
Automated Assume-Guarantee Reasoning for Omega-Regular
Systems and Specifications

Sagar Chaki Arie Gurfinkel
Software Engineering Institute, Carnegie Mellon University

Abstract

We develop a learning-based automated Assume-Guarantee (AG) reasoning framework for ver-
ifying ω-regular properties of concurrent systems. We study the applicability of non-circular (AG-
NC) and circular (AG-C) AG proof rules in the context of systems with infinite behaviors. In particu-
lar, we show thatAG-NC is incomplete when assumptions are restricted to strictly infinite behaviors,
while AG-C remains complete. We present a general formalization, called LAG, of the learning
based automated AG paradigm. We show how existing approaches for automated AG reasoning are
special instances of LAG. We develop two learning algorithms for a class of systems, called∞-regular
systems, that combine finite and infinite behaviors. We show that for∞-regular systems, bothAG-
NC andAG-C are sound and complete. Finally, we show how to instantiate LAG to do automated
AG reasoning for∞-regular, andω-regular, systems using bothAG-NC andAG-C as proof rules.

1 Introduction
Compositional reasoning [8, 13] is a widely used technique for tackling thestatespace explosionproblem
while verifying concurrent systems. Assume-Guarantee (AG) is one of the most well-studied paradigms
for compositional reasoning [19, 14]. In AG-style analysis, we infer global properties of a system from
the results of local analysis on its components. Typically, to analyze a systemcomponentC locally, we
use an appropriate “assumption”, a model of the rest of the system that reflects the behavior expected by
C from its environment in order to operate correctly. The goal of the local analyses is then to establish
that every assumption made is also “guaranteed” – hence Assume-Guarantee.

Since its inception [18, 16], the AG paradigm has been explored in several directions. However, a
major challenge in automating AG reasoning is constructing appropriate assumptions. For realistic sys-
tems, such assumptions are often complicated, and, therefore, constructing them manually is impractical.
In this context, Cobleigh et al. [9] proposed the use of learning to automatically construct appropriate
assumptions to verify a system composed of finite automata against a finite automaton specification (i.e.,
to verify safety properties). They used the following sound and complete AG proof rule:

M1 ‖ A⊑ S M2 ⊑ A
M1 ‖ M2 ⊑ S

whereM1,M2,A andSare finite automata,|| is a parallel composition, and⊑ denotes language contain-
ment. The essential idea is to use theL ∗ algorithm [2] to learn an assumptionA that satisfies the premises
of the rule, and implement the minimally adequate teacher required byL ∗ via model-checking.

The learning-based automated AG paradigm has been extended in several directions [6, 1, 21]. How-
ever, the question of whether this paradigm is applicable to verifyingω-regular properties (i.e., liveness
and safety) of reactive systems is open. In this paper, we answer this question in the affirmative. An
automated AG framework requires: (i) an algorithm that uses queries and counterexamples to learn an
appropriate assumption, and (ii) a set of sound and complete AG rules. Recently, a learning algorithm
for ω-regular languages has been proposed by Farzan et al. [10]. However, to our knowledge, the AG
proof rules have not been extended toω-regular properties. This is the problem we address in this paper.

First, we study the applicability of non-circular (AG-NC) and circular (AG-C) AG proof rules in the
context of systems with infinite behaviors. We assume that processes synchronize on shared events and
proceeding asynchronously otherwise, i.e., as in CSP [15]. We prove that, in this context,AG-NC is
sound butincompletewhen restricted to languages with strictly infinite behaviors (e.g.,ω-regular). This
is surprising and interesting. In contrast, we show thatAG-C is both sound and complete forω-regular
languages.Second, we extend our AG proof rules to systems and specifications expressible in∞-regular

Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications

languages (i.e., unions of regular andω-regular languages). We show that bothAG-C and AG-NC
are sound and complete in this case. To the best of our knowledge, these soundness and completeness
results are new. We develop two learning algorithms for∞-regular languages – one using a learning algo-
rithm for ω-regular languages (see Theorem 8(a)) with an augmented alphabet, and another combining
a learning algorithm forω-regular languages withL ∗ (see Theorem 8(b)) without alphabet augmenta-
tion. Finally, we present a very general formalization, called LAG, of the learning based automated AG
paradigm. We show how existing approaches for automated AG reasoning are special instances of LAG.
Furthermore, we show how to instantiate LAG to develop automated AG algorithms for ∞-regular, and
ω-regular, languages using both AG-NC and AG-C as proof rules.

The rest of the paper is structured as follows. We present the necessary background in Section 2. In
Section 3, we review our model of concurrency. In Section 4, we study the soundness and completeness
of AG rules, and present our LAG framework in Section 5. We conclude the paper with an overview of
related work in Section 6.

2 Preliminaries
We write Σ∗ andΣω for the set of all finite and infinite words overΣ, respectively, and writeΣ∞ for
Σ∗∪Σω . We use the standard notation of regular expressions:λ for empty word,a·b for concatenation,
a∗, a+, andaω for finite, finite and non-empty, and infinite repetition ofa, respectively. Whena∈ Σω , we
definea·b= a. These operations are extended to sets in the usual way, e.g.,X ·Y = {x·y | x∈X∧y∈Y}.

Language. A language is a pair(L,Σ) such thatΣ is an alphabet andL ⊆ Σ∞. The alphabet is an
integral part of a language. In particular,({a},{a}) and({a},{a,b}) are different languages. However,
for simplicity, we often refer to a language asL and mentionΣ separately. For instance, we write
“languageL over alphabetΣ” to mean the language(L,Σ), andΣ(L) to mean the alphabet ofL. Union
and intersection are defined as usual, but only for languages over the same alphabet. The complement
of L, denotedL, is defined as:L = Σ(L)∞ \L. A finitary language (Σ∗-language) is a subset ofΣ∗. An
infinitary language (Σω -language) is a subset ofΣω . ForL ⊆ Σ∞, we write∗(L) for the finitary language
L∩Σ∗ andω(L) for the infinitary languageL∩Σω . Note thatΣ(L) = Σ(∗(L)) = Σ(ω(L)) = Σ(L).

Transition Systems. A labeled transition system (LTS) is a 4-tupleM = (S,Σ, Init,δ), whereS is a
finite set of states,Σ is an alphabet,Init ⊆ S is the set of initial states, andδ ⊆ S×Σ×S is a transition
relation. We writes

α
−→ s′ for (s,α ,s′) ∈ δ , and Σ(M) for Σ. M is deterministic if|Init| ≤ 1, and

∀s∈ S�∀α ∈ Σ � |{s′ | s
α

−→ s′}| ≤ 1. A runr over a wordw= α0,α1, . . . ,∈ Σ(M)∞ is a sequence of states
s0,s1, . . ., such that∀i ≥ 0 � si

αi−→ si+1. We writeFirst(r), Last(r), andInf (r) to denote the first state
of r, the last state ofr (assumingr ∈ S∗), and states that occur infinitely often inr (assumingr ∈ Sω),
respectively. We writeRun(w,M) for the set of runs ofw onM.

Automata. A Finite Automaton (FA) is a 5-tupleA= (S,Σ, Init,δ ,F), where(S,Σ, Init,δ) is an LTS and
F ⊆ S is a set of accepting states. The language accepted byA, L (A), is the set of all wordsw ∈ Σ∗

s.t. there exists a runr of w on A, with First(r) ∈ Init ∧ Last(r) ∈ F . A BüchiAutomaton (BA) is a
5-tupleB = (S,Σ, Init,δ ,F), where(S,Σ, Init,δ) is an LTS andF ⊆ S is a set of accepting states. The
language accepted byB, L (B), is the set of all wordsw ∈ Σω s.t. there exists a runr of w on A with
First(r) ∈ Init ∧ Inf (r)∩F 6= /0. A BA or FA is deterministic if its underlying LTS is deterministic.

Regularity. A language is regular (ω-regular) iff it is accepted by a FA (BA). A languageL ⊆ Σ∞ is
∞-regular iff ∗(L) is regular andω(L) is ω-regular. Deterministic FA (DFA) and non-deterministic FA
(NFA) are equally expressive. Deterministic BA are strictly less expressive than non-deterministic BA.

Learning. A learning algorithm for a regular language is any algorithm that learns an unknown, but
fixed, languageU over a known alphabetΣ. Such an algorithm is calledactiveif it works by querying a
Minimally Adequate Teacher (MAT). The MAT can answer “Yes/No” to two types of queries aboutU :

Sagar Chaki and Arie Gurfinkel

Membership Query Given a wordw, is w∈U?

Candidate Query Given an automatonB, is L (B) = U? If the answer is “No”, the MAT returns a
counterexample (CE), which is a word such thatCE∈L (B)⊖U , whereX⊖Y = (X\Y)∪(Y\X).

An active learning algorithm begins by asking membership queries of the MATuntil it constructs a
candidate, with which it make a candidate query. If the candidate query is successful, the algorithm
terminates; otherwise it uses theCE returned by the MAT to construct additional membership queries.
The family of active learning algorithms was originated by Angluin viaL ∗ [2] for learning a minimal
DFA that accepts an unknown regular language.L ∗ was further optimized by Rivest and Schapire [20].

The problem of learning aminimalautomaton which accept an unknownω-regular language is still
open. It is known [17] that for any languageU one can learn in the limit an automaton that acceptsU via
the identification by enumerationapproach proposed by Gold [12]. However, the automaton learned via
enumeration may, in the worst case, be exponentially larger than the minimal automaton acceptingU .
Furthermore, there may be multiple minimal automata [17] acceptingU . Maler et al. [17] have shown
thatL ∗ can be extended to learn a minimal (Müller) automaton for a fragment ofω-regular languages.

Farzan et al. [10] show how to learn a Büchi automaton for anω-regular languageU . Specifically,
they useL ∗ to learn the languageU$ = {u$v | u · vω ∈ U}, where $ is a fresh letter not in the alphabet
of U . The languageU$ was shown to be regular by Calbrix et al. [4]. In the sequel, we refer to this
algorithm asL$. The complexity ofL$ is exponential in the minimal BA forU . Our LAG framework
can use any active algorithm for learningω-regular languages. In particular,L$ is an existing candidate.

3 Model of Concurrency
Let w be a word andΣ an arbitrary alphabet. We writew⇃ Σ for the projection ofw onto Σ defined
recursively as follows (recall thatλ denotes the empty word):

λ ⇃Σ = λ (a·u) ⇃Σ =

{

a· (u⇃Σ) if a∈ Σ
u⇃Σ otherwise

Clearly, bothΣ∗ andΣ∞ are closed under projection, butΣω is not. For example,(a∗ ·bω ⇃{a}) = a∗, and
a∗ consists only of finite words. Projection preservers regularity. IfL is a regular (∞-regular) language
andΣ is any alphabet, thenL ⇃Σ is also regular (∞-regular).

A process is modeled by a language of all of its behaviors (or computations). Parallel composition
(||) of two processes/languages synchronizes on common actions while executing local actions asyn-
chronously. For languages(L1,Σ1) and(L2,Σ2), L1||L2 is the language overΣ1∪Σ2 defined as follows:

L1 ‖ L2 = {w∈ (Σ1∪Σ2)
∞ | w⇃Σ1 ∈ L1∧w⇃Σ2 ∈ L2} (def. of ||)

Intuitively, L1||L2 consists of all permutations of words fromL1 andL2 that have a common synchroniza-
tion sequence. For example,(b∗ ·a·b∗)||(c∗ ·a·c∗) is (b+c)∗ ·a·(b+c)∗. Note that whenL1 andL2 share
an alphabet, the composition is their intersection; when their alphabets are disjoint, the composition is
their language shuffle. The set ofΣ∗, Σω , andΣ∞ languages are all closed under parallel composition.

Theorem 1. The|| operator is associative, commutative, distributive over union and intersection. It is
also monotone, i.e., for any two languages L1, L2, and L3: L2 ⊆ L3 ⇒ (L1||L2) ⊆ (L1||L3).

Let L1 andL2 be two languages such thatΣ(L1) ⊇ Σ(L2). We say thatL1 is subsumed byL2, written
L1 4 L2, if L1 ⇃ Σ(L2) ⊆ L2. Let LS be the language of a specificationS, andLM be the language of a
systemM. Then,M satisfiesS, writtenM |= S, iff LM 4 LS.

Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications

4 Proof Rules for Assume-Guarantee Reasoning
In this section, we study the applicability of a non-circular and a circular AG rule to proving properties of
processes with infinite behaviors (e.g., reactive systems that neither terminate nor deadlock). These rules
were shown to be sound and complete for systems with finite (i.e., inΣ∗) behaviors by Barringer et al. [3].
In Section 4.1, we show that the non-circular AG rule is sound for bothΣ∞ andΣω behaviors. However,
it is complete only when the assumptions are allowed to combinebothfinite and infinite behaviors (i.e.,
in Σ∞). In Section 4.2, we show that the circular AG rule is sound and complete forΣω andΣ∞ behaviors.

4.1 Non-Circular Assume-Guarantee Rule

The non-circular AG proof rule (AG-NC for short) is stated as follows:

(L1 ‖ LA) 4 LS L2 4 LA

(L1 ‖ L2) 4 LS

whereL1, L2, LS, andLA are languages with the alphabetsΣ1, Σ2, ΣS, ΣA, respectively,ΣS⊆ (Σ1∪Σ2),
andΣA = (Σ1∪ΣS)∩Σ2. AG-NC is known to be sound and complete forΣ∗-languages. Intuitively, it says
that if there exists an assumptionLA such that: (a)L1 composed withLA is contained inLS, and (b)L2 is
contained inLA, then the composition ofL1 with L2 is contained inLS as well. Note that the alphabetΣA

is the smallest alphabet containing: (a) actions at the interface betweenL1 andL2, i.e., actions common
to the alphabets ofL1 andL2, and (b) external actions ofL2, i.e., actions common to the alphabets ofL2

andLS. Any smaller alphabet makes the rule trivially incomplete; any larger alphabetexposes internal
(i.e., non-external) actions ofL2. It is not surprising thatAG-NC remains sound even when applied to
languages with infinite words. However,AG-NC is incompletewhenLA is restricted toΣω -languages:

Theorem 2. There exists L1,L2,LS⊆ Σω such that(L1||L2) 4 LS, but there does not exists an assumption
LA ⊆ Σω that satisfies all of the premises ofAG-NC.

Proof. By example. LetL1, L2, LS, and their alphabets be defined as follows:

Σ1 = {a,b} Σ2 = {a,c} ΣS = {a,b} L1 = (a+b)ω L2 = a∗cω LS = (a+b)∗bω

The conclusion ofAG-NC rule is satisfied since(L1||L2) ⇃ΣS = (a+b)∗bω = LS. The alphabetΣA of LA

is (Σ1∪ΣS)∩Σ2 = {a}. SinceLA ⊆ Σω
A , it can only beaω or /0. The only way to satisfy the first premise

of AG-NC is to letLA = /0, but this is too strong to satisfy the second premise.

Note that the proof of Theorem 2 shows thatAG-NC is incomplete even for∞-regular languages.

Remark 1. One may conjecture that theAG-NC rule becomes complete forΣω if subsumption is rede-
fined to only consider infinite words. That is, by redefining subsumption as: L1 4 L2 ⇔ ω(L1 ⇃Σ(L2)) ⊆
L2. However, under this interpretation,AG-NC is no longer sound. For example, let the languages L1,
L2, LS, and their alphabets be defined as follows:

Σ1 = {a,b} Σ2 = {a,c} ΣS = {a,b} L1 = (a+b)ω L2 = a∗cω LS = bω

Then, the conclusion ofAG-NC does not hold:ω((L1||L2)⇃ΣS) = (a+b)∗bω 6⊆ bω . But LA = /0 satisfies
both premises:(L1||LA) = bω , andω(L2 ⇃{a}) = LA.

Remark 2. AG-NC is complete if the alphabetΣA is redefined to beΣ1∪Σ2. However, in this case the
rule is no longer “compositional” since the assumption LA can be as expressive as the component L2.

Intuitively, AG-NC is incomplete forΣω becauseΣω is not closed under projection. However, we
show that the rule is complete forΣ∞ – the smallest projection-closed extension ofΣω . We first show that
for any languagesL1 andLS, there always exists a unique weakest assumptionLA, such thatL1||LA 4 LS.

Sagar Chaki and Arie Gurfinkel

Theorem 3. Let L1 and LS be two languages, andΣA be any alphabet s.t.Σ(L1)∪ΣA = Σ(L1)∪Σ(LS).
Then, LA = {w∈ Σ∞

A | (L1||{w}) 4 LS} satisfies L1||LA 4 LS, and is the weakest such assumption.

Proof. Let us writeΣ1, ΣS and Σ1S to meanΣ(L1), Σ(LS) and Σ(L1)∪ Σ(LS) respectively. To show
that LA is a valid assumption, pick anyw ∈ L1 ‖ LA. Thenw ⇃ ΣA ∈ LA. This implies thatw ⇃ ΣS ∈
(L1 ‖ {w⇃ΣA}) ⇃ΣS⊆ LS. Sincew is any word inL1 ‖ LA, we haveL1 ‖ LA 4 LS. To show thatLA is the
weakest assumption, letL′

A ⊆ Σ∞
A be any language such thatL1 ‖ L′

A 4 LS and letw be any word inL′
A.

Then,(L1 ‖ {w}) ⊆ (L1 ‖ L′
A) 4 LS. But this implies thatw∈ LA, and, therefore,L′

A ⊆ LA.

Note thatΣ∞
A subsumes both finite (Σ∗

A) and infinite (Σω
A) words. Thus, ifLA is aΣ∞

A weakest assump-
tion, then∗(LA) andω(LA) are the weakestΣ∗

A andΣω
A assumptions, respectively.

Theorem 4. Let L1, L2, LS, and LA be inΣ∞. Then, theAG-NC rule is sound and complete.

Proof. The proof of soundness is trivial and is omitted. For the proof of completeness we only show
the key step. Assume thatL1||L2 4 LS, and letLA be the weakest assumption such thatL1||LA 4 LS.
By Theorem 3,LA is well-defined and satisfies the first premise ofAG-NC. The second premise holds
becauseL2 ⇃ΣA ⊆ Σ∞

A, andLA is the weakestΣ∞
A assumption (see Theorem 3).

Theorem 4 implies thatAG-NC is sound for any fragment ofΣ∞. Of course, this is not true for
completeness of the rule. For practical purposes, we would like to know that the rule remains complete
when its languages are restricted to the regular subset. We show that this is so by showing that under the
assumption thatL1 andLS are regular, the weakest assumption is regular as well.

Theorem 5. Let L1 and LS be two languages, andΣA be any alphabet such thatΣ(L1)∪ΣA = Σ(L1)∪

Σ(LS). Then, LA ⊆ Σ∞
A is the weakest assumption such that L1||LA 4 LS iff LA = (L1 ‖ LS) ⇃ΣA.

Proof. Let us writeΣ1, ΣS andΣ1S to meanΣ(L1), Σ(LS) andΣ(L1)∪Σ(LS), respectively. For anyw∈Σ∞
A:

w∈ (L1 ‖ LS) ⇃ΣA iff ∀w′ ∈ Σ∞
1S�{w′} 4 {w} =⇒ w′ 6∈ (L1 ‖ LS)

iff ∀w′ ∈ Σ∞
1S�{w′} 4 {w} =⇒ ({w′} 64 L1∨{w′} 4 LS)

iff ∀w′ ∈ Σ∞
1S� ({w′} 4 {w}∧{w′} 4 L1) =⇒ {w′} 4 LS

iff ∀w′ ∈ Σ∞
1S� ({w′} 4 (L1 ‖ {w})) =⇒ {w′} 4 LS iff L1 ‖ {w} 4 LS

Together with Theorem 3, this completes the proof.

Theorem 5 impliesAG-NC is complete for any class of languages closed under complementation
and projection, e.g., regular and∞-regular languages. In addition, Theorem 5 implies that learning-
based automated AG reasoning is effective for any class of languages whose weakest assumptions fall in
a “learnable” fragment. In particular, this holds for regular,ω-regular and∞-regular languages.

4.2 Circular Assume-Guarantee Rule

The Circular Assume-Guarantee proof rule (AG-C for short) is stated as follows:

(L1 ‖ LA1) 4 LS (L2 ‖ LA2) 4 LS (LA1 ‖ LA2) 4 LS

(L1 ‖ L2) 4 LS

whereL1, L2, andLS are languages over alphabetsΣ1, Σ2, ΣS, respectively;ΣS ⊆ Σ1∪Σ2, andLA1 and
LA2 share a common alphabetΣA = (Σ1∩Σ2)∪ΣS. AG-C is known to be sound and complete forΣ∗-
languages. Note that in comparison withAG-NC, there are two assumptionsLA1 andLA2 over a larger
alphabetΣA. Informally, the rule is sound for the following reason. Letw be a word inL1||L2, and
u = w⇃ ΣA. Thenu ∈ LA1, or u ∈ LA2, or u ∈ LA1∪LA2 = (LA1||LA2). If u ∈ LA1 then the first premise
implies that{w} 4 L1||{u} 4 LS; if u∈ LA2 then the second premise implies that{w} 4 L2||{u} 4 LS;
otherwise, the third premise implies that{w} 4 {u} 4 LS.

Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications

Remark 3. Note that the assumption alphabet forAG-C is larger thanAG-NC. In fact, usingΣA1 =
(Σ1∪ΣS)∩Σ2 andΣA2 = (Σ2∪ΣS)∩Σ1 makesAG-C incomplete. Indeed, let L1 = {aa} with Σ1 = {a},
L2 = {bb} with Σ2 = {b} and LS = {aab,abb,ab}. Note that L1||L2 4 LS. We show that no LA1 and
LA2 can satisfy the three premises ofAG-C. Premise 1⇒ b 6∈ LA1 ⇒ b ∈ LA1. Similarly, premise 2
⇒ a 6∈ LA2 ⇒ a∈ LA2. But then ab∈ LA1||LA2, violating premise 3.

In this section, we show thatAG-C is sound and complete for bothΣω andΣ∞ languages. First,
we illustrate an application of the rule to the example from the proof of Theorem2. Let L1, L2, andLS

be Σω languages as defined in the proof of Theorem 2. In this case, the alphabet ΣA is {a,b}. Letting
LA1 = (a+b)∗bω , andLA2 = (a+b)ω satisfies all three premises of the rule.

Theorem 6. Let L1, L2, LS, LA1, and LA2 be inΣω or Σ∞. Then, theAG-C rule is sound and complete.

Proof. The proof of soundness is sketched in the above discussion. For the proof of completeness we
only show the key steps. Assume thatL1||L2 4 LS. Let LA1 andLA2 be the weakest assumptions such
that L1||LA1 4 LS, andL2||LA2 4 LS, respectively. By Theorem 3, bothLA1 andLA2 are well-defined
and satisfy the first and the second premises ofAG-C, respectively. We prove the third premise by
contradiction. SinceLA1 andLA2 have the same alphabet,(LA1||LA2) = (LA1∩LA2). Assume that(LA1∩
LA2) 64 LS. Then, there exists a wordw ∈ (LA1||LA2) such thatw 6∈ LA1, andw 6∈ LA2, andw⇃ ΣS 6∈ LS.
By the definition of weakest assumption (see Theorem 3),L1||{w} 64 LS andL2||{w} 64 LS. Pick any
w1 ∈ L1||{w} andw2 ∈ L2||{w}. Let w′

1 = w1 ⇃Σ1 andw′
2 = w2 ⇃Σ2. We know that{w′

1}||{w′
2} ⊆ L1||L2.

Also,w∈ ({w′
1}||{w′

2})⇃ΣA. Now since{w′
1}||{w′

2}⊆ L1||L2, we havew∈ (L1||L2)⇃ΣA. SinceΣS⊆ ΣA,
w⇃ΣS∈ (L1||L2) ⇃ΣS. But w⇃ΣS 6∈ LS, which contradictsL1||L2 4 LS.

The completeness part of the proof of Theorem 6 is based on the existence of the weakest assumption.
We already know from Theorem 5, that the weakest assumption is (∞-,ω-)regular ifL1, L2, andLS are
(∞-,ω-)regular, respectively. Thus,AG-C is complete for (∞-,ω-)regular languages. SinceAG-NC is
incomplete forω-regular languages, a learning algorithm forω-regular languages (such asL$) cannot
be applied directly for AG reasoning forω-regular systems and specifications. In the next section, we
overcome this challenge by developing automated AG algorithms for∞-regular andω-regular languages.

5 Automated Assume-Guarantee Reasoning
In this section, we present our LAG framework, and its specific useful instances. LAG uses membership
oracles, learners, and checkers, which we describe first.

Definition 1 (Membership Oracle and Learner). A membership oracle Q for a language U over alphabet
Σ is a procedure that takes as input a word u∈ Σ∞ and returns0 or 1 such that Q(u) = 1 ⇐⇒ u∈U. We
say that Q|= U. The set of all membership oracles is denoted byOracle. LetA be any set of automata.
We writeLearnerA to denote the set of all learners of typeA . Formally, a learner of typeA is a pair
(Cand,LearnCE) such that: (i)Cand : Oracle 7→ A is a procedure that takes a membership oracle as
input and outputs a candidate C∈ A , and (ii) LearnCE : Σ∞ 7→ LearnerA is a procedure that takes a
counterexample as input and returns a new learner of typeA . For any learner P= (Cand,LearnCE)
we write P.Cand and P.LearnCE to meanCand andLearnCE respectively.

Intuitively, a membership oracle is the fragment of a MAT that only answers membership queries,
while a learner encapsulates an active learning algorithm that is able to construct candidates via mem-
bership queries, and learn from counterexamples of candidate queries.

Learning. LetU be any unknown language,Q be an oracle, andP be a learner. We say that(P,Q) learns
U if the following holds: ifQ |=U , then there does not exist an infinite sequence of learnersP0,P1, . . . and
an infinite sequence of counterexamplesCE1,CE2, . . . such that: (i)P0 = P, (ii) Pi = Pi−1.LearnCE(CEi)
for i > 0, and (iii)CEi ∈ L (Pi−1.Cand(Q))⊖U for i > 0.

Sagar Chaki and Arie Gurfinkel

Input: P1 . . .Pk : LearnerA ; Q1, . . . ,Qk : Oracle; V : Checker(A ,k)

forever do
for i = 1 tok do Ci := Pi .Cand(Qi)
R := V(C1, . . . ,Ck)
if (R= (FEEDBACK , i,CE)) then Pi := Pi .LearnCE(CE) else returnR

Figure 1: Algorithm for overall LAG procedure.

Definition 2 (Checker). Let A be a set of automata, and k be an integer denoting the number of
candidates. A checker of type(A ,k) is a procedure that takes as input k elements A1, . . . ,Ak of A

and returns either (i)SUCCESS, or (ii) a pair (FAILURE ,CE) such that CE∈ Σ∞, or (iii) a triple
(FEEDBACK , i,CE) such that1 ≤ i ≤ k and CE∈ Σ∞. We writeChecker(A ,k) to mean the set of all
checkers of type(A ,k).

Intuitively, a checker generalizes the fragment of a MAT that respondsto candidate queries by
handling multiple (specifically,k) candidates. This generalization is important for circular proof
rules. The checker has three possible outputs: (i)SUCCESSif the overall verification succeeds; (ii)
(FAILURE ,CE) whereCE is a real counterexample; (iii)(FEEDBACK , i,CE) whereCE is a coun-
terexample for thei-th candidate.

5.1 LAG Procedure

Our overall LAG procedure is presented in Fig. 1. We writeX : T to mean that “X is of typeT”. LAG
accepts a set ofk membership oracles,k learners, and a checker, and repeats the following steps:

1. Constructs candidate automataC1, . . . ,Ck using the learners and oracles.
2. Invokes the checker with the candidates constructed in Step 1 above.
3. If the checker returnsSUCCESSor (FAILURE ,CE), then exits with this result. Otherwise,

updates the appropriate learner with the feedback and repeats from Step1.

Theorem 7. LAG terminates if there exists languages U1, . . . ,Uk such that: (i) Qi |= Ui for 1≤ i ≤ k, (ii)
(Pi ,Qi) learns Ui for 1≤ i ≤ k, and (iii) if V(C1, . . . ,Ck) = (FEEDBACK , i,CE), then CE∈L (Ci)⊖Ui .

Proof. By contradiction. If LAG does not terminate there exists somePi such thatPi .LearnCE is called
infinitely often. This, together with assumptions (i) and (iii), contradicts (ii), i.e.,(Pi ,Qi) learnsUi .

5.2 Oracle, Learner, and Checker Instantiations

We now describe various implementations of oracles, learners and checkers. We start with the notion of
an oracle for weakest assumptions.

Oracle for Weakest Assumption. Let L1, LS be any languages andΣ be any alphabet. We write
Q(L1,LS,Σ) to denote the oracle such thatQ(L1,LS,Σ) |= (L1 ‖ LS) ⇃Σ. Q(L1,LS,Σ) is typically imple-
mented via model checking since, by Theorems 3 and 5,Q(L1,LS,Σ)(u)= 1 ⇐⇒ u∈Σ∞∧L1 ‖ {u}4 LS.

Learner Instantiations. In general, a learnerP(L) is derived from an active learning algorithmL as
follows: P(L) = (Cand,LearnCE) s.t. Cand = part ofL that constructs a candidate using membership
queries, andLearnCE = part ofL that learns from a counterexample to a candidate query.

Non-circular Checker. Let A be a type of automata, andL1, L2 and LS be any languages. Then
VNC(L1,L2,LS) is the checker of type(A ,1) defined in Fig. 2. Note thatVNC(L1,L2,LS) is based on the
AG-NC proof rule. The following proposition aboutVNC(L1,L2,LS) will be used later.

Proposition 1. If VNC(L1,L2,LS)(A) returns SUCCESS, then L1 ‖ L2 4 LS. Otherwise, if
VNC(L1,L2,LS)(A) returns (FAILURE ,CE), then CE is a valid counterexample to L1 ‖ L2 4 LS. Fi-

nally, if VNC(L1,L2,LS)(A) returns(FEEDBACK ,1,CE), then CE∈ L (A)⊖ (L1 ‖ LS) ⇃Σ.

Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications

Checker: VNC(L1,L2,LS) Checker: VC(L1,L2,LS)

Input: A: A

if (L1 ‖ L (A)) 4 LS then
if L2 4 L (A) then return SUCCESS
else

let w be a CEX toL2 4 L (A)
if L1 ‖ {w} 4 LS then

return (FEEDBACK ,1,w⇃Σ(A))
else

let w′ be a CEX toL1 ‖ {w} 4 LS

return (FAILURE ,w′)
else

let w be a CEX to(L1 ‖ L (A)) 4 LS

return (FEEDBACK ,1,w⇃Σ(A))

Input: A1,A2 : A

for i = 1,2 do
if Li ‖ L (Ai) 64 LS then

let w be a CEX toLi ‖ L (Ai) 4 LS

return (FEEDBACK , i,w⇃ΣA)

if L (A1) ‖ L (A2) 4 LS then return SUCCESS
else

let w be a CEX toL (A1) ‖ L (A2) 4 LS

for i = 1,2 do
if Li ‖ {w} 4 LS then

return (FEEDBACK , i,w⇃ΣA)
else letwi be a CEX toLi ‖ {w} 4 LS

pick w′ ∈ {w1} ‖ {w2}
return (FAILURE ,w′)

Figure 2:VNC – a checker based onAG-NC; VC – a checker based onAG-C.

Circular Checker. LetA be a type of automata, andL1, L2 andLS be any languages. ThenVC(L1,L2,LS)
is the checker of type(A ,2) defined in Fig. 2. Note thatVC(L1,L2,LS) is based on theAG-C proof rule.
The following proposition aboutVC(L1,L2,LS) will be used later.

Proposition 2. If VC(L1,L2,LS)(A1,A2) returns SUCCESS, then L1 ‖ L2 4 LS. Otherwise, if
VC(L1,L2,LS)(A1,A2) returns (FAILURE ,CE), then CE is a valid counterexample to L1 ‖ L2 4 LS.

Finally, if VC(L1,L2,LS)(A1,A2) returns(FEEDBACK , i,CE), then CE∈ L (Ai)⊖ (Li ‖ LS) ⇃Σ.

5.3 LAG Instantiations

In this section, we present several instantiations of LAG for checkingL1 ‖ L2 4 LS. Our approach extends
to systems with finitely many components, as for example in [9, 3].

Existing Work as LAG Instances: Regular Trace Containment.Table 1 instantiates LAG for existing
learning-based algorithms for AG reasoning. The first row corresponds to the work of Cobleigh et al. [9];
its termination and correctness follow from Theorem 7, Proposition 1, and the fact that(P1,Q1) learns the
language(L1 ‖ LS) ⇃Σ. The second row corresponds to Barringer et al. [3]; its termination andcorrectness
follow from Theorem 7, Proposition 2, and the fact that(Pi ,Qi) learns(Li ‖ LS) ⇃Σ for i ∈ {1,2}.

New Contribution: Learning Infinite Behavior. Let Lω be any active learning algorithm forω-regular
languages (e.g.,L$). SinceAG-NC is incomplete forω-regular languages,Lω is not applicable directly
in this context. On the other hand, bothAG-NC and AG-C are sound and complete for∞-regular
languages. Therefore, a learning algorithm for∞-regular languages yields LAG instances for systems
with infinite behavior. We now present two such algorithms. The first (see Theorem 8 (a)) usesLω only,
but augments the assumption alphabet. The second (see Theorem 8(b)) combinesLω andL ∗, but leaves
the assumption alphabet unchanged. We present both schemes since neither is objectively superior.

Theorem 8. We can learn a∞-regular language U using a MAT for U in two ways: (a) using onlyLω

but with alphabet augmentation, and (b) without alphabet augmentation, but using bothL ∗andLω .

Proof. Part(a): LetΣ be the alphabet ofU . We useLω to learn anω-regular languageU ′ over the
alphabetΣ′ = Σ∪ {τ} such thatU ′ ⇃ Σ = U , andτ 6∈ Σ. Let U ′ = U · τω . We assume that the MAT
X for U accepts membership queries of the form(M1,M2) ∈ DFA×BA, and returns “Yes” ifU =
L (M1)∪L (M2), and aCE otherwise. Then, a MAT forU ′ is implemented usingX as follows: (i)
Membership: u ∈ U ′ iff u ∈ Σ∞ · τω ∧u⇃ Σ ∈ U , whereu⇃ Σ ∈ U is decided usingX; (ii) Candidate

Sagar Chaki and Arie Gurfinkel

Conformance Rule A Learner(s) Oracle(s) Checker
Regular Trace AG-NC DFA P1 = P(L∗) Q1 = Q(L1,LS,ΣNC) VNC(L1,L2,LS)
Containment [9]
Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1,LS,ΣC) VC(L1,L2,LS)
Containment [3] P(L∗) Q2 = Q(L2,LS,ΣC)

∞-regular Trace AG-NC DFA × BA P1 = P(L) Q1 = Q(L1,LS,ΣNC) VNC(L1,L2,LS)
Containment

∞-regular Trace AG-C DFA × BA P1 = P2 = Q1 = Q(L1,LS,ΣC) VC(L1,L2,LS)
Containment P(L) Q2 = Q(L2,LS,ΣC)

ω-regular Trace AG-NC DFA × BA P1 = P(L) Q1 = Q(L1,LS,ΣNC) VNC(L1,L2,LS)
Containment

ω-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1,LS,ΣC) VC(L1,L2,LS)
Containment P(Lω) Q2 = Q(L2,LS,ΣC)

Table 1: Existing learning-based AG algorithms as instances of LAG;ΣNC = (Σ(L1)∪Σ(LS))∩Σ(L2);
ΣC = (Σ(L1)∩Σ(L2))∪Σ(LS); L is a learning algorithm from Theorem 8.

with C′: If L (C′) 6⊆ Σ∞ ·τω , returnCE′ ∈L (C′)\Σ∞ ·τω . Otherwise, make a candidate query toX with
(M1,M2) such thatL (M1) = ∗(C′ ⇃Σ) andL (M2) = ω(C′ ⇃Σ), and turn anyCE to CE′ = CE· τω .

Part(b): We useL ∗ to learn∗(U) andLω to learnω(U). We assume that the MATX for U accepts
membership queries of the form(M1,M2) ∈ DFA×BA, and returns “Yes” ifU = L (M1)∪L (M2), and
a CE otherwise. We runL ∗ andLω concurrently, and iterate the two next steps: (1) answer membership
queries withX until we get candidatesM1 andM2 from L ∗ andLω respectively; (2) make candidate
query(M1,M2) to X; return any finite (infinite)CE back toL ∗ (Lω); repeat from Step 1.

LAG instances for ∞-regular Trace Containment. Suppose thatL1,L2 andLS are∞-regular and we
wish to verifyL1 ‖ L2 4 LS. The third row of Table 1 show how to instantiate LAG to solve this problem
usingAG-NC. This instance of LAG terminates with the correct result due to Theorem 7, Proposition 1,
and the fact that(P1,Q1) learns(L1 ‖ LS) ⇃Σ. The fourth row of Table 1 show how to instantiate LAG to
solve this problem usingAG-C. This instance of LAG terminates correctly due to Theorem 7, Proposi-
tion 2, and because(Pi ,Qi) learns(Li ‖ LS) ⇃Σ for i ∈ {1,2}.

LAG instances for ω-regular Trace Containment. Suppose thatL1,L2 andLS areω-regular and we
wish to checkL1 ‖ L2 4 LS. When usingAG-NC, restricting assumptions toω-regular languages is
incomplete (cf. Theorem 2). Hence, the situation is the same as for∞-regular languages (cf. row 5
of Table 1). When usingAG-C, restricting assumptions to beω-regular is complete (cf. Theorem 6).
Hence, we useLω without augmenting the assumption alphabet, as summarized in row 6 of Table 1. This
is a specific benefit of the restriction toω-regular languages. This instance terminates with the correct
result due to Theorem 7, Proposition 2, and because(Pi ,Qi) learns(Li ‖ LS) ⇃Σ for i ∈ {1,2}.

6 Related Work and Conclusion
Automated AG reasoning with automata-based learning was pioneered by Cobleigh et al. [9] for checking
safety properties of finite state systems. In this context, Barringer et al. [3] investigate the soundness
and completeness of a number of decomposition proof rules, and Wang [23] proposed a framework for
automatic derivation of sound decomposition rules. Here, we extend the AG reasoning paradigm to
arbitraryω-regular properties (i.e., both safety and liveness) using both non-circular and circular rules.

The idea behind (particular instances of) Theorem 5 is used implicitly in almost all existing work on
automated assume-guarantee reasoning [9, 6, 7]. However, we are not aware of an explicit closed-form
treatment of the weakest assumption in a general setting such as ours.

The learning-based automated AG reasoning paradigm has been extended to check simulation [5] and

Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications

deadlock [6]. Alur et al. [1], and Sinha et al. [21], have investigated symbolic and lazy SAT-based im-
plementations, respectively. Tsay and Wang [22] show that verification of safety properties of∞-regular
systems is reducible the standard AG framework. In contrast, our focus ison the verification of arbitrary
ω-regular-properties ofω-regular-systems.

In summary, we present a very general formalization, called LAG, of the learning-based automated
AG paradigm. We instantiate LAG to verifyω-regular properties of reactive systems withω-regular
behavior. We also show how existing approaches for automated AG reasoning are special instances of
LAG. In addition, we prove the soundness and completeness of circular and non-circular AG proof rules
in the context ofω-regular languages. Recently, techniques to reduce the number of queries [7], and
refine the assumption alphabet [11], have been proposed in the contextof using automated AG to verify
safety properties. We believe that these techniques are applicable forω-regular-properties as well.

References
[1] R. Alur, P. Madhusudan, and W. Nam. Symbolic Compositional Verification by Learning Assumptions. In

Procs. of CAV ’05, volume 3576 ofLNCS, pages 548–562. Springer, July 2005.

[2] D. Angluin. Learning Regular Sets from Queries and Counterexamples.Inf. Comput., 75(2):87–106, 1987.

[3] H. Barringer, D. Giannakopoulou, and C. S. Păs̆areanu. Proof Rules for Automated Compositional Verifica-
tion Through Learning. InProcs. of SAVCBS ’03, pages 14–21, Sept. 2003.

[4] H. Calbrix, M. Nivat, and A. Podelski. Ultimately Periodic Words of Rationalω-Languages. InProc. of
MPFS’93, 1993.

[5] S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated Assume-Guarantee Reasoning for Simulation
Conformance. InProcs. of CAV ’05, volume 3576 ofLNCS, pages 534–547. Springer, July 2005.

[6] S. Chaki and N. Sinha. Assume-Guarantee Reasoning for Deadlock. InProcs. of FMCAD ’06.

[7] S. Chaki and O. Strichman. Optimized L* for Assume-Guarantee Reasoning. InProcs. of TACAS ’07.

[8] E. Clarke, D. Long, and K. McMillan. Compositional ModelChecking. InProcs. of LICS ’89.

[9] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păs̆areanu. Learning Assumptions for Compositional Verifi-
cation. InProcs. of TACAS ’03, volume 2619 ofLNCS, pages 331–346. Springer, Apr. 2003.

[10] A. Farzan, Y. Chen, E. Clarke, Y. Tsan, and B. Wang. Extending Automated Compositional Verification to
the Full Class of Omega-Regular Languages. InProcs. of TACAS ’08. Springer, 2008.

[11] M. Gheorghiu, D. Giannakopoulou, and C. S. Păs̆areanu. Refining Interface Alphabets for Compositional
Verification. InProcs. of TACAS ’07, volume 4424 ofLNCS, pages 292–307. Springer, Mar. 2007.

[12] E. M. Gold. Language Identification in the Limit.Information and Control, 10(5):447–474, May 1967.

[13] O. Grumberg and D. Long. Model Checking and Modular Verification.TOPLAS, 16(3):843–871, May 1994.

[14] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Decomposing Refinement Proofs Using Assume-Guarantee
Reasoning. InProcs. of ICCAD ’00, pages 245–252. IEEE, Nov. 2000.

[15] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[16] C. B. Jones. Specification and Design of (Parallel) Programs. InProceedings of the 9th IFIP World Congress,
volume 83 ofInformation Processing, pages 321–332, September 1983.

[17] O. Maler and A. Pnueli. On the Learnability of InfinitaryRegular Sets.Inf. Comput., 118(2):316–326, 1995.

[18] J. Misra and K. M. Chandy. Proofs of Networks of Processes. TSE, 7(4):417–426, July 1981.

[19] A. Pnueli. In Transition from Global to Modular Temporal Reasoning About Programs.Logics and Models
of Concurrent Systems, 13:123–144, 1985.

[20] R. Rivest and R. Schapire. Inference of Finite AutomataUsing Homing Sequences.Inf. Comput., 103, 1993.

[21] N. Sinha and E. Clarke. SAT-based Compositional Verification Using Lazy Learning. InProcs. of CAV ’07.

[22] Y.-K. Tsay and B.-Y. Wang. Automated Compositional Reasoning of Intuitionistically Closed Regular Prop-
erties. InProcs. of CIAA’08, pages 36–45, 2008.

[23] B.-Y. Wang. Automatic Derivation of Compositional Rules in Automated Compositional Reasoning. In
Procs. of CONCUR’07, pages 303–316, 2007.

	Introduction
	Preliminaries
	Model of Concurrency
	Proof Rules for Assume-Guarantee Reasoning
	Non-Circular Assume-Guarantee Rule
	Circular Assume-Guarantee Rule

	Automated Assume-Guarantee Reasoning
	LAG Procedure
	Oracle, Learner, and Checker Instantiations
	LAG Instantiations

	Related Work and Conclusion

