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Section (optional)
Picture

(optional)

Distributed Adaptive Real-Time (DART) systems are key to many 

areas of DoD capability (e.g., autonomous multi-UAS missions) with 

civilian benefits.

However achieving high assurance  DART software is very difficult 

• Concurrency is inherently difficult to reason about.

• Uncertainty in the physical environment.

• Autonomous capability leads to unpredictable behavior.

• Assure both guaranteed and probabilistic properties.

• Verification results on models must be carried over to source 

code.

High assurance unachievable via testing or ad-hoc formal verification

Goal: Create a sound engineering approach for producing high-

assurance software for Distributed Adaptive Real-Time (DART)

Motivation



4
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)

Formal 

Description of 

System & 

Properties

Verification
Code 

Generation

1. Use DMPL (a DSL we developed) & AADL
2. Enables compositional and requirement 
specific verification
3. Use proactive self-adaptation and mixed 
criticality to cope with uncertainty and changing 
context

Demonstrate on DoD-relevant model problem 
(DART prototype)

• Engaged stakeholders
• Technical and operational validity

1. ZSRM Schedulability (Timing)
2. Software Model Checking (Functional)
3. Statistical Model Checking (Probabilistic)

Brings Assurance to Code
1. Middleware for communication
2. Scheduler for ZSRM
3. Monitor for runtime assurance

DART Approach

https://github.com/cps-sei/dart
http://cps-sei.github.io/dart
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Constrain the system 
structure and behavior to 
facilitate tractable analysis 
and code generation

Program DART 
systems and specify 
properties in a 
precise manner

Repeatedly compute 
optimal adaptation 
strategies with 
bounded lookaheadEvaluate adaptation 

strategy quality over 
mission lifetime

MADARA → efficient 
distributed shared 
variables with data 
consistency and 
quality of service. 
GAMS →Platform 
Interaction.

Ensures high-critical 
tasks meet their 
deadlines despite 
CPU overload

- Parameterized Verification
- Combine model checking & 
hybrid analysis to ensure end-
to-end CPS correctness

Sagar Chaki
Arie Gurfinkel

Dionisio de Niz
Bjorn Andersson

James 
Edmondson

Gabriel 
Moreno

Jeffery 
Hansen

David Kyle
Scott Hissam
Bud Hammons
Joseph Seibel

ZSRM 
Scheduling

Functional 
Verification

Architecture

DMPL
AADL

Proactive 
Self-
Adaptation

Statistical 
Model 
Checking

Middleware 
& Platform



6
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 

approved for public release and unlimited distribution.

High 
Hazard 

Area

Adaptation: Formation change 
(loose ⇔ tight)
Loose: fast but high leader 
exposure
Tight: slow but low leader 
exposure

Low 
Hazard 

Area

Loose 
Formation

Tight 
Formation

Challenge: compute the probability of 
reaching end of mission in time 𝑻 while 
never reducing protection to less than 𝑿.
Challenge: compare between different 
adaptation strategies.
Solution: Statistical model checking (SMC)

Example: Self-Adaptive and Coordinated UAS Protection

Challenge: Provably correct 
collision avoidance taking into 
account application logic and 
physical control
Solution: Software model 
checking and Hybrid 
Reachability
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𝐿𝑒𝑎𝑑𝑒𝑟

Waypoint
Collision 
Avoidance

ZSRM Mixed-Criticality Scheduler

OS/Hardware

MADARA Middleware

Adaptation 
Manager

Threads

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑜𝑟

Waypoint
Collision 
Avoidance

ZSRM Scheduler

OS/Hardware

MADARA Middleware

DART 
System

Nodes

Consists 
of

Can be

Roles
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node uav {

local input int x,y;

local int xp=x, yp=y;

global lock[X][Y] = {…}

role Leader {

thread COLLISION_AVOIDACE {…}

thread WAYPOINT {…}

thread ADAPTATION_MANAGER {…}

}

role Protector {

thread COLLISION_AVOIDACE {…}

thread WAYPOINT {…}

}

}

𝐿𝑒𝑎𝑑𝑒𝑟Waypoint
Collision 
Avoidance

Adaptation 
Manager

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑜𝑟Waypoint
Collision 
Avoidance

Shared between threads on the same node. 
Used to communicate next waypoint.

Shared between threads on different 
nodes. Used for collision avoidance,
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DMPL file

MISSION file

DMPLC 
Compiler C++ file

g++ Binary

Platform 
(VREP)

Number of nodes
Roles they play
Initial values of input vars
Mission time …

DART System

Demo
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DMPL file

MISSION file

DMPLC 
Compiler C++ file

g++
Binary

Platform 
(VREP)

DART System

AADL

DMPL and MISSION files 
expressed in AADL as a sub-
language (a.k.a. “annex”)

OSATE

OSATE performs parsing, syntax 
checking, etc. and invokes the 
rest of the toolchain

Demo
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Scenarios
Stage 0 – basic 3D collision avoidance
Stage 1 – Navigation of “ensemble” from Point A to Point B
Stage 2 – Navigation of “ensemble” from Point A to Point B through 
intermediate waypoints
Stage 3: Add detection of solid objects, obstacles

Assume unobstructed path exists between Point A and Point B
Navigation of “ensemble” from Point A to Point B

Stage 4: “Map” obstructions in a 3D region
Stage 5

Add ability to detect location of potential “threats” (analogous to 
identifying IFF transponders)
“Map” threats and obstructions in 3D region

Stage 6
Add mobility to “threats”
Maintain overwatch of region and keep track of location of “threats” that 
move in the environment

Demo
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Strategy 

Synthesis Resolves nondeterministic 
choices to maximize expected 
value of objective function

First choice independent 
of subsequent 
environment transitions

Original Work: Use PRISM 
model checker to synthesize 
optimal strategy
New work: replace 
probabilistic model checking 
with dynamic programming 
for speed.
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Proactive self-adaptation under 
uncertainty: a probabilistic model 
checking approach. Gabriel A. 
Moreno, Javier Cámara, David Garlan, 
Bradley R. Schmerl: ESEC/SIGSOFT 
FSE 2015: 1-12
Efficient Decision-Making under 
Uncertainty for Proactive Self-
Adaptation. Gabriel A. Moreno, 
Javier Camara, David Garlan, Bradley 
Schmerl. In proceedings of the 13th 
IEEE International Conference on 
Autonomic Computing, 2016.

Original Work: Use PRISM 
model checker to synthesize 
optimal strategy
New work: replace 
probabilistic model checking 
with dynamic programming 
for speed.

First choice independent 
of subsequent 
environment transitions

Strategy 

Synthesis
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Etimate probability for each property via “Bernoulli Trials”

Number of trials depends on

• desired “relative error” (st.dev. / mean)

• true probability of the property

Running trials in parallel reduces required simulation time.

• SMC Runner invokes Vrep simulation on each node.

• SMC Master collects results and determines if 
precision is met.

• Simulations run in “batches” to prevent simulation 
time bias.

Importance sampling (focuses simulation effort on faults)

Statistical Model 

Checker

DMPL Program ℳ with 
random inputs

Probabilistic Property 𝝓
encoded in DMPL

Estimated 
Probability that 
ℳ ⊨ 𝝓 with 
relative error 𝑹𝑬

Target relative error 
𝑹𝑬

node uav {

local input int x,y;

local int xp=x, yp=y;

role Leader {…}

role Protector {…}

double coverage() {…}

expect at_end (coverage() > 0.8);

}

3
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𝑅𝑒𝑠𝑢𝑙𝑡1
log-

analyze
log-gen

log-gen
log-gen

log-
analyze

log-
analyze

𝑅𝑒𝑠𝑢𝑙𝑡1𝑅𝑒𝑠𝑢𝑙𝑡𝑛

Update 
𝑅𝑒𝑠𝑢𝑙𝑡
and 𝑅𝐸

𝑅𝐸 acceptable?

𝑁𝑜

𝑌𝑒𝑠

𝑅𝑒𝑠𝑢𝑙𝑡

Batch Log and Analyze

SMC Runner

SMC Master

DART Distributed 
Statistical MC

David Kyle, Jeffery P. Hansen, Sagar Chaki: 
Statistical Model Checking of Distributed 
Adaptive Real-Time Software. RV 2015: 269-274
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Goal: Develop parallel infrastructure for SMC of 
DART systems

Accomplishments:

• Initial implementation with hand-written 
scripts for managing multiple virtual 
machines

• Created master-client SMC architecture with 
web-based control
- Each client runs a simulation managed by 

master

- Results stored in mysql database.

• Update SMC code generation to new DART/DMPL 
syntax

• More robust infrastructure using “docker”

• Input Attribution – the “Why?” of SMC

SMC

Master

(Apache+PHP)

Results

(MySQL)

SMC

Job

SMC

Client

(firefox)

SMC

Runner
Simulation

Docker Container

SMC

Runner
Simulation

Docker Container

Jeffery P. Hansen, Sagar Chaki, Scott A. Hissam, 
James R. Edmondson, Gabriel A. Moreno, David 
Kyle: Input Attribution for Statistical Model Checking 
Using Logistic Regression. RV 2016: 185-200
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Name  𝜷 𝒔𝒆( 𝜷) p-Value

− -4.28 0.874 < 10−4

𝑥1 0.154 0.0138 < 10−4

𝑥2 -1.91 0.3551 < 10−4

𝑥3 0.0635 0.0277 0.0219

𝑥4 5.05 2.77 0.0685

Predictors
(input variables)

Constant Term

Positive/negative values 
represent 
increase/decrease of 
predicate probability. 

Error in 
estimation 
of 𝛽.

• Measure of statistical significance
• Probability that 𝛽 = 0
• >0.05  not statistically significant

This predictor is not 
statistically significant 
since its p-value is 
greater than 0.05. 

Logistic Regression Model:
𝐿 𝑥

=
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑁𝑥𝑁)

𝐿(𝑥) represents predicted probability 
that input 𝑥 will satisfy the predicate.

Jeffery P. Hansen, Sagar Chaki, Scott A. Hissam, 
James R. Edmondson, Gabriel A. Moreno, David 
Kyle: Input Attribution for Statistical Model Checking 
Using Logistic Regression. RV 2016: 185-200
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Collaborative work with NREC
• Part of ARL sponsored 

Robotics Collaborative 
Technology Alliance (RCTA)

Evaluating quality of plans learned 
from verbal instructions by a robot 
using statistical model checking
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Overload – defer low-critical

2 1

2 ½ 2½

tLC =(2,2,4,4)

tHC =(2.5,5,8,8)

Normal Mode Critical Mode
Zero-Slack

2 1

2 ½

1tLC =(2,2,4,4)

tHC =(2.5,5,8,8)

Normal Mode Critical Mode
Zero-Slack

No overload – resume low critical

WCET may be uncertain in 
autonomous systems (e.g. more 
obstacles larger WCET).

ZSRM: if no overload all task 
meet deadlines

if overload critical tasks 
meet deadlines
How: 1. when to stop low-critical 
tasks (Z)

2. stop them if not overload 
resume

DART: requires distributed tasks

Accomplishments:

ZSRM Pipelines: 
• Enforcement across processor

• Higher utilization

2 1

2 ½ 2½

1tLC =(2,2,4,4)

tHC =(2.5,5,8,8)

Normal Mode Critical Mode
Zero-Slack

When to stop low-critical tasks (zero-slack)

Parallel execution Increased Utilization
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Verifying Safety Properties

Distributed 

Application

Safety 

Specification

Sequentialization

(DMPLC)

Single-Threaded

C Program

Software Model Checking 

Failure Success

DMPL Program

Assume

Synchronous 

Model of 

Computation

Round

Invariants

node uav {

local input int x,y;

local int xp=x, yp=y;

role Leader {…}

role Protector {…}

forall_distinct_nodes(i1,i2)

(x@i1 != x@i2 || y@i1 != y@i2);

forall_nodes(i)

(x@i == xp@i || y@i == yp@i);

}
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Bounded Model Checking 
can prove correct behavior 
up to a finite number of 
execution steps (e.g., 
rounds of synchronous 
computation.

Useful to find bugs.

But incomplete. Can miss 
bugs if we do not check up 
to sufficient depth.

Unbounded Model Checking 
can prove correct behavior up 
to a arbitrary number of 
execution steps.

Useful for complete verification. 
Will never miss bugs.

But can be expensive to 
synthesize inductive invariants. 
Cost can be managed by 
supplying invariants manually 
and checking that they are 
inductive. We have 
experimented with both 
approaches. 

Parameterized Model 
Checking can prove correct 
behavior up to a arbitrary 
number of execution steps 
and an arbitrary number of 
nodes.

Useful for complete 
verification. Will never miss 
bugs even if you have very 
large number of nodes.

Very hard in general but we 
have developed a sound 
and complete procedure 
that works for programs 
written in a restricted style 
and for a restricted class of 
properties. This was 
sufficient to verify our 
collision avoidance 
protocol.
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Verifying Cyber-Physical Systems by Combining Software 
Model Checking with Hybrid Systems Reachability

No existing tools to verify (source code + hybrid 
automata)

• But each domain has its own specialized 
tools: software model checkers and hybrid 
reachability checkers

• Developing such a tool that combines the 
statespace 𝐴 and 𝐶 in a brute-force way 
will not scale

Insight: application and controller make 
assumptions about each other to achieve 
overall safe behavior

Approach:

• Use “contract automaton” to express inter-
dependency between 𝐴 and 𝐶

• Separately verify that 𝐴 and 𝐶 implement 
desired behavior under the assumption that 
the other party does so as well

• Use an “assume-guarantee” style proof rule 
to show the 𝐴 ∥ 𝐶 ⊨ Φ

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

Shared Variables 
(Cyber & Physical)

API Function 
Parameters

Verifying Cyber-
Physical Systems by 
Combining Software 
Model Checking with 
Hybrid Systems 
Reachability. Stanley 
Bak, Sagar Chaki. 
International 
Conference on 
Embedded Software 
(EMSOFT), 2016



25
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 

approved for public release and unlimited distribution.

Current setpoint Next setpoint

Cell Ids

Positions

Position 
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CA Invariant = 
disjunction of 
state invariants

Φℎ𝑜𝑣𝑒𝑟 ∧ 𝑠𝑝𝑛𝑥𝑡 = 𝑠𝑝𝑐𝑢𝑟
∨

(Φ𝑚𝑜𝑣𝑒 ∧
𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 5,0 ∨

𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 0,5
)

Target 
Property
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Conclusion: System satisfies all invariants of the contract 
automaton 𝑀 = target safety property

Premise1: Application 𝐴 refines 
the contract automaton 𝑀 (calls 

API functions in the right order and 
with proper arguments)

Premise2: Controller 𝐶 refines the 
contract automaton 𝑀 (keeps the 

physical state within required 
bounds)
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Related Ongoing Work
Verification of Software with Timers and Clocks

(Real Time Schedulers and Enforcers,
Distributed Timed Protocols, etc.)

Future Work
Certifiable Distributed Runtime Assurance

Future Work

Contract-Based Verification of Timing Enforcers. Sagar Chaki, 
Dionisio de Niz, ACM SIGAda’s High Integrity Language Technology 
International Workshop on Model-Based Development and 
Contract-Based Programming (HILT), October 6-7, 2016.
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QUESTIONS?
https://github.com/cps-sei/dart
http://cps-sei.github.io/dart


