
1
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Engineering High-
Assurance Software for
Distributed Adaptive
Real-Time Systems

Sagar Chaki

Midwest Verification Day

October 22, 2016

2
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute,

a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM

PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other use. Requests for

permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0004136

3
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)

Distributed Adaptive Real-Time (DART) systems are key to many

areas of DoD capability (e.g., autonomous multi-UAS missions) with

civilian benefits.

However achieving high assurance DART software is very difficult

• Concurrency is inherently difficult to reason about.

• Uncertainty in the physical environment.

• Autonomous capability leads to unpredictable behavior.

• Assure both guaranteed and probabilistic properties.

• Verification results on models must be carried over to source

code.

High assurance unachievable via testing or ad-hoc formal verification

Goal: Create a sound engineering approach for producing high-

assurance software for Distributed Adaptive Real-Time (DART)

Motivation

4
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)

Formal

Description of

System &

Properties

Verification
Code

Generation

1. Use DMPL (a DSL we developed) & AADL
2. Enables compositional and requirement
specific verification
3. Use proactive self-adaptation and mixed
criticality to cope with uncertainty and changing
context

Demonstrate on DoD-relevant model problem
(DART prototype)

• Engaged stakeholders
• Technical and operational validity

1. ZSRM Schedulability (Timing)
2. Software Model Checking (Functional)
3. Statistical Model Checking (Probabilistic)

Brings Assurance to Code
1. Middleware for communication
2. Scheduler for ZSRM
3. Monitor for runtime assurance

DART Approach

https://github.com/cps-sei/dart
http://cps-sei.github.io/dart

5
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Constrain the system
structure and behavior to
facilitate tractable analysis
and code generation

Program DART
systems and specify
properties in a
precise manner

Repeatedly compute
optimal adaptation
strategies with
bounded lookaheadEvaluate adaptation

strategy quality over
mission lifetime

MADARA → efficient
distributed shared
variables with data
consistency and
quality of service.
GAMS →Platform
Interaction.

Ensures high-critical
tasks meet their
deadlines despite
CPU overload

- Parameterized Verification
- Combine model checking &
hybrid analysis to ensure end-
to-end CPS correctness

Sagar Chaki
Arie Gurfinkel

Dionisio de Niz
Bjorn Andersson

James
Edmondson

Gabriel
Moreno

Jeffery
Hansen

David Kyle
Scott Hissam
Bud Hammons
Joseph Seibel

ZSRM
Scheduling

Functional
Verification

Architecture

DMPL
AADL

Proactive
Self-
Adaptation

Statistical
Model
Checking

Middleware
& Platform

6
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

High
Hazard

Area

Adaptation: Formation change
(loose ⇔ tight)
Loose: fast but high leader
exposure
Tight: slow but low leader
exposure

Low
Hazard

Area

Loose
Formation

Tight
Formation

Challenge: compute the probability of
reaching end of mission in time 𝑻 while
never reducing protection to less than 𝑿.
Challenge: compare between different
adaptation strategies.
Solution: Statistical model checking (SMC)

Example: Self-Adaptive and Coordinated UAS Protection

Challenge: Provably correct
collision avoidance taking into
account application logic and
physical control
Solution: Software model
checking and Hybrid
Reachability

7
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

𝐿𝑒𝑎𝑑𝑒𝑟

Waypoint
Collision
Avoidance

ZSRM Mixed-Criticality Scheduler

OS/Hardware

MADARA Middleware

Adaptation
Manager

Threads

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑜𝑟

Waypoint
Collision
Avoidance

ZSRM Scheduler

OS/Hardware

MADARA Middleware

DART
System

Nodes

Consists
of

Can be

Roles

8
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)

node uav {

local input int x,y;

local int xp=x, yp=y;

global lock[X][Y] = {…}

role Leader {

thread COLLISION_AVOIDACE {…}

thread WAYPOINT {…}

thread ADAPTATION_MANAGER {…}

}

role Protector {

thread COLLISION_AVOIDACE {…}

thread WAYPOINT {…}

}

}

𝐿𝑒𝑎𝑑𝑒𝑟Waypoint
Collision
Avoidance

Adaptation
Manager

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑜𝑟Waypoint
Collision
Avoidance

Shared between threads on the same node.
Used to communicate next waypoint.

Shared between threads on different
nodes. Used for collision avoidance,

9
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

DMPL file

MISSION file

DMPLC
Compiler C++ file

g++ Binary

Platform
(VREP)

Number of nodes
Roles they play
Initial values of input vars
Mission time …

DART System

Demo

10
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

11
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

DMPL file

MISSION file

DMPLC
Compiler C++ file

g++
Binary

Platform
(VREP)

DART System

AADL

DMPL and MISSION files
expressed in AADL as a sub-
language (a.k.a. “annex”)

OSATE

OSATE performs parsing, syntax
checking, etc. and invokes the
rest of the toolchain

Demo

12
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Scenarios
Stage 0 – basic 3D collision avoidance
Stage 1 – Navigation of “ensemble” from Point A to Point B
Stage 2 – Navigation of “ensemble” from Point A to Point B through
intermediate waypoints
Stage 3: Add detection of solid objects, obstacles

Assume unobstructed path exists between Point A and Point B
Navigation of “ensemble” from Point A to Point B

Stage 4: “Map” obstructions in a 3D region
Stage 5

Add ability to detect location of potential “threats” (analogous to
identifying IFF transponders)
“Map” threats and obstructions in 3D region

Stage 6
Add mobility to “threats”
Maintain overwatch of region and keep track of location of “threats” that
move in the environment

Demo

13
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

14
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

t=0

t=1

p
3

p
2

T
1

p
1

T2 T
1

T2 T
1

T2

p
3

p
2

T
1

p
1

T2 T
1

T2 T
1

T2

T
1

T2

p
3

p
2

T
1

p
1

T
1

T2

T2

system

t=1

environment

t=0

non-deterministic

probabilistic

deterministic

Strategy

Synthesis Resolves nondeterministic
choices to maximize expected
value of objective function

First choice independent
of subsequent
environment transitions

Original Work: Use PRISM
model checker to synthesize
optimal strategy
New work: replace
probabilistic model checking
with dynamic programming
for speed.

15
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

t=0

t=1

p
3

p
2

T
1

p
1

T2 T
1

T2 T
1

T2

p
3

p
2

T
1

p
1

T2 T
1

T2 T
1

T2

T
1

T2

p
3

p
2

T
1

p
1

T
1

T2

T2

system

t=1

environment

t=0

non-deterministic

probabilistic

deterministic

Proactive self-adaptation under
uncertainty: a probabilistic model
checking approach. Gabriel A.
Moreno, Javier Cámara, David Garlan,
Bradley R. Schmerl: ESEC/SIGSOFT
FSE 2015: 1-12
Efficient Decision-Making under
Uncertainty for Proactive Self-
Adaptation. Gabriel A. Moreno,
Javier Camara, David Garlan, Bradley
Schmerl. In proceedings of the 13th
IEEE International Conference on
Autonomic Computing, 2016.

Original Work: Use PRISM
model checker to synthesize
optimal strategy
New work: replace
probabilistic model checking
with dynamic programming
for speed.

First choice independent
of subsequent
environment transitions

Strategy

Synthesis

16
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Etimate probability for each property via “Bernoulli Trials”

Number of trials depends on

• desired “relative error” (st.dev. / mean)

• true probability of the property

Running trials in parallel reduces required simulation time.

• SMC Runner invokes Vrep simulation on each node.

• SMC Master collects results and determines if
precision is met.

• Simulations run in “batches” to prevent simulation
time bias.

Importance sampling (focuses simulation effort on faults)

Statistical Model

Checker

DMPL Program ℳ with
random inputs

Probabilistic Property 𝝓
encoded in DMPL

Estimated
Probability that
ℳ ⊨ 𝝓 with
relative error 𝑹𝑬

Target relative error
𝑹𝑬

node uav {

local input int x,y;

local int xp=x, yp=y;

role Leader {…}

role Protector {…}

double coverage() {…}

expect at_end (coverage() > 0.8);

}

3

17
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

𝑅𝑒𝑠𝑢𝑙𝑡1
log-

analyze
log-gen

log-gen
log-gen

log-
analyze

log-
analyze

𝑅𝑒𝑠𝑢𝑙𝑡1𝑅𝑒𝑠𝑢𝑙𝑡𝑛

Update
𝑅𝑒𝑠𝑢𝑙𝑡
and 𝑅𝐸

𝑅𝐸 acceptable?

𝑁𝑜

𝑌𝑒𝑠

𝑅𝑒𝑠𝑢𝑙𝑡

Batch Log and Analyze

SMC Runner

SMC Master

DART Distributed
Statistical MC

David Kyle, Jeffery P. Hansen, Sagar Chaki:
Statistical Model Checking of Distributed
Adaptive Real-Time Software. RV 2015: 269-274

18
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Goal: Develop parallel infrastructure for SMC of
DART systems

Accomplishments:

• Initial implementation with hand-written
scripts for managing multiple virtual
machines

• Created master-client SMC architecture with
web-based control
- Each client runs a simulation managed by

master

- Results stored in mysql database.

• Update SMC code generation to new DART/DMPL
syntax

• More robust infrastructure using “docker”

• Input Attribution – the “Why?” of SMC

SMC

Master

(Apache+PHP)

Results

(MySQL)

SMC

Job

SMC

Client

(firefox)

SMC

Runner
Simulation

Docker Container

SMC

Runner
Simulation

Docker Container

Jeffery P. Hansen, Sagar Chaki, Scott A. Hissam,
James R. Edmondson, Gabriel A. Moreno, David
Kyle: Input Attribution for Statistical Model Checking
Using Logistic Regression. RV 2016: 185-200

19
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)

Name 𝜷 𝒔𝒆(𝜷) p-Value

− -4.28 0.874 < 10−4

𝑥1 0.154 0.0138 < 10−4

𝑥2 -1.91 0.3551 < 10−4

𝑥3 0.0635 0.0277 0.0219

𝑥4 5.05 2.77 0.0685

Predictors
(input variables)

Constant Term

Positive/negative values
represent
increase/decrease of
predicate probability.

Error in
estimation
of 𝛽.

• Measure of statistical significance
• Probability that 𝛽 = 0
• >0.05 not statistically significant

This predictor is not
statistically significant
since its p-value is
greater than 0.05.

Logistic Regression Model:
𝐿 𝑥

=
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑁𝑥𝑁)

𝐿(𝑥) represents predicted probability
that input 𝑥 will satisfy the predicate.

Jeffery P. Hansen, Sagar Chaki, Scott A. Hissam,
James R. Edmondson, Gabriel A. Moreno, David
Kyle: Input Attribution for Statistical Model Checking
Using Logistic Regression. RV 2016: 185-200

20
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Collaborative work with NREC
• Part of ARL sponsored

Robotics Collaborative
Technology Alliance (RCTA)

Evaluating quality of plans learned
from verbal instructions by a robot
using statistical model checking

21
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Overload – defer low-critical

2 1

2 ½ 2½

tLC =(2,2,4,4)

tHC =(2.5,5,8,8)

Normal Mode Critical Mode
Zero-Slack

2 1

2 ½

1tLC =(2,2,4,4)

tHC =(2.5,5,8,8)

Normal Mode Critical Mode
Zero-Slack

No overload – resume low critical

WCET may be uncertain in
autonomous systems (e.g. more
obstacles larger WCET).

ZSRM: if no overload all task
meet deadlines

if overload critical tasks
meet deadlines
How: 1. when to stop low-critical
tasks (Z)

2. stop them if not overload
resume

DART: requires distributed tasks

Accomplishments:

ZSRM Pipelines:
• Enforcement across processor

• Higher utilization

2 1

2 ½ 2½

1tLC =(2,2,4,4)

tHC =(2.5,5,8,8)

Normal Mode Critical Mode
Zero-Slack

When to stop low-critical tasks (zero-slack)

Parallel execution Increased Utilization

22
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Verifying Safety Properties

Distributed

Application

Safety

Specification

Sequentialization

(DMPLC)

Single-Threaded

C Program

Software Model Checking

Failure Success

DMPL Program

Assume

Synchronous

Model of

Computation

Round

Invariants

node uav {

local input int x,y;

local int xp=x, yp=y;

role Leader {…}

role Protector {…}

forall_distinct_nodes(i1,i2)

(x@i1 != x@i2 || y@i1 != y@i2);

forall_nodes(i)

(x@i == xp@i || y@i == yp@i);

}

23
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Bounded Model Checking
can prove correct behavior
up to a finite number of
execution steps (e.g.,
rounds of synchronous
computation.

Useful to find bugs.

But incomplete. Can miss
bugs if we do not check up
to sufficient depth.

Unbounded Model Checking
can prove correct behavior up
to a arbitrary number of
execution steps.

Useful for complete verification.
Will never miss bugs.

But can be expensive to
synthesize inductive invariants.
Cost can be managed by
supplying invariants manually
and checking that they are
inductive. We have
experimented with both
approaches.

Parameterized Model
Checking can prove correct
behavior up to a arbitrary
number of execution steps
and an arbitrary number of
nodes.

Useful for complete
verification. Will never miss
bugs even if you have very
large number of nodes.

Very hard in general but we
have developed a sound
and complete procedure
that works for programs
written in a restricted style
and for a restricted class of
properties. This was
sufficient to verify our
collision avoidance
protocol.

24
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Verifying Cyber-Physical Systems by Combining Software
Model Checking with Hybrid Systems Reachability

No existing tools to verify (source code + hybrid
automata)

• But each domain has its own specialized
tools: software model checkers and hybrid
reachability checkers

• Developing such a tool that combines the
statespace 𝐴 and 𝐶 in a brute-force way
will not scale

Insight: application and controller make
assumptions about each other to achieve
overall safe behavior

Approach:

• Use “contract automaton” to express inter-
dependency between 𝐴 and 𝐶

• Separately verify that 𝐴 and 𝐶 implement
desired behavior under the assumption that
the other party does so as well

• Use an “assume-guarantee” style proof rule
to show the 𝐴 ∥ 𝐶 ⊨ Φ

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

Shared Variables
(Cyber & Physical)

API Function
Parameters

Verifying Cyber-
Physical Systems by
Combining Software
Model Checking with
Hybrid Systems
Reachability. Stanley
Bak, Sagar Chaki.
International
Conference on
Embedded Software
(EMSOFT), 2016

25
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Current setpoint Next setpoint

Cell Ids

Positions

Position

26
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

27
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

CA Invariant =
disjunction of
state invariants

Φℎ𝑜𝑣𝑒𝑟 ∧ 𝑠𝑝𝑛𝑥𝑡 = 𝑠𝑝𝑐𝑢𝑟
∨

(Φ𝑚𝑜𝑣𝑒 ∧
𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 5,0 ∨

𝑠𝑝𝑛𝑥𝑡 − 𝑠𝑝𝑐𝑢𝑟 = 0,5
)

Target
Property

28
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Conclusion: System satisfies all invariants of the contract
automaton 𝑀 = target safety property

Premise1: Application 𝐴 refines
the contract automaton 𝑀 (calls

API functions in the right order and
with proper arguments)

Premise2: Controller 𝐶 refines the
contract automaton 𝑀 (keeps the

physical state within required
bounds)

29
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Related Ongoing Work
Verification of Software with Timers and Clocks

(Real Time Schedulers and Enforcers,
Distributed Timed Protocols, etc.)

Future Work
Certifiable Distributed Runtime Assurance

Future Work

Contract-Based Verification of Timing Enforcers. Sagar Chaki,
Dionisio de Niz, ACM SIGAda’s High Integrity Language Technology
International Workshop on Model-Based Development and
Contract-Based Programming (HILT), October 6-7, 2016.

30
Engineering High Assurance SW for DART

Oct 21, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

QUESTIONS?
https://github.com/cps-sei/dart
http://cps-sei.github.io/dart

