indicate that while SEQDBL is clearly better overall, for some applications,
SEQSEM produces programs that are verified more quickly despite having many
more variables. Finally, Sec. 8 concludes the paper.

2 Related Work

This work spans multiple disciplines — verification, distributed systems, middle-
ware technology and code generation — which we briefly survey.

Verification. Most work in model checking concurrent software [2] use an
asynchronous model of computation, based on either shared memory [1] or
message-passing [7]. Some of these projects are also based on sequentializa-
tion [14,24]. Synchronous programming languages, such as Lustre [5], are not
suitable for distributed applications, since they can only describe systems with a
fixed number of nodes. DIVER is a verifying compiler for synchronous distributed
applications that does both model-driven verification and code generation from
a single DASL program. Humphrey et al. [12] use LTL to specify and synthesize
correct multi-UAV missions. In contrast, our approach is based on verification.
Process calculi, such as CCS [18] and CSP [10], use asynchronous message-
passing communication and are verified via refinement checking. DASL uses
synchronous shared-variable based communication, and its verification is based
on model checking user-specified assertions. The synchronous programming lan-
guage Lustre [5] differs from DASL in that there can be no cyclic-dependency
(i.e., causality loops) between nodes, and each Lustre program has a fixed num-
ber of nodes. Note, however, that every ”instance” of a DASL program can be
represented in Lustre using unit-delay nodes to break causality.

Distributed Systems. Distributed algorithms are typically verified at the
pseudo-code level manually using invariants and simulation relations [16]. Dis-
tributed systems are also heavily simulated [23] and tested, which are incom-
plete. DIVER is based on model checking, which is automated and exhaustive.
Synchronizer protocols [3] have also been widely studied. Many rely on clock
synchronization [17] — which is inappropriate for wireless communication — or
direct message passing. 2BSYNC uses barriers, which is more appropriate for
middleware, like MADARA [8], that provide a shared memory abstraction.

Middleware and Code Generation. For our code generation target, we chose
MADARA [8]. There are multiple middleware solutions that provide infrastruc-
ture support for control and communication between distributed applications.
CORBA [22] is an OMG standard for component-based distributed application
development, but requires definition of component interactions and precise man-



agement of transportation options. OMG has another standard called the Data
Distribution Service [19] which facilitates quality-of-service contracts between
publishers and subscribers and a complex but robust networking feature set.
Tripakis et al. [25] have also explored implementing synchronous models via
reduction to Kahn Process networks.

Several toolkits — e.g., COSMIC [20], AUTOSAR [9], and OCARINA [15]
— provide verification and code generation for distributed applications, often
with requirements of real-time support from underlying hardware, network con-
nections, and operating systems. They force component paradigms or complex
deployment configurations and metadata that is unnecessary for synchronous ap-
plication specification and hinders verification. MADARA provides a more direct
mapping for distributed algorithm logic, specializes in wireless communication —
which is more appropriate for our target domain — and enforces Lamport clock-
based consistency which provides a clean semantics and supports verification.

3 The DASL Language

A DASL program P, describes a distributed application App, as well as its speci-
fication. The application consists of a number of nodes communicating via global
variables over a synchronous network. Recall that each node executes in rounds.
Formally, P; is a 5-tuple (GV, LV, p,n, ) where: (i) GV is the set of global
variables; (ii) LV is the set of node-local variables whose values persist across
rounds; (iii) p is a function executed by each node in every round; (iv) n is the
number of nodes; and (v) ¢ is the specification defined by a pair of functions Init
and Safety that, respectively, establish a valid initial state, and check for viola-
tions of the desired safety property. The specification ¢ is used for verification
only. The rest of Py is used both for verification and code generation.

Syntax of DASL. Let T'V be a set of temporary variables, IV be a set of id
variables, and id be a distinguished variable such that GV, LV, TV, IV and
{id} are mutually disjoint. The body of p is a statement. The “abstract” syntax
of statements, lvalues and expressions is given by the following BNF grammar:

(Statements) stmt := skip | lval = exp|ITE(exp, stmt, stmt) | WHILE(exp, stmt)
| ALL(IV, stmt) | (stmt ;...; stmt) | v(TV, stmt)
(LValues) lval :== GV]exp] | LV | TV
(Expressions) exp :=7 | al | id | IV |~ exp | exp © exp

Intuitively, skip is a nop, [ = e is an assignment, ITE is an “if-then-else”, WHILE
is a while loop, ALL(v, st) executes st iteratively by substituting v with the
id of each node, (sty ;...; stp) executes st; through sty in sequence, v (v, st)
introduces a fresh temporary variable v in scope of st, ~€ {—,—} is an unary
operator, and ¢ € {+,—,%,/,A,V} is a binary operator. ALL enables iteration
over all nodes of App without knowing the exact number of such nodes a-priori.

Scoping and Assumptions. All global variables are arrays. We assume that:
(i) each element of a global array has a single writer node; the mechanisms to



1 CONST OUTSIDE = 0; 28 PROGRAM = node (0) || node(1l);

2 CONST TRYING = 1; 29

3 CONST INSIDE = 2; 30

4 31 void INIT()

5 NODE node (id) { 32 {

6 GLOBAL _Bool lock[#N]; 33 FORALL_NODE (id) {

7 LOCAL unsigned char state; 34 ND (state.id); ND(lock([id]);
8 35 ASSUME (state.id == OUTSIDE &&
9 void ROUND () { 36 lock[id] == 0 ||

10 _BOOL c; 37 state.id == INSIDE &&

11 if (state == OUTSIDE) { 38 lock[id] == 1);

12 c = should_enter(); 39 }

13 if(c) { 40 FORALL_DISTINCT_NODE_PAIR

14 if (EXISTS_LOWER (idp, lock[idp])) 41 (id1, 1id2) {

15 return; 42 ASSUME (state.idl != INSIDE ||
16 lock[id] = 1; state = TRYING; 43 state.id2 != INSIDE);
17 } 44 }

18 } else if (state == TRYING) { 45 }

19 if (EXISTS_HIGHER (idp, lock [idp])) 46

20 return; 47 void SAFETY ()

21 state = INSIDE; 48 {

22 } else if (state == INSIDE) { 49 FORALL_DISTINCT_NODE_PAIR

23 if(in_cs()) return; 50 (id1l, id2) {

24 lock[id] = 0; state = OQUTSIDE; 51 ASSERT (state.idl != INSIDE ||
25 } 52 state.id2 != INSIDE);
26 } 53 }

27 1} 54 }

Fig. 1. Example DASL program with 2 nodes using an id-based mutex protocol.

enforce this are discussed later; (ii) variables in GV U LV U {id} are always in
scope; (iii) for each statement ALL(v, st) and v(v, st), variable v is in scope of st;
(iv) scoping is unambiguous, and only variables in scope are used in expressions;
(v) id and id variables do not appear on the LHS of assignments, i.e., they are
read-only; (vi) in any execution of p, a global array element is written atmost
once. Note that these assumptions do not limit expressivity.

Init and Safety. The body of Init is a statement whose syntax is the same
as stmt except that lval and exp are defined as:

(LValues) lval := GVlexp| | LV.IV | TV

(Expressions) ezp :

Z | lval | IV |~ exp | exp o exp

Thus the key differences of Init with p are: (i) variable id is no longer in scope;
and (ii) it is able to refer to local variables of nodes — specifically, the lvalue
v.i refers to local variable v of node with id . Function Safety is the same as
Init except: (i) it cannot access global variables; and (ii) it cannot modify local
variables. Formally, the body of Safety is a statement whose syntax is the same
as stmt except that lval and exp are defined as:

(LValues) lal := TV
(Expressions) exp :=7Z | lwal | LV.IV | IV |~ exp | exp o exp

Concrete Syntaz. The “concrete” syntax of P, consists of declarations for GV
and LV, definitions of p, Init, and Safety, and the value of n. For example,



Figure 1 shows a DASL program with 2 nodes that use a protocol based on their
ids to ensure mutual exclusion. The program consists of constant definitions
(lines 1-3), the nodes and their ids (line 28), definition of function Init (lines 31—
45), function Safety (lines 47-54), declarations of GV (line 6), LV (line 7), and
the definition of function p (lines 9-26). Note that:

1. The concrete syntax is similar to C. This provides familiarity to practitioners,
and simplifies sequentialization and code generation.

2. Constant definitions (lines 1-3) are allowed for readability.

3. Multi-dimensional global arrays are supported. Dimension #N denotes the
number of nodes. Thus, there is one element of lock for each node. This
supports a programming pattern where a node always writes to a global
array element whose index equals its id (lines 16 and 24), ensuring that
every global array element has one writer node.

4. Function p is called ROUND, and variable id is called id.

5. A node can invoke external functions (e.g., should_enter on line 12 and
in_cs on line 23) as needed. External functions are assumed to be “pure”
(i.e., they do not modify global, local, or temporary variables) and to return
integer values non-deterministically.

6. There are three built-in functions to aid specification: (i) ND (v) sets variable
v to a value non-deterministically; (ii) ASSUME (e) blocks all executions
where e is FALSE; and (iii) assert (e) aborts all executions where e is
FALSE. ASSUME and ND help specify legal initial states (lines 34, 35 and 42).
ASSERT helps (line 51) to check for a violation of the safety property.

7. Iterators are available to: (i) execute a statement over all
nodes (FORALL.NODE at line 33), all pairs of distinct nodes
(FORALL_DISTINCT_NODE_PAIR at line 40 and 49), etc.; and (ii) evaluate
an expression disjunctively over nodes that have a lower id (EXISTS_LOWER
at line 14), a higher id (EXISTS_HIGHER at line 19), etc. They are all
“syntactic sugar” defined formally using ALL in a natural manner.

Ezample 1. The DASL program in Figure 1 uses global variable 1ock to ensure
mutual exclusion. Specifically, the node with id id enters the critical section (CS)
if 1d is the largest index for which 1ock [id] is TRUE. To enter the CS, a node
first checks (line 14) if the CS is available (i.e., not occupied by another node with
smaller id). If this is not the case, it retries in the next round (line 15). Otherwise,
it requests the CS (line 16). In the next round, the node checks (line 19) if it can
enter the CS. If not, it retries (line 20) in the next round. Otherwise, it enters
the CS (line 21). Once in the CS, the node performs arbitrary computation
(line 23), releases the lock and exits (line 24). Note that since in_cs (line 23)
returns a non-deterministic value, the node remains in the CS for arbitrary many
rounds. Init ensures that initially each node is either inside or outside the CS
(lines 33-39) with atmost one node being inside (lines 40-44). Function Safety
aborts (lines 49-53) if multiple nodes are in the CS simultaneously.

Semantics of DASL. Consider a DASL program Py = (GV, LV, p,n, ). We
define the semantics of Py in terms of a “sequential” (i.e., single-threaded) pro-



A(er, €2, skip) = skip A(er,ea,l =€) = e1(l) = ez2(e)
Aler, €2,1TE(e, 5,5")) = 1TE(e2(e), A(e1, €2, 5), Aer, €2, 5"))
A(er, €2, WHILE(e, s)) = WHILE(e2(e), A(er, €2, 8))
A(er, €2, ALL(v, 8)) = (A(er @ (v,0), €2 B (v,0),5);...;A>e1 ® (v,n —1),e2 P (v,n — 1), 5))
Aler, €2, (s;5)) = (Aler, €2, 5); Alen, €2, 57)) Aer, €2,v(v,5)) = v(v, A, €2, 5)

Fig. 2. The statement transformer mapping A.

gram. Recall that P, consists of n nodes executing concurrently and communi-
cating via the shared variables GV. Each node is assigned a unique id between
0 and n — 1, with N; denoting the node with id i. We first create n copies of
GV and LV, one for each node. For any v € GV U LV, let v; denote its copy
made for NN;. Next, for each node N; we create a copy of p, denoted p;, by: (i)
replacing each v € GV U LV with v;; and (ii) expanding out each statement of
the form ALL(v, st) appropriately. We now define this formally.

ID Instantiation. An id instantiation is a partial mapping from idUIV to Z. Let
IdInst be the set of id instantiations. Let u; denote the empty id instantiation,
i.e., Domain(p,) = (. Given an id instantiation u, a variable v ¢ Dom(u) and
an integer z, u® (v, z) is the id instantiation that extends p by mapping v to z.

Ezpression Transformer. An expression transformer is a mapping from expres-
sions to expressions. Let FxpTrans be the set of all expression transformers.
Every id instantiation induces an expression transformer as follows.

Definition 1. Define a mapping € : IdInst — ExpTrans such that for any u €
IdInst and e € exp, ¢(u, e) is obtained from e by replacing: (i) each v € GV ULV

with v, iqy; and (i) each v.i € LV IV with v,.

A pair of expression transformers (e1,€3) induces a statement transformer
that uses €; to transform lvalues, €5 to transform expressions, and expands ALL
statements. Formally, this defined as follows.

Definition 2 (Statement Transformer). Define a mapping A : Exp Trans —
EzpTrans — stmt — stmt as shown in Figure 2.

Often, the two expression transformer arguments of A are equal. Therefore,
for simplicity we write A(e, s) to mean A(e, €, s). Let the body of any function f
be denoted by the statement f(). Then the semantics of node N; in each round
is given by the function p; such that:

pi() = Ale(pr @ (id, 7)), p())

Thus, the body of p; is obtained by transforming the body of p, starting with
an id instantiation that maps id to i. Also, define functions Init and Safety as:

Init() = Ale(uo), nit())  Safety() = Ale(us), Safety()) (1)



Thus, when transforming Init and Safety, variable id is not in scope. Also, every
lvalue v.i is transformed to v,,(;) since it refers to the local variable v of node N;.

Semantics of Py. The semantics of P; is the sequential program that: (i) ini-
tializes variables by executing Init(); and then (ii) executes rounds. Each round
consists of the following steps: (a) for every global array element v[j], copy its
value at its writer node to all its reader nodes; (b) check the property by exe-
cuting Safety(); and (c) execute the sequence of statements (po();...; pn—1())-

Recall that every global variable is an array. For a global variable v € GV,
let Dim(v) denote its size. For each j € [1, Dim(v)], let W(v, j) denote the index
of the node that writes to the element v[j]. Note that W(v, j) is well-defined due
to our assumption that all global variables have a single writer node.

Definition 3 (Semantics). The semantics of a DASL program Py =
(GV,LV,p,n,¢), denoted [Py], is the sequential program:

[Ps] = (Init(); WHILE(TRUE, Round)), where
Round = (CopyGlobals; Safety(); po();. .. ; pn_1()), where
CopyGlobals = Vv € GV .Vj € [1, Dim(v)] . Vi € [0,n) « v3[j] = vy(v,5)J]

Note that the quantifiers in the definition of CopyGlobals are finitely instan-
tiable. Hence, CopyGlobals expands to a finite sequence of assignments.

The semantics of Py (Definition 3) is a sequential program. Thus, the proce-
dure to construct [Py], denoted SEQSEM, is a valid sequentialization for DASL.
Note that [P;] has O(n?) global variables since there are O(n) global arrays,
and each global array has O(n) elements. In Sec. 4 we present a more advanced
sequentialization, SEQDBL, that produces programs with O(n) global variables.

4 Sequentializing DASL Programs

SEQDBL uses only two copies of GV, GV and GV, where: (i) GV is used as
input in odd rounds and output in even rounds, while (ii) GV is used as input
in even rounds and output in odd rounds. More specifically, SEQDBL constructs
the program P; that: (i) initializes GV' and LV by executing Init(); and (ii)
executes rounds. An odd round consists of the following steps: (a) check the
property by executing Safety(); (b) copy GV* to GV?; (b) execute the sequence
of statements (po(); ... pn_1()), reading from GV* and writing to GV°. An even
round is the same as an odd round except that the roles of GV and GV° are
reversed. We now define P, formally. For a global variable v € GV, let v! and
v® be its copy in GV and GV, respectively. We begin with two expression
transformers, €! and €°. Then, we use them to transform functions Init, Safety,
and pg, ..., pn—1- Finally, we define P, in terms of these transformed functions.

Definition 4. Define a mapping €' : IdInst — ExpTrans such that for any

p € IdInst and e € exp, et (p, e) is obtained from e by replacing: (i) eachv € GV



with v; (ii) each v € LV with Vu(id)y; and (i1) each v.i € LV.IV with v,.
Define mapping €° : IdInst — ExpTrans to be the same as €', except that every
v € GV is replaced by v°.

Note that the only difference between €' and €9 is in the treatment of global
variables. For i € [0,n) define functions p} and p? such as:

p}() = A(eo(ﬂl D (id, Z)), El(NJ_ D (idJ)),p()) (2)
PP () = A(e! (p1 @ (id, i), (u1 @ (id, 1)), p())

Note that p} uses GV for LHS of assignments, and GV for other expressions.
Thus, p} reads G V1 and modifies G VO, Similarly, P9 reads G V° and modifies
GV?!. Also, define functions Init, Safety® and Safety® as:

Init() = Al (uL), Init()) Safety' () = A(e®(uL), €' (L), Safety()) 3)
Safety®() = A(e(pu1), €®(nr), Safety())

Note that, Init reads and modifies GV, Safety’ reads GV and modifies
GV, while Safety® reads GV° and modifies GV?'. We now define P, formally.

Definition 5 (Sequentialization). The sequentialization of a DASL program
Py =(GV,LV,p,n, ), denoted Ps, is the sequential program:

P, = (Init(); WHILE(TRUE, (Round™; Round®))), where
Round* = (Safety*(); CopyFwd; ps();...; pL_1()), where
CopyFwd = Vv € GV .Vj € [1, Dim(v)] . v°[j] = v*[j], and
Round® = (Safety®(); CopyBwd; p3();...;p°_1()), where

CopyBwd = Yv € GV .Vj € [1, Dim(v)] . v*[j] = v°[4]

Note that CopyFwd and CopyBwd expand to a finite sequence of assignments.

Correctness of SEQDBL. We now show that [P;] and Py are semantically equiv-
alent, i.e., there is an execution of [P;] that aborts iff there is an execution of
Py that aborts. For brevity, we only give a proof sketch. First, recall that [P;]
has n copies of GV, while P; has just two. For simplicity, let D be the domain of
values of all variables. Given a set of variables X, let V(X)) be the set of mapping
from X to . We write V; to mean V(GV,U---U GV,,), V! to mean V(GV?'),
VO to mean V(GV?), and V; to mean V(LV). Thus, for example, an element of
V; maps local variables to values.

To relate [P;] and Ps, we relate valuations of global variables of one to global
variables of the other. Formally, we define a relation ~C Vyx (V1UV?) as follows:

VaV <« Yoe GV.Yje 1, Dim()] . V(owwli]) = V' (0[]

In other words, V and V' are related iff for every global array element v[j],
the value of v[j] at its writer node W(wv, j) according to V is the same as the
value of v[j] according to V'. A state of [Py] is a pair (vg,v;) € Vg x V. Similarly,
a state of Py is a triple (v1,v%,v;) € V1 x V9 x V. Then, the following holds.



Theorem 1. For every i > 1, state (vq,v;) is reachable at the start of the i-th
execution of Safety() in [Py] iff: (a) i is odd and state (v*,v°,v;) is reachable
at the start of the [L]-th ezecution of Safety®() in Py such that vy =~ v'; or (b)
i is even and state (v, v° v;) is reachable at the start of the %—th execution of

Safety®() in Py such that vy = 1°.

Proof. The proof is by induction over 4. For brevity, we only give an outline. The
base case (i = 1) follows from the definitions of Init(), CopyGlobals (cf. (1)) and
Init() (cf. (3)). For the inductive step, suppose i is odd and (v,,v;) is reachable
at the start of the i-th execution of Safety() in [P4]. By inductive hypothesis,
(vt,v%,4;) is reachable at the start of the [£]-th execution of Safety() in Py
such that v, ~ v!. Since, Safety does not modify global or local variables, [P;]

next executes statement Xg = (po;...; pn—1; CopyGlobals) from state (vg,v;).
Suppose it reaches state (vy,v;). Also, from the definition of CopyFwd, we know
that Ps next executes statement X = (p§();...;pL_;()) from state (v, vl v;).

It can be shown that after executing X, P, can also reach a state (vl,v'l, vy)
such that U’g ~ vt Similarly, suppose that after executing statement X, P

reaches state (v, v’ t v7). Again it can be shown that after executing statement
Xa, [Pa] can also reach state (vj,v;) such that vy =~ v'". This establishes the
result for ¢+ 1. By a symmetric argument, we can show that the result holds for
the case when i is even as well. O

Correctness of SEQDBL. Recall that function Safety reads local variables only.
Thus, Safety() = Safety*() = Safety®(). By Theorem 1, [P;] executes Safety
from a state (v,,v;) iff Py executes Safety' or Safety® from a state (v*,v°, ;).
Hence, [P4] aborts iff Py also aborts, proving that SEQDBL is correct.

Note that both SEQSEM and SEQDBL rely crucially on our assumption of SN-
MoOcC. However, in practice, networks in our domain of interest are asynchronous
with unbounded message delays, and SNMOC must be implemented on top of it
in order to deploy DASL applications. This is the topic of Section 5.

5 Implementing SNMOC

The synchronous network abstraction (SNMOC) is implemented on top of an
asynchronous network via a “synchronizer” [3] protocol. In the literature, several
synchronizers [16] have been proposed. Many, such as PALS [17], rely on clock
synchronization. However, this is not appropriate for our target domain where
networks have unbounded latency. To address this challenge, we have developed
a new synchronizer that does not rely on any clock synchronization. Instead,
our protcol, called 2-Barrier-Synchronization (2BSYNC), uses global variables to
enforce a barrier before and after each round, thereby synchronizing rounds
across all the application nodes. We now present 2BSYNC in more detail.
Consider a DASL program P; = (GV, LV p,n,p). Let W; be the set of global
variables written by node N, i.e., W; = {v[j] | W(v,j) = i}. We introduce n
additional global “barrier” variables — b, ...,b,_1 — each initialized to 0. For



any set of global variables X, let (X)! denote the atomic broadcast of the current
value of all variables in X to other nodes. This means that the broadcasted values
are received by other nodes atomically, i.e., at any point in time, either all of
them are visible to a recipient node or none of them are. The atomic broadcast
capability is crucial for implementing 2BSYNC, and we discuss it further later.
Then, node N; is implemented by the program Node; defined as follows (b; ++
is a shorthand for b; = b; + 1):

Node; = WHILE(TRUE, Round;), where
Round; = (b;4++; (W;,b;)!; Barr;(); pi(); bi++; (b)!; Barr;()), where  (4)
Barr; = WHILE(bg < b; V -+ V b1 < b;, skip)

Note that Barr; implements a barrier since it forces Node; to wait till the
values of the barrier variables at all other nodes have “caught up” with the value
of its own barrier variable b;.

Correctness of 2BSYNC. For any global array element v[j], let r(v[j], 4, k) and
w(v[j], 4, k) be the value of v[j], before and after respectively, the execution of
pi() during the k-th iteration of the outermost WHILE loop of Node;. Let Z(v[j])
be the initial value of global array element v[j] at its writer node. Thus, 2BSYNC
is correct iff the following two conditions hold:

Vo[j]. Vi € [0,n) . r(v[j],4,1) = Z(v[j]) (5)
Yolj] Vi € [0,n) .Yk > 1.r(v[j],4, k) = w[j], W(v,j), k—1) (6)

Let B(v[j],4,k) be the value of v[j] broadcast atomically during the k-th

iteration of the outermost WHILE loop of Node; in (4). Note that B(v[j],i,1) =
Z(v[j]) and Yk > 1.B(v[j],4, k) = w(v]j], i,k — 1). Thus, (5) and (6) hold iff:

Yo[j] . Vi € [0,n) . Vk > 1.r(v[j],4, k) = B(v[j], W(v, j), k) (7)
Then, (7) follows from two observations. Due to the first Barr;:
Yolj] . Vi € [0,n) . Vk > 1.r(v[j],i, k) = Bv[j], W(v,5), k") = k<K
Again, due to the second Barr;, we have:
Volj] Vi € [0,n) . Vk > 1.7(v[j],i,k) = Bo[j], W(v,5), k') = K <k+1

This completes the proof. Note that the 2BSYNC protocol must be imple-
mented over a middleware that supports global variables as well as atomic
broadcast. For this research, we use MADARA [8], a middleware developed for dis-
tributed AI applications. The support for global variables was already available
in MADARA. We augmented it by implementing the atomic broadcast capability.
In Section 6 we describe the process of generating C++ code for each node of a
DASL program against the MADARA APIL.



6 Code Generation: From DASL to MADARA/C++

Once a DASL program P; has been successfully verified, it is converted into
an equivalent MADARA application P,,. MADARA is an open-source? middleware
developed for distributed Al applications. It has been ported to a variety of real-
world platforms and architectures (e.g., ARM and Intel) and operating systems
(e.g., Linux, Windows, Android and iOS). MADARA applications can commu-
nicate via IP-based protocols like UDP, IP broadcast and IP multicast or the
Data Distribution Service (DDS). These advantages are inherited by P, by
virtue of its use of MADARA. MADARA ensures consistency of global variables
(GV) within P, through a distributed context that maps variables to values,
with each v € GV controlled by a private Lamport clock v, which enforces tem-
poral consistency. This type of consistency is inherent in the underlying MADARA
subsystems, and is useful for encoding the 2BSYNC protocol into the P,, program.

MADARA has two additional features crucial for implementing 2BSYNC. First,
as part of this research, we augmented MADARA with a sendlist mechanism
that allows application nodes to dynamically specify, at runtime, which vari-
ables in GV are disseminable immediately, and which variable disseminations
should be delayed until later. This send1list mechanism maps directly to the
requirements of the 2BSYNC protocol (cf. Sec. 5). Specifically, we use it to enable
barrier variable updates while actively suppressing the dissemination of other
values written by node N; until the time is appropriate. This is required to
perform the atomic broadcast operation (b;)! in (4). Second, MADARA allows
an application node to broadcast values of multiple context variables to other
nodes as a “packet”. MADARA ensures that the packet is received by other nodes
“atomically”, i.e., at any point in time, either all the values in the packet are
observed by a receiver node, or none is. This is required to perform the atomic
broadcast operation (W;,b;)! in (4).

The generated program P,, preserves the semantics of the DASL program Py
that has been verified via sequentialization to P,;. The differences between P,
and P, revolve around the following limitations and features of MADARA:

1. MADARA supports several first class types like strings, doubles, raw binary,
and images but only one type of integer (a 64 bit integer). Consequently,
Booleans and integers in P, are encoded as 64 bit integers in P,,.

2. MADARA includes an efficient scripting environment for manipulating global
variables (GV). It also provides classes — Integer, Array, Array-N, etc. —
that allow direct access to GV. We use the scripting environment wherever
applicable, such as in the implementation of the 2BSYNC protocol. However,
for user-defined functions, we generate code that uses the classes. This leads
to a more direct mapping from P; to P,,, especially for control statements
such as if/then/else and switch statements. The MADARA equivalents of these
control structures use logical operators like && and ||, and the class facades
into the MADARA context yields P, code that is easier to debug and modify,
without requiring expertise about MADARA internals.

2 http://madara.googlecode.com



3 // Generated code in (*$P_m$x)
0 // Source model in Py 4 (id == 1 && lock[0]) ||
1 EXISTS_LOWER (idp, lock[idp]) 5 (id == 2 && (lock[0] || lock[11)) |1
2 6 (id == 3 && (lock[0] ||
lock[1] || lock([2]))
13 while (1)
0 // Source model in P, 14
1 2msvnc for 2 pr d 15 knowledge.evaluate ("++B. {.id}");
: o processes 16 if (id == 0)
3 17 knowledge.wait ("B.1 >= B.0");
. 18 else
4 (/ G§nerated code in P 19 knowledge.wait ("B.0 >= B.1");
5 1if (id == 0) 20
6 settings.send_list ["B.0"] o1 ROUND () ;
7 = true; 29
8 else . .
9 settings.send list ["B.1"] 23 lfnow‘ledgf.evaluate( ++B. {.1id}");
10 ~ trues 24 if (id == 0)
11 ! 25 knowledge.wait ("B.1 >= B.0",settings);
. . 26 else
12 // Continued on the right 27 knowledge.wait ("B.0 >= B.1",settings);
28 1}
Fig. 3. P, code generated from: (top) EXISTS_LOWER; (bottom) 2BSYNC.
3. The MADARA context is appropriate for storing GV and LV but does not

contain primitives that allow a node to perform omniscient variable accesses
(i.e., to variables of other nodes) present in DASL programs, specifically in
the Init and Safety functions (cf. Fig. 1). Because each node of P,, only
has access to its own local variables, P,, does not contain code for Init or
Safety. This makes sense since these two functions are meant for verification
only. Still, for verification results to be valid, the initial state of P,,, must be
consistent with that constructed by Init. Currently, this is ensured manually.

. Unlike the sequentialized program Py, MADARA allows us to build a P,, that

is id-neutral at compilation time. Through the usage of MADARA’s object-
oriented facades into the GV and LV contexts, a more direct mapping of the
source Py to P, takes place. While the sequentialized program P contains
separate code for each node of Py, the application P,, consists of code for a
single node whose id is supplied via a command line argument.

Fig. 3 illustrates examples of the code generation from sections of the Py

defined in Fig. 1. The examples outline the code unrolling of EXISTS_LOWER
(top) and 2BSYNC (bottom), respectively. Note that variables B.0 and B.1 in
Fig. 3 correspond to variables by and b; in (4).

7

Empirical Evaluation

We implemented DIVER in a verifying compiler called DASLC, and used it to

compare SEQSEM and SEQDBL on a set of synchronous distributed applications.
All our experiments were done on a 8 core 2GHz machine running Ubuntu
12.04 with a time limit of 1 hour and a memory limit of 16GB. The parser
for DASL programs was generated using flex/bison. The rest of DASLC was
implemented in C++. DASLC generates ANSI C code — the safety property is



MUTEX-OK MUTEX-BUGI1 MUTEX-BUG2
R Ts[TD TS[TD TS[TD TS[TD Ts[TD TS[TD TS[TD TSITD Ts[TD
n==~6 n=3~8 n = 10 n==~6 n=3~8 n =10 n==06 n=2~8 n =10
60 | 406 | 396 [1116/1051|2388(2268|(184|175| 517 | 439 [1068| 959 |{233[216| 637 | 553 [1292({1167
80 | 850 | 806 [2268(1967|4525(4249|(402|372|1013| 925 [2203|1812||500|{462|1218|1112|2602|2139
100|1404|1381|3584|3452|7092(6764||734|686|1726|1566|3513|3287||890|838|2056|1860|4216|3742
©n=1.040 0=0.038 ©n=1.056 0=0.060 pn=1.065 0=0.056

3DCOLL-OK-4x4 3DCOLL-OK-7x7 3DCOLL-BUG-4x4 3DCOLL-BUG-7x7

Ts[Tp|Ts [Tp| Ts [Tp||Ts[Tp] Ts [Tp| Ts [To||Ts[To|Ts [To[Ts [To|[Ts [To[Ts [To [Ts[To

n=2(n=4 n==6 n=2 n =4 n==~6 n=2n=4|n==6 n=2|n=4|n==6

13]10]59 |40 | 219 |96 || 31 | 35| 323 [148{1099(323|| 8 | 9 | 49| 36 [123]| 96 || 22 | 23 [194|114| — | —

37]31[351]123|1014(480|| 73 | 72 |1262]401| — 24|36 (119|101|410|210|| 57 | 76 | —

48148 (406(202| — | — ||142|113| — | — | — 42144 (206|155| — 117(134| — | — | — | —
©n=2.213 0=0.715 pn=2.294 0=0.763 pn=1.615 0=0.425 pn=1.514 0=0.344
2DCOLL-OK-4x4 2DCOLL-BUG1-4x4 2DCOLL-BUG2-4x4

R Ts[TD Ts [TD Ts[TD TS[TD TS[TD TS[TD Ts[TD Ts[TD TS[TD
n=2 n=4 n=6|n=2{n=4|n=6|n=2|n=4| n==6

10|17 | 25 | 87 |262|280(831|| 3 | 2 |12(11({30|22|| 4| 3 |13][11|30]29
20(123| 271 |1474|2754| — | — 8|7 (362980 (75| 89 |33]|33]|76 |66
30(863(1301| — - — | — [[12]15|57|51 [144|105|[16|21 |57 |77 |150(120
1n=0.446 0=0.118 n=1.282 0=0.264 ©n=1.056 0=0.266
2DCOLL-OK-7x7 2DCOLL-BUG1-7x7 2DCOLL-BUG2-7x7
R[Ts [Tp [Ts[Tp [ Ts [To||Ts[To|Ts [To]Ts [To |[Ts[To[Ts [To[Ts [To
n =2 n=4 n==~6 n=2|n=4|n=6|n=2|n=4|n==6
10| 74 | 146 |395|1016({1707| — || 7 | 7 | 32|24 (101| 70 || 5 |10 |26 | 36 |188(113
20(1726|3096 15]22[94 | 55(|345(150((19|22 | 71 [113|207|166
30 — - - — — | —1/40(35 (18091 | — |223||46|68 [124]295(416(235
1=0.598 0=0.202 pn=1.382 0=0.517 ©#=0.906 0=0.393

Fig. 4. Experimental Results; Ts, Tp = verification time with SEQSEM, SEQDBL; n =
no. of nodes; R = no. of rounds; G X G = grid size; i, 0 = mean, standard deviation
of Ts/Tp for all experiments in that category; — denotes out of time/memory.

encoded by assertions — which we verify using the model checker cBMC [6] v4.7.
CBMC converts the target C program Prog and assertion Asrt into a propo-
sitional formula ¢ such that Prog violates Asrt iff ¢ is satisfiable. It then
solves ¢ using an off-the-shelf SAT solver. We use the parallel SAT solver PLIN-
GELING (http://fmv.jku.at/lingeling) to utilize multiple cores. Since
CBMC only verifies bounded programs, we fixed the number of rounds of execu-
tion of the target application for each verification run. Due to lack of space, we
only present a subset of results that suffice to illustrate our main conclusions.
Our tools, benchmarks, and complete results are available at http://www.
contrib.andrew.cmu.edu/~schaki/misc/modelsl4.zip. We verified
several applications, varying number of nodes (n) and rounds (R), and using
both SEQSEM and SEQDBL. We now present our results in detail.

Mutual Exclusion. The first application implemented a distributed mutual ex-
clusion protocol. The DASL program for the correct version of this protocol is
in Fig. 1. We also implemented two buggy versions of this protocol by omitting
important checks (at lines 14-15 and lines 19-20 in Fig. 1). Results of verifying
all three versions are shown in Fig. 4. As expected, verification time increases
both with n and R. However, it is almost the same between SEQSEM and SE-
QDBL for a fixed n and R, as shown by the values of ;4 and ¢. This indicates that




the techniques implemented in CBMC and PLINGELING effectively eliminate the
complexity due to additional variables produced by SEQSEM.

8-Dimensional Collision Avoidance. The next application implemented a col-
lision avoidance protocol where nodes (denoting robots flying over an area de-
marcated by a two-dimensional grid) are able to change their height to avoid
colliding with each other. We implemented a correct and a buggy version of this
protocol. The results of verifying the two versions are shown in Fig. 4. Again,
verification time increases with n, R, and G (where grid-size = G x G). In addi-
tion, programs generated by SEQDBL are verified faster (over 100% for the correct
version and 50% for the buggy version) than those generated by SEQSEM, for a
fixed n, R and G. This supports our intuition that the O(n) variables used by
SEQDBL is better for verification.

2-Dimensional Collision Avoidance. The final application implemented a col-
lision avoidance protocol where nodes can only move in two dimensions. We
implemented a correct and two buggy versions of this protocol. The results of
verifying them are shown in Fig. 4. Again, verification time increases with n, R,
and G. However, the difference between SEQDBL and SEQSEM is subtle. For the
BUG?2 version, they are almost identical. For BUG1, SEQDBL leads to over 30%
faster verification. However, for the correct version, SEQSEM allows verification
to be 40% faster, even though it generates programs with more variables.

In summary, while SEQDBL is clearly the better option overall, there are cases
where SEQSEM is more efficient. We believe that the optimizations and symbolic
algorithms used by modern model checkers means that verification time is not
just determined by the number of variables. While these results were obtained
using CBMC, we believe that they are representative of symbolic model checkers.
For example, similar non-monotonic performance has also been observed in other
contexts, e.g., when comparing [21] BDD and SAT-based LTL model checkers.
Note that, in general, model checking a buggy application is easier than a correct
one since the latter requires complete statespace exploration.

8 Conclusion

We presented an approach for model-driven verifying compilation of distributed
applications written in a domain-specific language, called DASL, against user-
provided safety specifications. We assume a ”synchronous network” model of
computation. Our verification is based on sequentialization followed by software
model checking. We develop two sequentialization techniques — SEQSEM and SE-
QDBL— and compare them on a set of applications. SEQDBL produces programs
with fewer variables, and empirically is more efficient for verification in most
cases. We also develop a protocol to implement a synchronous network abstrac-
tion over an asynchronous network. This protocol does not require clock synchro-
nization and is of independent interest. We believe that extending our approach
to handle asynchronous and fault-tolerant programs, and proving correctness of
code generation and middleware, are important directions to pursue.
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