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Overview of checking network policies 

Does the network do what I want it to do?

Network
operator
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Policies
What I want the 
network to do

Reality
What the network does

???

network
A B
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Existing work on checking network policies
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Static verification
– HSA, NSDI’12
– Veriflow, NSDI’13
– NOD, NSDI’15
– Batfish, NSDI’15

reachability
policies

A can talk to BActive testing
– Ping, Traceroute
– ATPG, CoNext’12 
– Pingmesh, SIGCOMM’15

Network
operator

stateless network
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Real networks are about more than reachability

context-dependent
policies

Network
operator
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stateful network
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state

context

Light IPS
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How can we check context-dependent policies in 
stateful networks?

• Reachability policies  Context-dependent policies 

• Stateless networks  Stateful networks

• Scalability: How to explore the state space?

• Expressiveness: How to capture stateful behaviors?

Challenges:



Our solution: BUZZ

Operator

stateful data plane

FW ProxyIPS
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BUZZ is an active testing framework to check 
context-dependent policies in stateful data planes

BUZZ

test
traffic

context-dependent
policies



Outline

• Motivation and challenges

• Design of BUZZ

• Implementation and evaluation 
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Data plane 
model

Operator

stateful data plane

FW ProxyIPS

Test traffic
generation
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context-dependent
policies Challenge 1:

Expressive 
models?

Challenge 2:
Scalable state 

space exploration
test

traffic

Challenge 1: Expressive data plane model



2. How to model a network function (e.g., an IPS)?
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Challenge 1: Expressive data plane model

? ?

1. How to model the traffic unit?

?
NF1 NF2 NF4

NF3
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Our idea: BDU as model of traffic unit

Light IPS

suspicious?
or benign? 

Located packet
(e.g., Pyretic, HSA)
struct locPkt {

IPHder ipHdr;

NetworkPort port;
};

Context-carrying
located packet

struct CntxlocPkt {

IPHder ipHdr;

NetworkPort port;

Context context; 
};

struct BDU{

IPHeader ipHdr;

NetworkPort port;

Context context; 
…

HTTPHdr httpHdr
…

};

BUZZ Data Unit (BDU)

Expressive

Expressive

Scalable

Expressive

Scalable

✗

✔

✔

✔
✗

…
IP packets IP packets

…
BDU BDU
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Our idea: NF as an ensemble of FSMs
Light IPS

NF model expressiveness

NF model
scalability

Transfer function
(e.g., Pyretic, HSA)

YesNo

No

Yes

state?

middlebox 
code

large codebase
(e.g., 300K LoC)

bugs?
A monolithic FSM

counthost1, counthost2,…

counthost1++, counthost2,…host 1 makes
a conn. attempt

…

Ensemble of FSMs

counthost1 counthost1++

counthost2 counthost2++

…

Insight 1: Decoupling 
independent connections

Insight 2: Decoupling 
independent tasks

host 1
host 2

✔

✔

T(.)
located
packet

located
packet



Putting it together: Composing NF models
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Individual
NF models

Data plane
model



Data plane 
model

Operator

stateful data plane

FW ProxyIPS

Test traffic
generation
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context-dependent
policies Challenge 1:

Expressive 
models?

Challenge 2:
Scalable state 

space exploration

test
traffic

Challenge 2: Scalable test traffic generation



Challenge 2: Exploring data plane state space
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coun%ng'IPS'per'host'modeling'
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<1,0>$ <0,1>$
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…
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<0,10>$ <0,11>$
…
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…
$
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• Conceptual view of test traffic generation: How to reach a 
colored state through a sequence of traffic units?

• Challenge of scalability wrt traffic space and state space 
– Strawman 1: All possible sequences of traffic units

– Strawman 2: Generate random traffic units (e.g., fuzzing)

– Strawman 3: Naïve use of exploration tools (e.g., model checking)

Light IPS
host 1
host 2

suspicious?



Our idea: Test traffic generation using 
optimized symbolic execution

• Optimized symbolic execution:
– Minimize the number of symbolic BDUs
– Scoping values of symbolic BDUs
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• Our high-level  approach: Symbolic execution

Light IPS
host 1
host 2

suspicious?



Outline

• Motivation and challenges

• Design of BUZZ

• Implementation and evaluation 
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Implementation
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https://github.com/network-policy-tester/buzz 

Policy parser

Network
operator

Data plane model 
instantiation (C)

BDU-level test
traffic generation 

(KLEE+optimizations)

Translation into test 
scripts (custom 
library + code)

Library of
NF models (C)

Test resolution 
(custom code)

monitoring 
logs 

(tcpdump)

intended 
policies

stateful data plane under test

FW ProxyIPS



Evaluation: Effectiveness of BUZZ
• Found new bugs in recent SDN-based systems

– Violations due to reactive control in Kinetic

– Incorrect state migration in OpenNF

– Faulty policy composition in PGA

– Incorrect traffic tagging in FlowTags

…

• Found known violations

– Broken link

– Incorrect NAT configuration

– SDN controller bug

…
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Evaluation: Scalability of BUZZ
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Test generation takes < 2min for a network with 600 
switches and 60 middleboxes

Topology size (# of switches)
6 52 92 196 400 600
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Naive Symbolic Execution
Model Checking



• Existing work has fundamental limitations in checking 
context-dependent policies in stateful data planes

• Challenges:

• Expressive-yet-scalable model of stateful data planes

• Scalable state space exploration

• Our solution is BUZZ:

• BUZZ Data Unit (BDU) as traffic unit model

• Ensemble of FSMs as a network function (NF) model

• Scalable exploration via domain-specific optimizations

• BUZZ can help find bugs and is scalable 
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Conclusions


