
Efficient Predicate Abstraction of Program

Summaries

Arie Gurfinkel, Sagar Chaki, and Samir Sapra

Carnegie Mellon University

Abstract. Predicate abstraction is an effective technique for scaling
Software Model Checking to real programs. Traditionally, predicate ab-
straction abstracts each basic block of a program P to construct a small
finite abstract model – a Boolean program BP , whose state-transition
relation is over some chosen (finite) set of predicates. This is called Small-
Block Encoding (SBE). A recent advancement is Large-Block Encoding
(LBE) where abstraction is applied to a “summarized” program so that
the abstract transitions of BP correspond to loop-free fragments of P.
In this paper, we expand on the original notion of LBE to promote flex-
ibility. We explore and describe efficient ways to perform CEGAR bot-
tleneck operations: generating and solving predicate abstraction queries
(PAQs). We make the following contributions. First, we define a general
notion of program summarization based on loop cutsets. Second, we give
a linear time algorithm to construct PAQs for a loop-free fragment of a
program. Third, we compare two approaches to solving PAQs: a classical
AllSAT-based one, and a new one based on Linear Decision Diagrams
(LDDs). The approaches are evaluated on a large benchmark from open-
source software. Our results show that the new LDD-based approach
significantly outperforms (and complements) the AllSAT one.

1 Introduction

Predicate abstraction is a well-established technique for scaling Software Model
Checking to real systems [1]. Through predicate abstraction, model checking has
been successfully applied to the verification of device drivers, hardware designs,
and communication protocols. A core operation in predicate abstraction is the
predicate abstraction query (PAQ): given a set of quantifier-free predicates P ,
and a quantifier-free formula e in some first-order theory, compute the strongest
formula GP (e) over P that is implied by e. It is used to over-approximate sets
of states (when e and P are over program variables V), and transition relations
(when e and P are over V and V ′).

Traditionally [1], PAQs are used to abstract transition relations of each indi-
vidual basic block of an input program – this is called a Small-Block Encoding
(SBE) [2]. Since transition relations of a basic blocks are simple (a few con-
junctions of equalities) the corresponding PAQs are computationally simple as
well [13]. Furthermore, SBE works well under a very coarse over-approximation
of PAQs (e.g., via Cartesian abstraction [1] combined with an aggressive refine-
ment [9]) simplifying PAQs even further. On the downside, SBE leads to a very

large number of PAQs, a large number of predicates (often a different set for
each basic block), and does not take advantage of the state-of-the-art in deci-
sion procedures. For example, a safety of a loop-free program can be proved
with a single call to an SMT-solver, but with SBE often requires a large number
of predicates and many iterations of the CounterExample Guided Abstraction
Refinement (CEGAR) loop.

Beyer et al. [2] have proposed an alternative to SBE called the Large-Block
Encoding (LBE). LBE lifts predicate abstraction to program summaries (i.e.,
loop-free program fragments). This leads to fewer PAQs, but the PAQs are more
complex, harder to solve, and should not be over-approximated [2]. Overall, [2]
shows that LBE is more efficient than SBE, and, even provably exponentially
more efficient in some cases. While it is not clear whether LBE is preferable
to SBE in all cases, LBE by itself presents three new problems for predicate
abstraction. In this paper, we propose an expanded notion of LBE and present
solutions to these problems:

(1) What types of program summaries are compatible with LBE? We show
that LBE is compatible with a broad notion of a program summary. We argue
that a loop cutset summary where where all loop-free fragments are summarized
is a reasonable (but not the only) choice.

(2) How to efficiently generate PAQs? This problem is unique to LBE. We
present a novel algorithm for generating queries for a summary that avoids con-
structing the summary itself. The algorithm takes a program in SSA form [8] and
generates PAQs directly from the program’s syntax. The size and the complexity
of generating each query are linear in the size of the SSA.

(3) How to efficiently solve PAQs? With LBE, PAQs have a rich proposi-
tional structure. We present experiments with two algorithms: an AllSAT-based
algorithm due to Lahiri et al. [16] (as implemented in mathsat4), and a novel al-
gorithm based on Linear Decision Diagrams (LDDs) [5]. The two algorithms are
evaluated on a benchmark derived from open-source programs. Surprisingly, we
find that, on the whole benchmark, the LDD-based approach is superior to the
AllSAT-based one. Interestingly, the approaches are complementary: we found
that the “MIN” combination of the approaches (i.e., run both in parallel, stop
as soon as one completes) is much more effective than either one in isolation.

To evaluate end-to-end performance of our approach in the CEGAR frame-
work, we have built a safety checker for C and checked several classical exam-
ples from the literature. Our experiments indicate that LBE is more effective
than SBE, and that the “MIN” combination of the AllSAT- and LDD-based ap-
proaches is most effective. We leave further comparison between LBE and SBE
and the effect of LBE on the overall verification process to future work.

We envision that the algorithms proposed here will form a part of a complete
CEGAR-based software analysis infrastructure. In particular, we do not argue
for an exclusive use of any particular LBE or SBE. Instead, this work provides
the flexibility necessary for an analyzer to (heuristically) choose a good block
encoding and contributes efficient techniques to solve complex PAQs.

2

Related work. LBE for predicate abstraction was proposed by Beyer et al. [2].
They show that LBE significantly reduces the size of the abstract state space,
the number of required predicates, and the verification time. They observe that
success of LBE depends on precise predicate abstraction (as opposed to approxi-
mations such as Cartesian abstraction [1]). They use the AllSAT-based predicate
abstraction [16] as implemented in mathsat4 [3]. We build on this work with a
formal and general definition of LBE, new algorithms for efficiently constructing
PAQs directly from an SSA program and for solving PAQs, and an extensive
empirical evaluation on a large and challenging benchmark.

A näıve predicate abstraction algorithm – enumerating all satisfiable
minterms – is exponential. Many heuristics have been proposed to improve
its best-case complexity (e.g., [9, 10]), and worst-case complexity at expense of
completeness (e.g., [1, 16]). For example, symbolic predicate abstraction [14, 13]
avoids exponentially many calls to an SMT solver by generating a symbolic proof
from which the result is extracted by Boolean quantification, an exponential step.

Predicate abstraction is reducible to quantifier elimination. This leads to sev-
eral solutions. In [16], the quantification is delegated to an AllSAT SMT solver.
In [4], solutions are enumerated by a BDD and are discharged by an incremen-
tal SMT solver. Clarke et al. [6] use a SAT-solver for Boolean quantification
for predicate abstraction over propositional logic. Lahiri et al. [15] give an al-
gorithm for first-order logic via a reduction to propositional logic and Boolean
quantification with either SAT- or BDD-based method.

In this paper, we propose another alternative: predicate abstraction is re-
duced to quantifier elimination over first-order logic, and the quantifiers are
eliminated using LDDs [5]. On our benchmark this is much more efficient than
the corresponding AllSAT-based solution.

The rest of the paper is structured as follows. Sec. 2 provides the necessary
background. Sec. 3 describes program summarization. Sec. 4 presents algorithms
to generate and solve PAQs. Sec. 5 presents experimental results. Sec. 6 concludes
the paper.

2 Background

For a set of variables V , we write V ′ for {v′ | v ∈ V }. For a binary relation ρ, we
write (s1, s2) |= ρ for (s1, s2) ∈ ρ. We write ρ∗ for reflexive transitive closure, and
ρ ◦ ρ for relational composition. We often represent sets and binary relations in
the standard way by Boolean expressions over primed and unprimed variables.
For an expression e, we write e[V/V ′], or e′, to mean the expression obtained by
replacing each variable v in e with v′.

A program P is a tuple (V,L, ℓ0, T ,LE), where V is a set of variables, L a set
of control locations, ℓ0 ∈ (L\LE) a designated entry point, T a set of transitions,
and LE ⊂ L a set of exit locations. A program state is a valuation of all of the vari-
ables in V . The set of all states is denoted by Σ. Each transition τ ∈ T is a triple
(ℓ1, ρ, ℓ2), where ℓ1, ℓ2 ∈ L and ρ ⊆ Σ ×Σ is a non-empty relation on program
states. By convention, the entry location ℓ0 and all exit locations in LE have no

3

incoming and outgoing transitions, respectively. The control flow graph (CFG)
of P, CFG(P), is the graph (L, E), where E = {(ℓ1, ℓ2) | ∃ρ � (ℓ1, ρ, ℓ2) ∈ T }.

A trace in P is a finite sequence 〈ℓ1, s1〉, . . . , 〈ℓn, sn〉 of location-state pairs
such that ∀1 ≤ i ≤ (n− 1) �∃ρ � (ℓi, ρ, ℓi+1) ∈ T ∧ (si, si+1) |= ρ. A computation1

is trace such that ℓ1 = ℓ0. A state s is reachable at location ℓ iff there exists a
computation such that ℓn = ℓ ∧ sn = s; a location ℓ is reachable iff there exists
a state s reachable at ℓ; an invariant of P at ℓ is any superset of the states
reachable at ℓ.

A predicate is any ground formula. A cube over a set of predicates P is a
formula of the form p1 ∧ · · · ∧ pn ∧ ¬q1 ∧ · · · ∧ ¬qm, where pi, qj ∈ P and every
predicate appears at most once. A minterm is a cube of size |P |.

Let ψ be a quantifier-free first-order expression. A fundamental operation of
predicate abstraction is to compute GP (ψ) – a strongest Boolean combination
of P that is implied by ψ. GP (ψ) can be characterized as the set of all minterms
that do not contradict ψ:

GP (ψ) =
∨

{c | c is a minterm over P and c ∧ ψ is satisfiable} .

GP (ψ) can be computed by enumerating all minterms and using a decision
procedure to decide satisfiability. Alternatively, the computation can be reduced
to quantifier elimination as follows. With each p ∈ P associate a unique Boolean
variable bp; let V be the set of all free variables in ψ and P ; and let FP be the
formula ψ∧ (

∧

p∈P bp ⇔ p). Then, GP (ψ) is given by the result of eliminating all
existential quantifiers in ∃V �FP , and then replacing every bp with the predicate p.

Let P = (V,L, ℓ0, T ,LE) be a program, and µ a predicate map that assigns
to each location ℓ a set of predicates denoted µ.ℓ. The (most precise) predicate
abstraction of P with respect to µ is a program Pµ = (V,L, ℓ0, Tµ,LE), where

Tµ = {(ℓ1,GP (ρ), ℓ2) | (ℓ1, ρ, ℓ2) ∈ T and P = µ.ℓ1 ∪ µ.ℓ
′
2}.

Note that if µ is finite for every program location, then Pµ is finite as well.

3 Program Summary

Large-Block Encoding applies predicate abstraction to a summary of a program.
The original definition of LBE [2] uses a specific notion of summary, which we call
rule summary. In this section, we present a more general concept of summaries.
In particular, we define a loop cutset summary as the most general summary
that summarizes all loop-free program fragments. Cutset summaries subsume
useful classes of summaries, including (as we show later) the rule summary.

Let P = (V,L, ℓ0, T ,LE) be a program; let L′ ⊆ L such that ℓ1, ℓn ∈ L′. A
trace 〈ℓ1, s1〉, . . . , 〈ℓn, sn〉 of P is L′-free iff L′ ∩ {ℓ2, . . . , ℓn−1} = ∅. The L′-free
(ℓ1, ℓn) fragment of P comprises locations appearing on L′-free (ℓ1, ℓn) traces of
P, with ℓ1 and ℓn as entry and exit locations, respectively.

1 In this paper, we only consider finite computations.

4

Definition 1 (Summary). A program P ′ = (V,L′, ℓ0, T
′,LE) is a summary of

a program P = (V,L, ℓ0, T ,LE) iff: (i) L′ ⊆ L, and (ii) ∀ℓ1, ℓn ∈ L′ there exists a
L′-free (ℓ1, ℓn) trace 〈ℓ1, s1〉, . . . , 〈ℓn, sn〉 of P iff ∃ρ�(ℓ1, ρ, ℓn) ∈ T ′∧(s1, sn) |= ρ.

A program and its summary share the same variables, entry and exit loca-
tions, and state space Σ. A summary also preserves reachability of locations, as
stated by Theorem 1. The proof of the theorem is in the appendix.

Theorem 1. Let P ′ = (V,L′, ℓ0, T
′,LE) be a summary of P = (V,L, ℓ0, T ,LE).

Then, ∀ℓ ∈ L′, s ∈ Σ is reachable at ℓ in P iff s is reachable at ℓ in P ′.

As a corollary, since an invariant is a set of states, a summary also preserves
invariants: I is an invariant of P ′ at ℓ ∈ L′ iff it is an invariant of P at ℓ. Thus, any
program summary can be used for LBE. Ideally, we want the smallest summary
possible since it leads to smaller abstract models. In particular, we’d like a unique
minimal summary – when L′ = {ℓ0} ∪ LE . Unfortunately, it is not computable
since its computation requires summarizing program loops. Instead, we want the
smallest summary that summarizes only loop-free program fragments.

Let G = (V,E) be a graph. A set S ⊆ V is a cycle cutset (or simply a cutset)
of G iff S contains a vertex from every cycle in G, i.e., the graph (V \ S,E \
((S × V) ∪ (V × S))) is acyclic. We call an element s ∈ S a cutpoint.

Definition 2 (Loop Cutset Summary). A program P ′ = (V,
L′, ℓ0, T

′,LE) is a cutset summary of P iff P ′ is a summary of P and
L′ is a cutset of CFG(P).

The cutset summary of a program is not unique. Finding a minimal one is
hard since it requires solving the minimal feedback vertex set, which is known
to be NP-complete [12]. However, in practice, a good approximation is obtained
in polynomial time by letting L′ be the set of destinations of all back-edges
discovered by a DFS of CFG(P), together with ℓ0 and LE . Given a cutset of
CFG(P), the corresponding cutset summary of P is effectively computable since,
by definition, each edge in it corresponds to a loop-free fragment of P.

In the rest of this section, we compare cutset summaries with rule sum-
maries [2]. A rule summary is based on two program transformations, seq and
choice. Let P = (V,L, ℓ0, T ,LE), and ℓ1, ℓ2 ∈ L be two locations. The precon-
ditions of seq(P, ℓ1, ℓ2) are (a) ℓ1 6= ℓ2, (b) there is an edge from ℓ1 to ℓ2, (c) ℓ2
has no other incoming edges, and (d) ℓ2 has at least one successor. The output
is the program P ′ = (V,L′, ℓ0, T

′,LE), where L′ = L \ {ℓ2} and

T ′ = (T ∪ {(ℓ1, ρ ◦ ρi, ℓi) | (ℓ2, ρi, ℓi) ∈ out(ℓ2)}) \ (out(ℓ2) ∪ in(ℓ2)) ,

where out(ℓ) and in(ℓ) are the sets of all outgoing and incoming transitions of ℓ,
respectively. The precondition of choice(P, ℓ1, ℓ2) is that there are two distinct
edges (ℓ1, ρ1, ℓ2) and (ℓ1, ρ2, ℓ2) in T . The output is P ′ = (V,L, ℓ0, T

′,LE), where

T ′ = (T \ {(ℓ1, ρ1, ℓ2), (ℓ1, ρ2, ℓ2)}) ∪ {(ℓ1, ρ1 ∪ ρ2, ℓ2)} .

Intuitively, seq removes a location with a single incoming edge, and choice

replaces multiple edges between the same locations with a single one.

5

Definition 3 (Rule Summary). A rule summary of a program P =
(V,L, ℓ0, T ,LE), is a limit of the sequence P0,P1, . . ., where P0 = P, and Pi+1

is seq(Pi, ℓ1, ℓ2) if seq is applicable, choice(Pi, ℓ1, ℓ2) if choice is applicable,
and Pi otherwise.

The advantage of a cutset summary is that it is not restricted to a particular
cutset computation procedure. For example, suppose we construct a cutset of P
by taking the destinations of all back-edges in a topological ordering of CFG(P).
Let us call this back-edge summary and compare it to rule summary. In both
cases, the complexity of constructing a summary is polynomial in the size of
P. However, the locations of a rule summary of P subsumes those of a back-
edge summary of P. This is because: (i) the destination of a back-edge always
has at least two incoming edges, and hence can never be removed by seq, and
(ii) choice never eliminates locations. Thus, back-edge summary is never larger
than a rule summary. Thus, a rule summary is a custset summary as well.

4 Predicate Abstraction of Program Fragments

A cutset C of a program P has a BACK-EDGE-AT-END property if for every
ℓ1, ℓ2 ∈ C, ℓ2 is the sole destination of all back-edges in the C-free fragment
Pℓ1,ℓ2 . Note that a cutset C of any back-edge (or rule) summary satisfies this
since in any C-free fragment Pℓ1,ℓ2 , {ℓ1, ℓ2} are the only possible destinations
of back-edges, but ℓ1 has no incoming edges at all. Let P be a program and C
its BACK-EDGE-AT-END cutset. In this section, we show how to compute a
predicate abstraction of a cutset summary of P (w.r.t. C), without explicitly
constructing the summary.

Our algorithm is called SummaryPA, and is shown in Fig. 1. We assume that
P is given in Static Single Assignment (SSA), and work directly on its syntax.
Function EdgeQuery takes P and two locations ℓ1, ℓ2 ∈ C and generates a
PAQ for the C-free (ℓ1, ℓ2) fragment, Pℓ1,ℓ2 , of P. The size of the PAQ is linear
in the size of Pℓ1,ℓ2 . Function Solve takes this query and returns a predicate
abstraction of Pℓ1,ℓ2 . These two functions are applied to every pair of connected
cutpoints from C. The output of SummaryPA is the predicate abstraction of
the summary of P w.r.t. C. In the rest of this section, we give a brief overview of
SSA, describe the formula constructed by EdgeQuery, and give two strategies
for Solve: one based on an AllSAT SMT-solver, and one based on LDDs.

4.1 Single Static Assignment

We give here a brief overview of SSA. More details can be found elsewhere [8]. A
program is in SSA form if an assignment to each variable appears at most once
in its syntax. Any program can be put efficiently into SSA. As an example, an
SSA program corresponding to the C program in Fig. 2(a) is shown in Fig. 2(b).

In addition to normal assignments, SSA uses special φ-assignments. Their
syntax is x := PHI(v1 : ℓ1, . . . , vn : ℓn), where x is a variable, ℓ1, . . . , ℓn are

6

1: Input: SSA program P = (V,L, ℓ0, T ,LE); a cutset C of P; a predicate map µ

2: Output: Pµ the most precise predicate abstraction of P w.r.t. µ

3: function SummaryPA (P, C, µ)
4: Tµ = ∅
5: for all ℓ1, ℓ2 ∈ C s.t. ∃ a C-free (ℓ1, ℓ2)-path in CFG of P do

6: Q = EdgeQuery(P, C, ℓ1, ℓ2, µ.ℓ1, µ.ℓ2)
7: ρ = Solve(Q); Tµ = Tµ ∪ {(ℓ1, ρ, ℓ2)}

8: Pµ = (V, C, ℓ0, Tµ,LE)

Fig. 1: Algorithm SummaryPA.

locations, and v1, . . . , vn are values. The PHI-function evaluates to value vi if it
is reached via location ℓi. In our example, PHI(0:0, x 0:4) on line 2 evaluates
to 0 when reached from location 0 and to x 0 when reached from location 4.

We model an SSA program as a tuple (V,L, E, φ,G,Act , ℓ0,LE) where: V , L,
ℓ0, and LE are same as in programs, E ⊆ L×L is the set of control flow edges,
Act maps locations to assignments, and φ and G map edges to φ-assignments
and guards, respectively. Intuitively, each ℓ ∈ L corresponds to a basic block;
each basic block is a sequence of assignments terminated by a branch; the branch
condition is stored on the edge, and each φ-assignment is replaced by the corre-
sponding assignments on the edges. This is a variant of the traditional compiler
SSA format, where φ-assignments and guards are pushed into the source and
destination blocks of their edges, respectively. Fig. 2(c) graphically shows the
SSA program from Fig. 2(b).

Operationally, an edge (ℓ1, ℓ2) in an SSA program is executed by: (a) exe-
cuting the assignments Act(ℓ1), (b) validating the guard G(ℓ1, ℓ2), and (c) ex-
ecuting φ-assignments φ(ℓ1, ℓ2). Formally, for a set of assignments A, let α(A)
be

∧

v:=e∈A v = e, and α′(A) be
∧

v:=e∈A v
′ = e. The semantics of an SSA

program P = (V,L, E, φ,G,Act , ℓ0,LE) is a program P ′ = (V,L, ℓ0, T
′,LE),

s.t. (ℓ1, ρ, ℓ2) ∈ T ′ iff ρ = α′(Act(ℓ1)) ∧ Skip(K) ∧ G(ℓ1, ℓ2)
′ ∧ α(φ(ℓ1, ℓ2))

′,
where K = {v ∈ V | ¬∃e � (v := e) ∈ A ∨ (v := e) ∈ φ(ℓ1, ℓ2)} and Skip(U) is
∧

u∈U u
′ = u. For example, the semantics of SSA program in Fig. 2(c) is shown in

Fig. 2(d). The semantics of the edge (3, 2) is y′0 = y+1∧y′ = y′0∧x
′ = x∧x′0 = x0.

Note that this definition depends on several properties of the SSA: assignments
in a block have no circular dependencies, guards do not depend on following
φ-assignments, etc.

4.2 Generating Predicate Abstraction Queries

EdgeQuery(P, C, ℓ1, ℓ2, P1, P2) takes an SSA program P, a cutset C, locations
ℓ1, and ℓ2 in C, and two sets of predicates P1 and P2, and generates a PAQ for
C-free (ℓ1, ℓ2)-fragment, Pℓ1,ℓ2 , of P.

The result of EdgeQuery is similar to a typical “reachability query” , e.g.,
as in CBMC [7]. It is linear in the size of Pℓ1,ℓ2 and computable in linear time.
However, EdgeQuery works directly on SSA (as opposed to a more expensive

7

(a)

int x = 0,y;

while(x < 10) {

y = 0;

while(y < x)

y++;

x++;

}

(b)

0 : goto 1;

1 : x = PHI(0:0, x_0:4);

if (x < 10) goto 2 else goto 5;

2 : y = PHI(0:1, y_0:3);

if (y < x) goto 3 else goto 4;

3 : y_0 := y + 1; goto 2;

4 : x_0 := x + 1; goto 1;

5 :

(c)

x := 0

y := 0

x_0 := x + 1

x := x_0
1

2

y_0 := y + 13 4

y := y_0

[y >= x][y < x]

[x < 10]

[x >= 10]
5

0

(d)

1

2

43

[x’ = 0]

y_0’ = y + 1]

x_0’ = x + 1][x’ < 10 && y’ = 0]

[x’ >= 10]

[y’ < x’] [y’ >= x’]

0

5

[y’ = y_0’ &&

[x’ = x_0’ &&

Fig. 2: Representation of a C program: (a) traditional, (b) SSA, (c) graphical SSA, (d)
semantic. In (d), all expressions of the form v′ = v have been omitted.

Gated SSA used in [7]). The resulting PAQ separates control- and data-flows,
and preservers control-flow structure in the query. These features are crucial for
our approach to discharging PAQs (see LDD-based approach in Section 4.3).

For ease of understanding, we present the query in parts. Let Lf denote the
set of all locations of Pℓ1,ℓ2 . Let A be a formula for all of the simple assignments
in the fragment, A =

∧

ℓ∈Lf\{ℓ2}
α(Act(ℓ)), where α is as defined in Sec. 4.1.

Intuitively, a complete satisfying assignment to A corresponds to executing, in
parallel, all assignments of all of the locations in Lf . A is always satisfiable
because, by assumption, Pℓ1,ℓ2 has no back-edges (except possibly to ℓ2), and
hence no circularly dependent assignments.

For each ℓ ∈ L, let Bℓ be a Boolean variable corresponding to ℓ, and Vℓ the
set of all such variables. Let Rℓ be a formula defined for a location ℓ as follows:

Rℓ =



Bℓ ⇒
∨

ℓ′∈Preds(ℓ)∩Lf

Bℓ′ ∧G(ℓ′, ℓ) ∧ α(φ(ℓ′, ℓ))



 ,

where Preds(ℓ) is the set of all CFG-predecessors of ℓ. Intuitively, Bℓ represents
whether ℓ is visited in an execution, i.e., is reachable. Rℓ states that if ℓ is
reachable then at least one (but possibly more) of its predecessors ℓ′ must be
reachable, and the guards and the φ-assignments on the (ℓ′, ℓ)-edge must be true.

For the final location ℓ2, we need a variant of Rℓ, denoted R̂ℓ and defined as:

R̂ℓ =



Bℓ ⇒
∨

ℓ′∈Preds(ℓ)∩Lf

Bℓ′ ∧G(ℓ′, ℓ) ∧ α′(φ(ℓ′, ℓ))



 ,

8

where α′ is as defined in Sec. 4.1. Since ℓ2 can be the destination of a back-
edge, the φ-assignment on that edge might be circularly dependent on another
assignment in Pℓ1,ℓ2 . Such dependencies are eliminated by using α′ instead of α.

Next, we define a formula CFG as follows:

CFG =



Bℓ2 ∧ R̂ℓ2 ∧
∧

ℓ∈Lf\{ℓ1,ℓ2}

Rℓ



 .

Every satisfying assignment to CFG corresponds to one (or several) paths of
Pℓ1,ℓ2 . Bℓ2 guarantees that ℓ2 is visited, the implications in Rℓ create the path,
and the guard and φ-assignment constraints ensure that the path is feasible (i.e.,
can always be elaborated into a concrete computation).

Consider the formula A∧CFG . Each satisfying assignment to it corresponds
to at least one concrete execution from ℓ1 to ℓ2. Furthermore, note that any
assignment that corresponds to multiple non-contradicting executions can be
transformed into a satisfying assignment for a single execution. This is done by
picking one of the corresponding executions, setting Bℓ to true for every location
ℓ on that execution, and setting all other Bℓ variables to false.

Next, we need formulas for predicates. With each predicate p ∈ P1 we asso-
ciate a Boolean variable bp, and with each predicate p ∈ P2 a Boolean variable
b′p. Let Src and Dst be formulas defined as:

Src =





∧

p∈P1

bp ⇔ p



 Dst =





∧

p∈P2

b′p ⇔ Φ(p)



 ,

where Φ(p) = p[v/v′ | ∃ℓ ∈ (Preds(ℓ2) ∩ Lf) � v ∈ LHS(φ(ℓ, ℓ2))]. Note that this

renaming in Dst corresponds to the renaming in R̂ℓ.
Finally, the PAQ produced by EdgeQuery is

∃V, V ′, Vℓ � A ∧ CFG ∧ Src ∧ Dst .

This formula is linear in |Lf | and can be computed in linear time. Theorem 2
asserts the correctness of EdgeQuery.

Theorem 2. Let ρ ⊆ Σ × Σ be the summary of Pℓ1,ℓ2 . Then,
EdgeQuery(P, C, ℓ1, ℓ2, P1, P2) is equivalent to:

∃V, V ′
� ρ ∧





∧

p∈P1

bp ⇔ p



 ∧





∧

p∈P2

b′p ⇔ p′





Example 1. Let P be the SSA program from Fig. 2(c) and C = {0, 1, 2, 5} its
loop cutset. Consider the C-free (2, 2) fragment of P and predicates y < 0, x < 0.

Lf = {2, 3} A = (y0 = y + 1)

Src = (by ⇔ y < 0) ∧ (bx ⇔ x < 0) R̂2 = (B2 ⇒ B3 ∧ y
′ = y0)

Dst = (b′y ⇔ y′ < 0) ∧ (b′x ⇔ x < 0) R3 = (B3 ⇒ B2 ∧ y < x)

9

The overall predicate abstraction query is:

∃y0, y, y
′, x,B2, B3 � (y0 = y+1)∧ (B3 ⇒ B2 ∧ y < x)∧ (B2 ⇒ B3 ∧ y

′ = y0)∧

B2 ∧ (by ⇔ y < 0) ∧ (b′y ⇔ y′ < 0) ∧ (bx ⇔ x < 0) ∧ (b′x ⇔ x < 0) .

4.3 Solving Predicate Abstraction Queries

Solve takes a PAQ of the form ∃V, V ′, Vℓ � Ψ , eliminates the quantifiers, and
then replaces the Boolean variables introduced by EdgeQuery by the corre-
sponding predicates. In this section, we describe two strategies for the quantifier
elimination step: AllSAT-based – based on the approach of Lahiri et al. [16], and
LDD-based – based on a recently developed decision diagrams LDDs [5].

AllSAT-based approach. An SMT solver decides satisfiability of a quantifier-free
first-order formula F (over a theory T). An AllSAT SMT solver takes a formula
F and a subset VImp of important Boolean terms of F and returns the set M of
all minterms over VImp that can be extended to a satisfying assignment to F .

A PAQ of the form ∃V, V ′, Vℓ � Ψ is solved by giving an AllSAT solver a
formula Ψ and setting VImp to the set of all Boolean variables bp and b′p in Ψ .
The output is a set M of minterms such that

∨

M is equivalent to ∃V, V ′, Vℓ �Ψ .
The key advantage of this approach is that all of the reasoning is delegated to

an AllSAT solver. Thus, it applies to queries in any SMT-supported theory and
leverages advancements in SMT-solvers. The main limitation – it enumerates all
minterms of the solution, which can be exponentially larger than the smallest
DNF representation. We illustrate this limitation further in Sec. 5.

LDD-based approach. An LDD is a Binary Decision Diagram (BDD) with nodes
labeled with atomic terms from Linear Arithmetic (LA). An LDD represents a
LA formula in the same way a BDD represents a Boolean formula. LDDs support
the usual Boolean operations (conjunction, disjunction, negation, etc.), Boolean
quantification, and variable reordering. Additionally, they provide quantification
over numeric variables via direct Fourier-Motzkin elimination on the diagram.

Let ℓ1 and ℓk be two cutpoints. Recall that the query Q computed by
EdgeQuery for (ℓ1, ℓk) is of the form ∃V, V ′, Vℓ � Ψ , where

Ψ = A ∧Rℓ2 ∧ · · · ∧ R̂ℓk
∧Bℓk

∧ Src ∧ Dst ,

and each Rℓi
is of the form Bℓi

⇒ θi. A näıve way to solve Q is to first compute
and LDD for Ψ , and then use numeric and Boolean quantification to eliminate
the variables in V , V ′, and Vℓ. Note that the result is a BDD (since all of the
remaining variables are Boolean).

Unfortunately, the näıve approach does not scale. The bottleneck is con-
structing a diagram for Ψ . In large part, this is due to the variables Bℓ used
in encoding control-flow constraints. The solution is to re-arrange the query to
eliminate these variables as early as possible.

Let Lf = 〈ℓ1, . . . , ℓk〉 be the set of locations in the cutpoint-free – and hence,
loop-free – (ℓ1, ℓk) fragment of P. Let Topo be a topological order on Lf . Without

10

0

20

40

60

T
im

e
in

se
co

n
d
s

0 500 1000

Test cases

MSAT

LDD

(a) Running times for experiments

MSAT and LDD.

0

20

40

60

T
im

e
in

se
co

n
d
s

0 500 1000

Test cases

MSAT2

MIN

(b) Running times for experiments

MSAT2 and MIN.

Fig. 3: Running times.

loss of generality, assume that the locations are numbered such that i ≤ j iff ℓi
precedes ℓj in some fixed linearization of Topo. Then, a variable Bℓi

appears in
a constraint Rℓj

iff i ≤ j. Therefore, Q is equivalent to ∃V, V ′
� Ψ ′, where

Ψ ′ = A ∧ Src ∧ Dst ∧
(

∃Bℓ1 � ∃Bℓ2 �Rℓ2 ∧ · · · ∧ ∃Bℓk
� R̂ℓk

∧Bℓk

)

.

In summary, our overall solution is to compute an LDD for Ψ ′, and then use
numeric quantification to eliminate V and V ′ variables. Note that it is possible
to apply early quantification to the numeric variables as well. However, we did
not explore this direction.

The main advantage of our approach is that the solution is computed directly
as an LDD. Thus, its running time is independent of the number of minterms in
the solution. Unlike the AllSAT-based approach, it is limited to Linear Arith-
metic and does not directly benefit from advances in SMT-solving. However, in
our experiments, it significantly outperformed the AllSAT-based approach.

We are not the first to use decision diagrams for predicate abstraction. How-
ever, previous approaches use BDDs by reducing numeric reasoning to proposi-
tional reasoning. This reduction introduces a large number of Boolean variables,
which makes the problem hard for BDDs. For example, Lahiri et al. [15] find
a SAT-based approach superior to a BDD-based one. In contrast, we use de-
cision diagrams that are aware of Linear Arithmetic. This avoids the need for
additional constraints, and makes the solution very competitive.

5 Experimental Results

We evaluated our approach on a large benchmark of PAQs and as a part of a
software model checker. We used the mathsat4 SMT-solver [3] for the AllSAT-
based solution, and our implementation of LDDs [5] for the LDD-based solution.
All PAQs were restricted to two-variables-per-inequality logic (TVPI), i.e., lin-
ear constraints with at most two variables. The benchmark and our tools are
available at lindd.sf.net.

11

The benchmark. To evaluate our approach on large queries, we constructed the
benchmark from C programs using the following technique: (1) convert a pro-
gram into LLVM bitcode [17] and optimize with loop unrolling and inlining;
(2) for each function, use all loop headers as the cutset summary; (3) over-
approximate the semantics of statements by TVPI constraints (e.g., loads from
memory and function calls are replaced by non-determinism); (4) for each lo-
cation ℓ, take the atomic formulas that appear in the weakest precondition of
some conditional branch reachable from ℓ as the predicates at ℓ; (5) for each pair
of locations ℓ and ℓ′ in the summary, generate a PAQ, as described in Sec. 4.2,
using the predicates at ℓ and ℓ′.

In our view, the benchmark is quite realistic: steps 1-3 are a common pre-
processing techniques in program analysis; the choice of predicates is guided by
our experience with predicate abstraction.

The benchmark consists of over 20K PAQs. We report the results on the top
1061 cases (exactly the ones that required ≥ 5s to solve with at least one ap-
proach). These PAQs are from bash, bison, ffmpeg, gdb, gmp, httpd, imagemagick,
mplayer, and tar. As formulae in SMT-LIB format, they range in size from 280B
to 57KB (avg. 11KB, med. 8KB). The number of predicates per query ranges
from 10 to 56 (avg. 22, med. 19). Each experiment was limited to 60s CPU and
512MB of RAM, and was done on a 3.4GHz Pentium D with 2GB of RAM.

The experiments. The results of the experiments are summarized in the first
three rows of Table 4a. The first column indicates the experiment as follows –
MSAT : queries are solved using mathsat4; LDD : queries are solved using LDDs
with dynamic variable order (DVO); and LDD2 : queries are solved using LDDs
with static variable order (SVO). For LDD, diagram nodes were reordered by
the diagram manager based on memory utilization. For LDD2, a static order was
selected such that terms that appeared earlier in the query AST would appear
earlier in the diagram order. A query AST is ((A ∧ CFG) ∧ Src ∧ Dst).

For each experiment, we report the total time to solve all 1061 queries (Total),
number of unsolved cases (Failed), average time per a solved instance (Avg.
per Solved), total time for all solved instances (Total Solved), total time for
all instances solved by mathsat4 (Total MSAT Solved), and total time for all
instances solved by mathsat4 with predicates in each query restricted to those
that appear in the support of the solution computed by LDD (Total MSAT2
Solved). All “Total” times include 60s for each failure.

Surprisingly, the AllSAT-based approach is the worst. It was only able to
solve 60% of queries and was 7 times slower compared to the LDD-based solu-
tions. Even restricted to queries that it could solve, it is almost 4 times slower
than LDD, and 9 times slower than LDD2. Fig. 3a shows a detailed comparison
between the MSAT and LDD experiments. In the chart, test case indices are
on the x-axis (sorted first by MSAT time, and then by LDD time), time per
test case is on the y-axis. There are several exceptional cases where mathsat4

significantly outperforms LDD. However, overall, most test-cases appear to be
easy for LDD (solved in under 5s), but are much more evenly distributed for
mathsat4.

12

Name Total
(min)

Failed Avg.
per
Solved
(sec)

Total
Solved
(min)

Total
MSAT
Solved
(min)

Total
MSAT2
Solved
(min)

MSAT 610.00 429 17.12 180.29 180.29 523.86
LDD 83.54 35 2.84 48.48 60.64 72.15
LDD2 83.98 64 1.19 19.81 44.34 72.79

MIN 28.40 6 1.27 22.39 10.64 19.98

LDD3 85.66 74 0.70 11.51 57.64 77.08
MSAT2 188.14 91 6.87 102.00 9.04 102.00

(a) PAQ benchmark.

Name LBE SBE

T It Pr CP T It Pr BB

LDD MSAT MIN

floppy.ok 0.18 0.16 0.16 1 0 3 0.44 4 6 83

tst lck 50 0.5 0.48 0.5 1 0 3 ++ ++ ++ 255

diamond-4 2.0 ++ 1.7s 4 42 4 ++ ++ ++ 24

ssl-srv-D 98.96 6.26 5.65 5 60 4 ++ ++ ++ 155

(b) End-to-end. T = times in sec; It = # of

CEGAR iterations; CP = # of cutpoints;

BB = # of blocks; Pr = total # of preds.

Fig. 4: Summary of experimental results.

The two LDD-based experiments clearly highlight the virtues and vices of
DVO: DVO makes an LDD-approach more robust (35 failures for LDD v.s. 64
for LDD2) but less efficient (about twice as slow on average). Out of 64 failures
for LDD2, 39 where due to memory running out. Coincidentally, with our choice
of using 60s for each failure, faster running times balance out more failures for
LDD2, and its overall time is very similar to that of LDD.

In our benchmark, LDD-based solution significantly outperforms the AllSAT-
based one. We conjecture that the two are complementary: AllSAT-based solu-
tion performs well when number of models to enumerate is small, and LDD-based
solution performs well when the intermediate (and final) diagrams are small. To
validate this conjecture, we computed the best-of time needed to solve a test-
case by either of the three techniques. This is equivalent to running the three
approaches in parallel and stopping as soon as one was successful. The results
are summarized in the fourth row (MIN) of Table 4a. The combination is ex-
tremely effective: taking only 28 minutes (3 times better than previous best) for
the benchmark and solving all but 6 instances. The improvement is even more
significant when restricted to instances that mathsat4 could solve.

Oracle experiments. To put our results into perspective, we conducted two exper-
iments against “oracle” solvers. Finding good variable ordering is the bottleneck
for LDD-based solution. With DVO most time is spend reordering, but without
it many cases run out of memory. We experimented with using the last order-
ing found by DVO during LDD experiment as a static ordering. The results
are shown in the fifth row (LDD3) of Table 4a. We classify this experiment as
“oracle” since we don’t know how to achieve this variable order other than by
repeating the LDD experiment.

Interestingly, the order did not help as much as we expected. The average
time per solved test-case did drop to 0.7s (2× and 4× better than LDD2 and
LDD, respectively). However, fewer instances could be solved, with 55 out of the
74 failures being memory outs. We believe this indicates that an order that is
good for the final result is not necessarily good for the intermediate steps (and
hence, overall) of the computation.

The bottleneck for the AllSAT-based solution is in enumerating all the
minterms (as opposed to cubes or prime implicants). We found that in many
cases that were hard for mathsat4, many of the predicates did not appear in

13

the support of the LDD-based solution. That is, many predicates were not part
of any prime implicant. To evaluate the effect of this on mathsat4, we repeated
the MSAT experiment, but restricted the predicates in each query to those that
appeared in the support of the solution (as computed by LDD). The results are
shown in the last row (MSAT2) of Table 4a. Note that determining variables
in the support of a Boolean formula is NP-complete. We do not know how to
compute the support other than by solving the problem with LDDs first.

Overall, the running time has improved dramatically. There is a significant
improvement on the cases solved by MSAT, even compared to LDD-based solu-
tions. However, overall it is much slower than any of the LDD-based solutions,
even when restricted to cases it could solve. Overall, there are 91 failures (all
timeouts). Fig. 3b shows the details from the MSAT2 and MIN experiments.
There are two interesting points. First, the best-of LDD and MSAT is signifi-
cantly better than the idealized AllSAT-based solution. Second, there are cases
where the idealized AllSAT-based solution is an order-of-magnitude better.

End-to-end experiments. To evaluate the end-to-end performance of our ap-
proach, we implemented a CEGAR-based safety checker for C programs fol-
lowing Jhala et al. [11]. Fig. 4b is a sample of our results: floppy.ok is derived
from a device driver, test locks 50 is based on the example from Beyer et al. [2],
diamond-4 is a program with a “diamond-shaped” CFG, and ssl-srv-D is derived
from OpenSSL. We observe that LBE scales much better than SBE. The per-
formances of LDD and AllSAT are more evenly balanced. LDD scales better for
diamond-4. For ssl-srvr-D, LDD by itself is much worse than AllSAT. This is due
to a single PAQ that is very hard for LDD. However, LDD outperforms AllSAT
elsewhere, as seen by the MIN column.

Summary. Overall, our results show that the AllSAT-based solution is not com-
petitive for solving PAQs of a large program fragment, while the LDD-based
solution performs surprisingly well. Moreover, the MIN of the LDD- and the
AllSAT-based approaches is the clear winner, even compared to an oracle-based
solution.

6 Conclusion

Large-Block Encoding (LBE) [2] is a flavor of predicate abstraction applied to a
summarized program. In this paper, we present solutions to three problems for
predicate abstraction in the context of LBE. First, we define a general notion
of program summarization, called a loop cutset summary, that is compatible
with LBE and is efficiently computable. We show that it generalizes the rule-
based summary of Beyer et al. [2]. Second, we present a linear time algorithm to
construct PAQs for a loop-free program fragment. Our algorithm works directly
on the SSA representation of the program, and constructs a query that separates
control- and data-flow, while preserving both in its structure. Third, we study
two approaches to solving PAQs: a classical AllSAT-based, and a new based on
LDDs. The approaches are evaluated on a benchmark from open-source software.

14

Our approach builds on many existing components: SSA, loop-free program
fragments, and early quantification – all well known; LDDs are used in [5] for
image computation. However, the combination of the techniques is novel, the
benchmarks are realistic and challenging, and the results show that our new
LDD-based solution outperforms (and complements) the AllSAT-based one.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: TACAS’01. LNCS, vol. 2031, pp. 268–283 (2001)

2. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
Model Checking via Large-Block Encoding. In: FMCAD’09 (2009)

3. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT4 SMT Solver. In: CAV’08. LNCS, vol. 5123 (2008)

4. Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shyama-
sundar, R.K.: Computing Predicate Abstractions by Integrating BDDs and SMT
Solvers. In: FMCAD’07 (2007)

5. Chaki, S., Gurfinkel, A., Strichman, O.: Decision Diagrams for Linear Arithmetic.
In: FMCAD’09 (2009)

6. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate Abstraction of ANSI-
C Programs using SAT. FMSD 25(2-3) (2004)

7. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
TACAS’04. LNCS, vol. 2988 (2004)

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph.
TOPLAS 13(4) (1991)

9. Das, S., Dill, D.: Successive Approximation of Abstract Transition Relations. In:
LICS’01. pp. 51–60 (2001)

10. Flanagan, C., Qadeer, S.: Predicate Abstraction for Software Verification. In:
POPL’02. pp. 58–70 (2002)

11. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions From
Proofs. In: POPL’04 (2004)

12. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

13. Kroening, D., Sharygina, N.: Approximating Predicate Images for Bit-Vector Logic.
In: TACAS’06. LNCS, vol. 3920 (2006)

14. Lahiri, S.K., Ball, T., Cook, B.: Predicate Abstraction via Symbolic Decision Pro-
cedures. In: CAV’05. LNCS, vol. 3576 (2005)

15. Lahiri, S.K., Bryant, R.E., Cook, B.: A Symbolic Appraoch to Predicate Abstrac-
tion. In: CAV’03. LNCS, vol. 2725 (2003)

16. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT Techniques for Fast Predicate
Abstraction. In: CAV’06. LNCS, vol. 4144 (2006)

17. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO’04 (2004)

15

Proof of Theorem 1

Theorem 1. Let P ′ = (V,L′, ℓ0, T
′,LE) be a summary of P = (V,L, ℓ0, T ,LE).

Then, ∀ℓ ∈ L′, s ∈ Σ is reachable at ℓ in P iff s is reachable at ℓ in P ′.

Proof. For (⇒):
s reachable at ℓ in P ′ ⇒ there is a sequence 〈ℓ0, s0〉, . . . , 〈ℓn, sn〉

s.t. (i) ∀i ∈ {1, . . . , n− 1} � ∃ρ � (ℓi, ρ
′, ℓi+1) ∈ T ′ ∧ (si, si+1) |= ρ,

and (ii) ℓ = ℓn ∧ s = sn.
Consider one such sequence in P ′. Then (i) ⇒ for each i in {1, . . . , n− 1}, there
is a trace in P from 〈ℓi, si〉 to 〈ℓi+1, si+1〉

⇒ (by induction on i) there is a computation in P of the form

〈ℓ0, s0〉, . . . , 〈ℓ1, s1〉, . . . , 〈ℓn, sn〉

In this computation, some ℓ = ℓn ∧ s = sn (from (ii)),
which implies that s is reachable at ℓ in P.

For (⇐):
s reachable at ℓ in P ⇒ There is a sequence 〈ℓ0, s0〉, 〈ℓn, sn〉

s.t. (i) ∀i ∈ {1, . . . , n− 1} � ∃ρ � (ℓi, ρ
′, ℓi+1) ∈ T ′ ∧ (si, si+1) |= ρ,

and (ii) ℓ = ℓn ∧ s = sn.
Consider one such sequence. In general, it is not necessary that every ℓi in this
sequence belong to L′. However, we know that ℓ0 ∈ L′ ∧ ℓ ∈ L′.

Let a1, a2, . . . , ak be a sequence of indices in the trace, with a1 = 0 and
ak = n, such that each location in ℓa1

, ℓa2
, . . . ℓak

is in L′. This gives us a sequence
of locations 〈ℓa1

, ℓa2
, . . . ℓak

〉 in P ′. We can now break the original trace into a
sequence of sub-traces:

〈〈ℓa1
, sa1

〉, . . . , 〈ℓa2
, sa2

〉〉 . . . 〈〈ℓak−1
, sak−1

〉, . . . , 〈ℓak
, sak

〉〉.

Each of these sub-trace corresponds to an edge in P ′. These edges concatenate
to form a trace in P ′, one which reaches s.

16

4 5 6

3

2

7

8

1

5

3 7

81

5

3

1

(a) (b) (c)

90 90

9

0

Fig. 5: Example showing advantage of cutset based summarization.

A back-edge summary is smaller than a rule summary

Fig. 5(a) shows the CFG of a program with three nested while loops. The corre-
sponding rule summary shown in Fig. 5(b) has 7 locations. However, the back-
edge cutset is {0, 9, 1, 3, 5} and the corresponding back-edge summary, shown in
Fig. 5(c), has only 5 locations.

17

