Automated Assume-Guarantee Reasoning for Omega-Regular

Systems and Specifications

Sagar Chaki Arie Gurfinkel
Software Engineering Institute, Carnegie Mellon University

Abstract

We develop a learning-based automated Assume-Guaran@eréasoning framework for ver-
ifying w-regular properties of concurrent systems. We study thécayility of non-circular AG-
NC) and circular AG-C) AG proof rules in the context of systems with infinite belwasi In particu-
lar, we show thaAG-NC is incomplete when assumptions are restricted to strioflgite behaviors,
while AG-C remains complete. We present a general formalizatione@dlAG, of the learning
based automated AG paradigm. We show how existing appredohautomated AG reasoning are
special instances of LAG. We develop two learning algorglian a class of systems, calledregular
systems, that combine finite and infinite behaviors. We stat for co-regular systems, botAG-
NC andAG-C are sound and complete. Finally, we show how to instanti&® to do automated
AG reasoning foro-regular, ando-regular, systems using bo8G-NC andAG-C as proof rules.

1 Introduction

Compositional reasoning [8, 13] is a widely used technique for tacklingttespace explosigmoblem
while verifying concurrent systems. Assume-Guarantee (AG) is oneeafitist well-studied paradigms
for compositional reasoning [19, 14]. In AG-style analysis, we infebgl@roperties of a system from
the results of local analysis on its components. Typically, to analyze a sygsteyponent locally, we
use an appropriate “assumption”, a model of the rest of the system tleatsehe behavior expected by
C from its environment in order to operate correctly. The goal of the lotalyaes is then to establish
that every assumption made is also “guaranteed” — hence Assume-@earan

Since its inception [18, 16], the AG paradigm has been explored in deliszations. However, a
major challenge in automating AG reasoning is constructing appropriate assasag-or realistic sys-
tems, such assumptions are often complicated, and, therefore, congtthetinmanually is impractical.
In this context, Cobleigh et al. [9] proposed the use of learning to autortatozastruct appropriate
assumptions to verify a system composed of finite automata against a finite sari@pecification (i.e.,
to verify safety properties). They used the following sound and compléteraof rule:

Mi||[ACS MLCA
Mi[[MzC S

whereM1, M,, A andSare finite automatd| is a parallel composition, arid denotes language contain-
ment. The essential idea is to use thealgorithm [2] to learn an assumptiénthat satisfies the premises
of the rule, and implement the minimally adequate teacher requiréd kbia model-checking.

The learning-based automated AG paradigm has been extended ifl deeetoons [6, 1, 21]. How-
ever, the question of whether this paradigm is applicable to verifsgrrggular properties (i.e., liveness
and safety) of reactive systems is open. In this paper, we answer #gssauin the affirmative. An
automated AG framework requires: (i) an algorithm that uses queriesamderexamples to learn an
appropriate assumption, and (ii) a set of sound and complete AG ruleenfRe@ learning algorithm
for w-regular languages has been proposed by Farzan et al. [10]. vidgwe our knowledge, the AG

proof rules have not been extendeddaegular properties. This is the problem we address in this paper.

First, we study the applicability of non-circulaAG-NC) and circular AG-C) AG proof rules in the
context of systems with infinite behaviors. We assume that processdwagize on shared events and
proceeding asynchronously otherwise, i.e., as in CSP [15]. We pratgiththis contextAG-NC is
sound buincompletenvhen restricted to languages with strictly infinite behaviors (esgegular). This
is surprising and interesting. In contrast, we show &@atC is both sound and complete far-regular
languagesSecondwe extend our AG proof rules to systems and specifications expressiblesigular

Automated Assume-Guarantee Reasoning for Omega-Regular Systenyseaifec&tions

languages (i.e., unions of regular andregular languages). We show that b&&-C and AG-NC

are sound and complete in this case. To the best of our knowledge, thesiness and completeness
results are new. We develop two learning algorithmsdfaegular languages — one using a learning algo-
rithm for w-regular languages (see Theorem 8(a)) with an augmented alphatbetather combining

a learning algorithm foro-regular languages with* (see Theorem 8(b)) without alphabet augmenta-
tion. Finally, we present a very general formalization, called LAG, of the learnisgdautomated AG
paradigm. We show how existing approaches for automated AG reasaringecial instances of LAG.
Furthermore, we show how to instantiate LAG to develop automated AG algoritthmsregular, and
w-regular, languages using both AG-NC and AG-C as proof rules.

The rest of the paper is structured as follows. We present the negbsskground in Sectian 2. In
Section 3, we review our model of concurrency. In Section 4, we stuelgahndness and completeness
of AG rules, and present our LAG framework in Section 5. We conclude#per with an overview of
related work in Section 6.

2 Preliminaries

We write 2* and 2% for the set of all finite and infinite words ovér, respectively, and writ&® for
>*UZ%. We use the standard notation of regular expressibrisr empty word,a- b for concatenation,
a*, at, anda® for finite, finite and non-empty, and infinite repetitionafrespectively. Whea c =%, we
definea-b = a. These operations are extended to sets in the usual way{eY= {X-y|xe XAy e Y}.

Language. A language is a paifL,X) such thatz is an alphabet antl C Z*. The alphabet is an
integral part of a language. In particuléfa},{a}) and({a},{a,b}) are different languages. However,
for simplicity, we often refer to a language asand mentionZ separately. For instance, we write
“languagel over alphabek” to mean the languagg.,Z), andZ(L) to mean the alphabet &f Union
and intersection are defined as usual, but only for languages ovearieaphabet. The complement
of L, denoted., is defined asL = (L)*\ L. A finitary language ¥*-language) is a subset af. An
infinitary languageX“-language) is a subset Bf’. ForL C X%, we writex(L) for the finitary language
LNZ* andw(L) for the infinitary languagé N Z%. Note thatz(L) = Z(x(L)) = Z(w(L)) = Z(L).
Transition Systems. A labeled transition system (LTS) is a 4-tupié = (S Z,Init,d), whereSis a
finite set of statesy. is an alphabethit C Sis the set of initial states, anilC Sx X x Sis a transition
relation. We writes - & for (s,a,s) € 8, and=(M) for £. M is deterministic if|Init| < 1, and
Vse S.Va € 3. |{s | s— g} < 1. Arunr over awordw = ao, a1, ..., € =(M)® is a sequence of states
%0,S1,..., such thatvi > 0.5 a, St1. We writeFirst(r), Last(r), andInf(r) to denote the first state
of r, the last state of (assuming € S*), and states that occur infinitely oftenfifassuming € S¥),
respectively. We writ®un(w, M) for the set of runs ofv on M.

Automata. A Finite Automaton (FA) is a 5-tupl& = (S Z, Init, 5,F), where(S Z, Init,d) is an LTS and

F C Sis a set of accepting states. The language acceptéd 1%/(A), is the set of all wordsv € **
s.t. there exists a runof w on A, with First(r) € Init ALast(r) € F. A BuchiAutomaton (BA) is a
5-tupleB = (S Z,Init,d,F), where(S Z,Init,d) is an LTS and- C Sis a set of accepting states. The
language accepted B, .Z(B), is the set of all wordsv € 2% s.t. there exists a runof w on A with
First(r) € Init AInf(r)NF # 0. A BA or FA is deterministic if its underlying LTS is deterministic.

Regularity. A language is regulardf-regular) iff it is accepted by a FA (BA). A languadgeC >* is
co-regular iff x(L) is regular andw(L) is w-regular. Deterministic FA (DFA) and non-deterministic FA
(NFA) are equally expressive. Deterministic BA are strictly less expresban non-deterministic BA.

Learning. A learning algorithm for a regular language is any algorithm that learnsn&nawn, but
fixed, languag® over a known alphabet. Such an algorithm is calleaktiveif it works by querying a
Minimally Adequate Teacher (MAT). The MAT can answer “Yes/No” to twodgf queries abolut :

Sagar Chaki and Arie Gurfinkel

Membership Query Given a wordw, isw e U?

Candidate Query Given an automatoB, is .2 (B) =U? If the answer is “No”, the MAT returns a
counterexample&E), which is a word such th&E € .Z(B) U, whereXsY = (X\Y)U (Y \ X).

An active learning algorithm begins by asking membership queries of the MAIT it constructs a
candidate, with which it make a candidate query. If the candidate quercéessiul, the algorithm
terminates; otherwise it uses tld returned by the MAT to construct additional membership queries.
The family of active learning algorithms was originated by Angluin kia[2] for learning a minimal
DFA that accepts an unknown regular langudgewas further optimized by Rivest and Schapire [20].
The problem of learning minimalautomaton which accept an unknownregular language is still
open. Itis known [17] that for any langualyeone can learn in the limit an automaton that acceptsa
theidentification by enumeratioapproach proposed by Gold [12]. However, the automaton learned via
enumeration may, in the worst case, be exponentially larger than the minimaelatotoaccepting) .
Furthermore, there may be multiple minimal automata [17] accefitinylaler et al. [17] have shown
thatL* can be extended to learn a minimal i{Nér) automaton for a fragment of-regular languages.
Farzan et al. [10] show how to learn @i&hi automaton for am-regular language. Specifically,
they usel * to learn the languagds = {u$v | u-v®¥ € U}, where $ is a fresh letter not in the alphabet
of U. The languag&Js was shown to be regular by Calbrix et al. [4]. In the sequel, we referiso th
algorithm asL®. The complexity ofL® is exponential in the minimal BA fod. Our LAG framework
can use any active algorithm for learniagregular languages. In particulér® is an existing candidate.

3 Model of Concurrency

Let w be a word and an arbitrary alphabet. We write | Z for the projection ofw onto X defined
recursively as follows (recall that denotes the empty word):

AlS=2 (a'u)JZ:{a'(UJZ) |faez.
ulz otherwise

Clearly, both=* andz™ are closed under projection, Bft is not. For examplga”-b® | {a}) = a*, and
a* consists only of finite words. Projection preservers regularity. if a regular ¢-regular) language
andZX is any alphabet, thein| X is also regulars-regular).

A process is modeled by a language of all of its behaviors (or computatiBasgllel composition
(]]) of two processes/languages synchronizes on common actions whiletiegelocal actions asyn-
chronously. For languagék;, >;) and(Ly, 2>), L1||L; is the language oveX; U X, defined as follows:

] H L, = {WE (ZlUZZ)m ’W] 21 €LiAw] 2 € Lz} (def. OfH)

Intuitively, L4 ||L2 consists of all permutations of words frdm andL; that have a common synchroniza-
tion sequence. For exampl®;-a-b*)||(c*-a-c*) is (b+c)*-a- (b+c)*. Note that wher; andL, share
an alphabet, the compaosition is their intersection; when their alphabets ariatdigje composition is
their language shuffle. The set¥5f, %, and>* languages are all closed under parallel composition.

Theorem 1. The|| operator is associative, commutative, distributive over union and intersedtids
also monotone, i.e., for any two languagas Ly, and Lg: L C L3 = (L1||L2) C (L1]||L3).

LetL; andL, be two languages such thaflL;) O Z(L,). We say that; is subsumed biz,, written
L1 < Ly, if L1] Z(L2) C Ly. LetLs be the language of a specificati@andLy be the language of a
systemM. Then,M satisfiesS, writtenM = S iff Ly < Ls.

Automated Assume-Guarantee Reasoning for Omega-Regular Systenyseaifec&tions

4 Proof Rules for Assume-Guarantee Reasoning

In this section, we study the applicability of a non-circular and a circular #&to proving properties of
processes with infinite behaviors (e.g., reactive systems that neither tesmaraleadlock). These rules
were shown to be sound and complete for systems with finite (i.E*)ibehaviors by Barringer et al. [3].
In Section 4.1, we show that the non-circular AG rule is sound for B&tand=® behaviors. However,
it is complete only when the assumptions are allowed to commtiefinite and infinite behaviors (i.e.,
in Z*). In Section 4.2, we show that the circular AG rule is sound and comple¥’fand=* behaviors.

4.1 Non-Circular Assume-Guarantee Rule
The non-circular AG proof ruleAG-NC for short) is stated as follows:

(Li][La) SLs Lo<La
(L1|lL2) xLs

wherelLy, Ly, Ls, andLa are languages with the alphab&ts >, Zs, Za, respectivelyzs C (21 UZ25),
andZza = (£1UZs)NZ,. AG-NC is known to be sound and complete Brlanguages. Intuitively, it says
that if there exists an assumptibp such that: (a).1 composed with.a is contained irLs, and (b)L> is
contained in_a, then the composition df; with Ly is contained irLs as well. Note that the alphabEg

is the smallest alphabet containing: (a) actions at the interface betweetlL,, i.e., actions common
to the alphabets df; andL,, and (b) external actions af, i.e., actions common to the alphabetd gf
andLs. Any smaller alphabet makes the rule trivially incomplete; any larger alpledpeises internal
(i.e., non-external) actions ab. It is not surprising thaAG-NC remains sound even when applied to
languages with infinite words. Howeveé(-NC is incompletewhenL, is restricted t&“-languages:

Theorem 2. There exists L Lo,Ls C £ such that(L,||L2) < Ls, but there does not exists an assumption
La C 2% that satisfies all of the premisesAG-NC.

Proof. By example. Let 1, Ly, Ls, and their alphabets be defined as follows:
Si={ab} 3I={ac} Is={ab} Li=(a+b)® Ly=a‘c® Ls=(a+b)b®

The conclusion oAG-NC rule is satisfied sincfl,||L2) | Zs = (a+ b)*b® = Ls. The alphabeka of La
is (Z1UZs)NZy = {a}. SinceLa C Z¢, it can only bea® or 0. The only way to satisfy the first premise
of AG-NC is to letLa = 0, but this is too strong to satisfy the second premise. O

Note that the proof of Theorem 2 shows tA&-NC is incomplete even for-regular languages.

Remark 1. One may conjecture that thG-NC rule becomes complete faf’ if subsumption is rede-
fined to only consider infinite words. That is, by redefining subsumpsiphjax Lz < w(L1 | Z(L2)) C
L,. However, under this interpretatiodG-NC is no longer sound. For example, let the languages L
L., Ls, and their alphabets be defined as follows:

21 ={ab} 3, ={ac} 3 s={ab} L; = (a+b)? L, =a*c® Ls=b?

Then, the conclusion &G-NC does not holdw((L1||L2) | Zs) = (a+b)*b® € b®. But Lp = 0 satisfies
both premises(L1||La) = b®, andw(L | {a}) = La.

Remark 2. AG-NC is complete if the alphabely is redefined to b&; UX,. However, in this case the
rule is no longer “compositional” since the assumption tan be as expressive as the component L

Intuitively, AG-NC is incomplete for=® because® is not closed under projection. However, we
show that the rule is complete faf° — the smallest projection-closed extensiozf We first show that
for any languagek; andLs, there always exists a unique weakest assumftiosuch that ;||La < Ls.

Sagar Chaki and Arie Gurfinkel

Theorem 3. Let Ly and Lg be two languages, ants be any alphabet s.& (L) UZa = Z(L1) UZ(Lsg).
Then, la = {we 23 | (L1|[{w}) < Ls} satisfies k||La < Ls, and is the weakest such assumption.

Proof. Let us writeX;, X5 and 215 to meanZ(Ly), 2(Ls) and %(L1) U X(Ls) respectively. To show
that La is a valid assumption, pick any € L; || La. Thenw|Za € La. This implies thatw | Zs €
(L1 |l {w] Za}) | Zs C Ls. Sincew is any word inLy || La, we havel || La < Ls. To show that 4 is the
weakest assumption, lef, C =3 be any language such thiat || L, < Ls and letw be any word inL.
Then, (L1 || {w}) C (L1 || L) < Ls. But this implies thatv € La, and, thereforel,, C La. O

Note thatzy subsumes both finitef,) and infinite £3’) words. Thus, ilLa is aZ3 weakest assump-
tion, thenx(La) andw(La) are the weakest, and>y assumptions, respectively.

Theorem 4. Let Ly, Ly, Ls, and La be inZ*. Then, theAG-NC rule is sound and complete.

Proof. The proof of soundness is trivial and is omitted. For the proof of compstewe only show
the key step. Assume théat||L; < Ls, and letLy be the weakest assumption such thgila < Ls.
By Theorem 3L x is well-defined and satisfies the first premiseA@-NC. The second premise holds
becausé. | X5 C 23, andLa is the weakesEy assumption (see Theorem 3). O

Theorem 4 implies thaAG-NC is sound for any fragment &®. Of course, this is not true for
completeness of the rule. For practical purposes, we would like to knawhhaule remains complete
when its languages are restricted to the regular subset. We show that thisyisisowing that under the
assumption thdt; andLgs are regular, the weakest assumption is regular as well.

Theorem 5. Let Ly and Ls be two languages, anba be any alphabet such thatL;) U>a = Z(L1) U
2(Ls). Then, la C =3 is the weakest assumption such thailla < Lsiff La = (L1 || Ls) | Za.

Proof. Letus writeZ1, ZsandZ;sto mear(L1), Z(Ls) and>(L;) UX(Ls), respectively. For any e >3:

we (L1 || L) | Za iff W € S5 W} < {W} = W ¢ (Ly || L)
iff W eSS (W< {wh = (W} £ LV{w}<Le)
iff YW e S ((W < (WA {W} < Ly) = {W}<Ls
iff YW eZis. (W< (Laf[{w})) = {W}<Lsiff Ly {w}<Ls

Together with Theorem 3, this completes the proof. O

Theorem 5 impliesAG-NC is complete for any class of languages closed under complementation
and projection, e.g., regular areregular languages. In addition, Theorem 5 implies that learning-
based automated AG reasoning is effective for any class of langudgeseweakest assumptions fall in
a “learnable” fragment. In particular, this holds for regutarregular ando-regular languages.

4.2 Circular Assume-Guarantee Rule
The Circular Assume-Guarantee proof rid&(C for short) is stated as follows:

(L1|lLa1) <Ls (L2|lLa2) <Ls (La1|lLa2) <Ls
(L1|lL2) xLs

wherely, Ly, andLg are languages over alphabéts 2,, Zs, respectively2s C 33 UZ,, andLa; and
Laz share a common alphabEt = (23 N Zy) UZs. AG-C is known to be sound and complete -
languages. Note that in comparison WRts-NC, there are two assumptiohg; andLa», over a larger
alphabetza. Informally, the rule is sound for the following reason. lvetbe a word inL1||L,, and
U=W/|Za. Thenue Lai, Oru e Lay, oru € LaiULax = (Laz||La2). If U € Laz then the first premise
implies that{w} < L1||[{u} < Ls; if u € Laz then the second premise implies tat} < Lo||{u} < Ls;
otherwise, the third premise implies tHat} < {u} < Ls.

Automated Assume-Guarantee Reasoning for Omega-Regular Systenyseaifec&tions

Remark 3. Note that the assumption alphabet #86-C is larger thanAG-NC. In fact, usingza; =
(Z1UZg)NZp andZar = (22U Zs) N 23 makesAG-C incomplete. Indeed, letjl= {aa} with 2, = {a},
L, = {bb} with Z, = {b} and Ls = {aab abbab}. Note that L||L, < Ls. We show that no 4, and
La, can satisfy the three premises AG-C. Premise 1= b & La, = b € La,. Similarly, premise 2
= a¢ La, = a€ La,. Butthen abe Las||La,, violating premise 3.

In this section, we show th&8G-C is sound and complete for bofff* andZ* languages. First,
we illustrate an application of the rule to the example from the proof of The@rebetL,, L,, andLs
be % languages as defined in the proof of Theorem 2. In this case, the elffjals {a,b}. Letting
Lai = (a+b)*b®, andLa2 = (a+ b)® satisfies all three premises of the rule.

Theorem 6. Let Ly, Ly, Ls, La1, and Lao be inZ® or . Then, theAG-C rule is sound and complete.

Proof. The proof of soundness is sketched in the above discussion. Fordbkgircompleteness we
only show the key steps. Assume that|L, < Ls. LetLa; andLa be the weakest assumptions such
thatL;||La1 < Ls, andLy||La2 < Ls, respectively. By Theorem 3, botly; andLa, are well-defined
and satisfy the first and the second premise®\@fC, respectively. We prove the third premise by
contradiction. Sincéa; andLaz have the same alphabébag||Laz) = (Lai NLaz). Assume thatLag N
La2) £ Ls. Then, there exists a wom € (Laz||Laz) such thatw & Lai, andw & Lap, andw | s ¢ Ls.

By the definition of weakest assumption (see ThearenLg}{w} % Ls andLy||{w} # Ls. Pick any
wy € Li|[{w} andw; € Lo||[{w}. Letw] = w; | Z1 andw, =w; | X5. We know that{w] }||[{w,} C L4]||L>.
Also,we ({W} }|[{w,})] Za. Now since{w] }||[{w5} C L1||L2, we havew € (L1||L2) | Za. SinceZsC Za,

w| Zs e (L1]|L2) | Zs. Butw] Zs ¢ Ls, which contradictd 4| |L, < Ls. O

The completeness part of the proof of Theorem 6 is based on the existithe weakest assumption.
We already know from Theorem 5, that the weakest assumption-jex{)regular ifL;, Lo, andLs are
(c0-,w-)regular, respectively. Thu®yG-C is complete for ¢-,w-)regular languages. Sin&G-NC is
incomplete forw-regular languages, a learning algorithm foregular languages (such BS) cannot
be applied directly for AG reasoning feo-regular systems and specifications. In the next section, we
overcome this challenge by developing automated AG algorithms-fegular ando-regular languages.

5 Automated Assume-Guarantee Reasoning

In this section, we present our LAG framework, and its specific usesthites. LAG uses membership
oracles, learners, and checkers, which we describe first.

Definition 1 (Membership Oracle and LearneA membership oracle Q for a language U over alphabet
> is a procedure that takes as input a worg & and return0 or 1 suchthat Qu) =1 <— ueU. We
say that Q= U. The set of all membership oracles is denote®bgcle. Let.e7 be any set of automata.
We writeLearner ., to denote the set of all learners of typ€. Formally, a learner of type7 is a pair
(Cand,LearnCE) such that: (i)Cand : Oracle — </ is a procedure that takes a membership oracle as
input and outputs a candidate €.¢7, and (ii) LearnCE : 2* — Learner,, is a procedure that takes a
counterexample as input and returns a new learner of tyfeFor any learner P= (Cand,LearnCE)

we write PCand and PLearnCE to meanCand andLearnCE respectively.

Intuitively, a membership oracle is the fragment of a MAT that only answersleeship queries,
while a learner encapsulates an active learning algorithm that is able tumirsandidates via mem-
bership queries, and learn from counterexamples of candidate queries

Learning. LetU be any unknown languag®,be an oracle, anél be a learner. We say thé® Q) learns
U if the following holds: ifQ = U, then there does not exist an infinite sequence of leaRyePs, ... and
an infinite sequence of counterexampBis;, CE,, ... such that: (i =P, (i) R =R_;.LearnCE(CE;)

fori > 0, and (i) CE; € .#(R_1.Cand(Q)) & U fori > 0.

Sagar Chaki and Arie Gurfinkel

Input: Pp...R:Learner,; Q,...,Qk: Oracle; V : Checker,
forever do
fori=1tokdoC :=R.Cand(Q)
R:=V(Cy,...,C)
if (R= (FEEDBACK,i,CE)) then R := R.LearnCE(CE) else returnR

Figure 1: Algorithm for overall LAG procedure.

Definition 2 (Checker) Let </ be a set of automata, and k be an integer denoting the number of
candidates. A checker of tyges k) is a procedure that takes as input k elemenis. A, A of </

and returns either (i\SUCCESS or (ii) a pair (FAILURE ,CE) such that CE £, or (ii) a triple
(FEEDBACK ,i,CE) such thatl <i < k and CE€ =*. We writeChecker,,) to mean the set of all
checkers of types k).

Intuitively, a checker generalizes the fragment of a MAT that respdadsandidate queries by
handling multiple (specificallyk) candidates. This generalization is important for circular proof
rules. The checker has three possible outputsSULCCESSIf the overall verification succeeds; (ii)
(FAILURE ,CE) whereCE is a real counterexample; (iilFEEDBACK ,i,CE) whereCE is a coun-
terexample for the-th candidate.

5.1 LAG Procedure

Our overall LAG procedure is presented in Fig. 1. We wKteT to mean that X is of typeT”. LAG
accepts a set dfmembership oracleg,learners, and a checker, and repeats the following steps:

1. Constructs candidate autom@ta. ..,Cy using the learners and oracles.

2. Invokes the checker with the candidates constructed in Step 1 above.

3. If the checker returnSUCCESSor (FAILURE ,CE), then exits with this result. Otherwise,
updates the appropriate learner with the feedback and repeats frorh. Step

Theorem 7. LAG terminates if there exists languages U. Ui such that: (i) Q = U; for 1 <i <K, (ii)
(R,Qi) learns Y for 1 <i <k, and (iii) if V(Cy, ...,Ck) = (FEEDBACK,i,CE), then CEc .Z(Ci) © U;.

Proof. By contradiction. If LAG does not terminate there exists sérguch thaf.LearnCE is called
infinitely often. This, together with assumptions (i) and (iii), contradicts (i), {®,Q;) learnsU;. O

5.2 Oracle, Learner, and Checker Instantiations

We now describe various implementations of oracles, learners and che¥e start with the notion of
an oracle for weakest assumptions.

Oracle for Weakest Assumption. Let L, Ls be any languages arid be any alphabet. We write
Q(L1,Ls, 2) to denote the oracle such th@fLy,Ls,%) = (L1 || Ls) | Z. Q(L1,Ls, %) is typically imple-
mented via model checking since, by Theorems 3 a@(B;,Ls, X)(u) =1 <= uc€ X AL || {u} 5 Ls.
Learner Instantiations. In general, a learne?(L) is derived from an active learning algorithimas
follows: P(L) = (Cand, LearnCE) s.t. Cand = part ofL that constructs a candidate using membership
queries, and.earnCE = part ofL that learns from a counterexample to a candidate query.
Non-circular Checker. Let o7 be a type of automata, arld, L, andLs be any languages. Then
Wne(L1, Lo, Ls) is the checker of typées, 1) defined in Figl. 2. Note thatyc(L1,L2,Ls) is based on the
AG-NC proof rule. The following proposition aboMc (L1, L2, Ls) will be used later.

Proposition 1. If Vnc(Li,L2,Ls)(A) returns SUCCESS then L || Lo < Ls. Otherwise, if
Wne(Li, Lo, Ls)(A) returns (FAILURE ,CE), then CE is a valid counterexample tq L L, < Ls. Fi-
nally, if Vinc(L1, L2, Ls) (A) returns(FEEDBACK , 1, CE), then CEc £ (A) & (L1 || Ls) | =.

Automated Assume-Guarantee Reasoning for Omega-Regular Systenyseaifec&tions

Checker: VNC(Lla Lz, Ls)

‘ Checker: Vc(Ll, Lo, Ls)

Input: A: o
if (L1] £ (A)) < Lsthen
if Lo < Z(A) then return SUCCESS
else
letwbe a CEX toL; < Z(A)
if L1 || {w} < Lsthen
return (FEEDBACK,1,w|X(A))
else
letw be a CEXtoL || {w} < Ls
return (FAILURE ,w)
else
letwbe a CEXto(L1 || Z(A)) < Ls
return (FEEDBACK,1,w|X(A))

Input: A, Az : o/
fori=1,2do
if Li || £(A) £ Lsthen
letwbe a CEXtd || £(A) < Ls
return (FEEDBACK ,i,w| Za)
if Z(A1) | Z(A2) < Lsthen return SUCCESS
else
letwbe a CEXtaZ (A1) || Z(A2) < Ls
fori=1,2do
if Lj || {w} < Lsthen
return (FEEDBACK ,i,w| Za)
else letw; be a CEX taL; || {w} < Ls
pick W € {w} || {w2}
return (FAILURE ,w)

Figure 2:V\c — a checker based &kG-NC; V¢ — a checker based o%G-C.

Circular Checker. Let.o/ be atype of automata, ahd, L, andLsbe any languages. Th&g(L1,L2,Ls)
is the checker of typé«7, 2) defined in Fig. 2. Note that: (L1, Ly, Ls) is based on thaG-C proof rule.
The following proposition aboufc (L1, Ly, Ls) will be used later.

Proposition 2. If Vc(L1,L2,Ls)(A1,A2) returns SUCCESS then Ly || Lz < Ls.

Otherwise, if

Ve(Li, L2, Ls)(A1,Az) returns (FAILURE ,CE), then CE is a valid counterexample tq | Ly < Ls.
Finally, if Ve (L1, Lo, Ls) (A1, A2) returns(FEEDBACK ,i, CE), then CEc Z(A) & (L || Ls) | =.

5.3 LAG Instantiations

In this section, we present several instantiations of LAG for chedking-» < Ls. Our approach extends
to systems with finitely many components, as for example in/[9, 3].

Existing Work as LAG Instances: Regular Trace Containment.Table 1 instantiates LAG for existing
learning-based algorithms for AG reasoning. The first row corredptmthe work of Cobleigh et al. [9];
its termination and correctness follow from Theorem 7, Proposition 1, afddbthat Py, Q;) learns the

languag€L; || Ls) | . The second row corresponds to Barringer et al. [3]; its terminatiocamédctness
follow from Theorem 7, Proposition 2, and the fact ttatQ;) learns(L; || Ls) | Z for i € {1,2}.

New Contribution: Learning Infinite Behavior. LetL® be any active learning algorithm fos-regular
languages (e.gL%). SinceAG-NC is incomplete forw-regular languages,® is not applicable directly

in this context. On the other hand, bo#t&-NC and AG-C are sound and complete fes-regular
languages. Therefore, a learning algorithm ¢eregular languages yields LAG instances for systems
with infinite behavior. We now present two such algorithms. The first (be®iem 8 (a)) usds® only,

but augments the assumption alphabet. The second (see Theorenoé{b)es. “ andL *, but leaves
the assumption alphabet unchanged. We present both schemes sineeiseitiectively superior.

Theorem 8. We can learn ao-regular language U using a MAT for U in two ways: (a) using obl
but with alphabet augmentation, and (b) without alphabet augmentatignyging botH_*andL ©.

Proof. Part(a): Letz be the alphabet df). We useL® to learn anw-regular languag®’ over the
alphabett! = XU {1} such thatl’ | ¥ =U, andt ¢ Z. LetU’' =U -1%. We assume that the MAT
X for U accepts membership queries of the fofl,M2) € DFA x BA, and returns “Yes” ifU =
Z(M1) U.Z(M3z), and aCE otherwise. Then, a MAT fol)’ is implemented usin as follows: (i)
Membership: ue U’ iff ue Z*-1®Au|Z € U, whereu| Z € U is decided using; (ii) Candidate

Sagar Chaki and Arie Gurfinkel

Conformance Rule o Learner(s) Oracle(s) Checker
Regular Trace | AG-NC DFA PL=P(L*) | Q1 =Q(L1,Ls,Enc) | Wne(Ls,La,Ls)
Containment [9]
Regular Trace | AG-C DFA PP=P,= | Qi =0Q(Ly,Ls,2c) | Ve(Ly, Lo, Ls)
Containment [3] P(L*) Q2 = Q(La,Ls,3¢c)

co-regular Trace| AG-NC | DFA x BA | PL=P(L) | Q1 =Q(L1,Ls,Znc) | Wne(Li, Lo, Ls)
Containment

co-regular Trace] AG-C | DFAxBA [PL=P.= | Qi =Q(Ly,Ls,2c) | Ve(Ly,Lo,Ls)
Containment P(L) Q2 =Q(La,Ls, 2c)

w-regular Trace| AG-NC DFA x BA P1 = P(L) Q1 = Q(Ll, Ls, ZNC) VNc(L1, L2, Ls)
Containment

w-regular Trace] AG-C BA PP=P,= | Q1=0Q(L1,Ls,3c) | Vc(L1,LaLs)
Containment P(L®) Q2 = Q(La,Ls, 2c)

Table 1: Existing learning-based AG algorithms as instances of AG;= (Z(L1) UZ(Ls)) N Z(L2);
>c = (Z(L1)NZ(L2)) UZ(Ls); L is a learning algorithm from Theorem 8.

withC": If £(C') € £*-1%, returnCE € Z(C') \ Z* - 1%. Otherwise, make a candidate querytaith
(M1,Mz) such thatZ(M;) = «(C' | £) and.Z(M2) = w(C' | Z), and turn any\CE to CE' = CE- 1.

Part(b): We usé.* to learn«(U) andL“ to learnw(U). We assume that the MAX for U accepts
membership queries of the forfivi;, M») € DFA x BA, and returns “Yes” iU = . (M1) U.Z (M), and
a CE otherwise. We ruh.* andL “ concurrently, and iterate the two next steps: (1) answer membership
queries withX until we get candidateM; andM, from L* andL“ respectively; (2) make candidate
query (M1, My) to X; return any finite (infiniteCE back toL* (L“); repeat from Step 1. O

LAG instances for co-regular Trace Containment. Suppose thakt,L, andLg arec-regular and we
wish to verifyL; || L < Ls. The third row of Table 1 show how to instantiate LAG to solve this problem
usingAG-NC. This instance of LAG terminates with the correct result due to TheoremoppBition 1,

and the fact thatP;, Q) learns(L; || Ls) | Z. The fourth row of Table 1 show how to instantiate LAG to
solve this problem usingG-C. This instance of LAG terminates correctly due to Thearem 7, Proposi-
tion/2, and becaus@, Q) learns(L; || Ls) | = fori € {1,2}.

LAG instances for w-regular Trace Containment. Suppose thalt,,L, andLs are w-regular and we
wish to checkL; || L2 < Ls. When usingAG-NC, restricting assumptions t@-regular languages is
incomplete (cf. Theorem 2). Hence, the situation is the same as-fegular languages (cf. row 5

of Tablel 1). When usind\G-C, restricting assumptions to le-regular is complete (cf. Theorem 6).
Hence, we usk ® without augmenting the assumption alphabet, as summarized in row 6 of Tabies1. T
is a specific benefit of the restriction to-regular languages. This instance terminates with the correct
result due to Theorem 7, Proposition 2, and becéBs€);) learns(L; || Ls) | Z for i € {1,2}.

6 Related Work and Conclusion

Automated AG reasoning with automata-based learning was pioneered lejgbadt al. [9] for checking
safety properties of finite state systems. In this context, Barringer et]ah@stigate the soundness
and completeness of a number of decomposition proof rules, and Wahpr{#®sed a framework for
automatic derivation of sound decomposition rules. Here, we extend theeAsbming paradigm to
arbitrary w-regular properties (i.e., both safety and liveness) using both noukairand circular rules.

The idea behind (particular instances of) Theorem 5 is used implicitly in alri@stisting work on
automated assume-guarantee reasoning [9, 6, 7]. However, wetaware of an explicit closed-form
treatment of the weakest assumption in a general setting such as ours.

The learning-based automated AG reasoning paradigm has been edienteck simulation [5] and

Automated Assume-Guarantee Reasoning for Omega-Regular Systenyseaifec&tions

deadlock|[6]. Alur et al. [1], and Sinha et al. [21], have investigatedimolic and lazy SAT-based im-
plementations, respectively. Tsay and Wang [22] show that verificatisafety properties of-regular
systems is reducible the standard AG framework. In contrast, our fooustige verification of arbitrary
w-regular-properties od-regular-systems.

In summary, we present a very general formalization, called LAG, of @émmieg-based automated
AG paradigm. We instantiate LAG to verifgo-regular properties of reactive systems withregular
behavior. We also show how existing approaches for automated AGniagsare special instances of
LAG. In addition, we prove the soundness and completeness of ciraudaran-circular AG proof rules
in the context ofw-regular languages. Recently, technigues to reduce the number éxi[i§r and
refine the assumption alphabet [11], have been proposed in the cohtestihg automated AG to verify
safety properties. We believe that these techniques are applicalberémgular-properties as well.

References

[1] R. Alur, P. Madhusudan, and W. Nam. Symbolic Composdioverification by Learning Assumptions. In
Procs. of CAV '05volume 3576 o£ NCS pages 548-562. Springer, July 2005.

[2] D. Angluin. Learning Regular Sets from Queries and Ceteramplesinf. Comput, 75(2):87-106, 1987.

[3] H. Barringer, D. Giannakopoulou, and C. Sareanu. Proof Rules for Automated Compositional Verifica-
tion Through Learning. IfProcs. of SAVCBS 'Q®ages 14-21, Sept. 2003.

[4] H. Calbrix, M. Nivat, and A. Podelski. Ultimately PerimdWords of Rationako-Languages. IProc. of
MPFS'93 1993.

[5] S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automateskéme-Guarantee Reasoning for Simulation
Conformance. IProcs. of CAV '05volume 3576 o£.NCS pages 534-547. Springer, July 2005.

[6] S. Chakiand N. Sinha. Assume-Guarantee Reasoning fadlbek. InProcs. of FMCAD '06
[7] S. Chaki and O. Strichman. Optimized L* for Assume-Gudiea Reasoning. IRrocs. of TACAS '07
[8] E. Clarke, D. Long, and K. McMillan. Compositional Modéhecking. InProcs. of LICS '89

[9] J. M. Cobleigh, D. Giannakopoulou, and C. Sisreanu. Learning Assumptions for Compositional Verifi-
cation. InProcs. of TACAS '03volume 2619 oL NCS pages 331-346. Springer, Apr. 2003.

[10] A. Farzan, Y. Chen, E. Clarke, Y. Tsan, and B. Wang. Edtieg Automated Compositional Verification to
the Full Class of Omega-Regular LanguagesPiocs. of TACAS '08Springer, 2008.

[11] M. Gheorghiu, D. Giannakopoulou, and C. Ssiteanu. Refining Interface Alphabets for Compositional
Verification. InProcs. of TACAS '0,A/olume 4424 of. NCS pages 292—-307. Springer, Mar. 2007.

[12] E. M. Gold. Language Identification in the Limitaformation and Contrqgl10(5):447-474, May 1967.
[13] O. Grumberg and D. Long. Model Checking and Modular fieation. TOPLAS 16(3):843—-871, May 1994.

[14] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. DecomngdRefinement Proofs Using Assume-Guarantee
Reasoning. IfProcs. of ICCAD '0Q pages 245-252. IEEE, Nov. 2000.

[15] C. A. R. Hoare.Communicating Sequential ProcessBsentice Hall, 1985.

[16] C.B. Jones. Specification and Design of (Parallel) Paots. InProceedings of the 9th IFIP World Congress
volume 83 ofinformation Processingpages 321-332, September 1983.

[17] O. Maler and A. Pnueli. On the Learnability of InfinitaRegular Setsinf. Comput, 118(2):316—326, 1995.
[18] J. Misra and K. M. Chandy. Proofs of Networks of Proces3&E 7(4):417-426, July 1981.

[19] A. Pnueli. In Transition from Global to Modular TempbReasoning About Programgogics and Models
of Concurrent System$3:123-144, 1985.

[20] R. Rivest and R. Schapire. Inference of Finite Automidsang Homing Sequencemf. Comput,. 103, 1993.

[21] N. Sinha and E. Clarke. SAT-based Compositional Vatfan Using Lazy Learning. IRrocs. of CAV '07

[22] Y.-K. Tsay and B.-Y. Wang. Automated Compositional Reing of Intuitionistically Closed Regular Prop-
erties. InProcs. of CIAA'08 pages 36—45, 2008.

[23] B.-Y. Wang. Automatic Derivation of Compositional Rglin Automated Compositional Reasoning. In
Procs. of CONCUR’Oy/pages 303—-316, 2007.

	Introduction
	Preliminaries
	Model of Concurrency
	Proof Rules for Assume-Guarantee Reasoning
	Non-Circular Assume-Guarantee Rule
	Circular Assume-Guarantee Rule

	Automated Assume-Guarantee Reasoning
	LAG Procedure
	Oracle, Learner, and Checker Instantiations
	LAG Instantiations

	Related Work and Conclusion

