
BUZZ: Testing Context-Dependent
Policies in Stateful Networks

Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka,
Sagar Chaki, Vyas Sekar

Overview of checking network policies

Does the network do what I want it to do?

Network
operator

2

Policies
What I want the
network to do

Reality
What the network does

???

network
A B

R1

R2

R3

R4

A B

Existing work on checking network policies

3

Static verification
– HSA, NSDI’12
– Veriflow, NSDI’13
– NOD, NSDI’15
– Batfish, NSDI’15

reachability
policies

A can talk to BActive testing
– Ping, Traceroute
– ATPG, CoNext’12
– Pingmesh, SIGCOMM’15

Network
operator

stateless network

R1

R2

R3

R4

Light IPS Heavy IPS

A B

Real networks are about more than reachability

context-dependent
policies

Network
operator

4

stateful network

AB
traffic

Block

Allow

suspicious

benign

Heavy IPS

bad signature
found

Light IPS

bad conn. >= 10

state

context

Light IPS

suspicious

How can we check context-dependent policies in
stateful networks?

• Reachability policies Context-dependent policies

• Stateless networks Stateful networks

• Scalability: How to explore the state space?

• Expressiveness: How to capture stateful behaviors?

Challenges:

Our solution: BUZZ

Operator

stateful data plane

FW ProxyIPS

5

BUZZ is an active testing framework to check
context-dependent policies in stateful data planes

BUZZ

test
traffic

context-dependent
policies

Outline

• Motivation and challenges

• Design of BUZZ

• Implementation and evaluation

6

Data plane
model

Operator

stateful data plane

FW ProxyIPS

Test traffic
generation

7

context-dependent
policies Challenge 1:

Expressive
models?

Challenge 2:
Scalable state

space exploration
test

traffic

Challenge 1: Expressive data plane model

2. How to model a network function (e.g., an IPS)?

8

Challenge 1: Expressive data plane model

? ?

1. How to model the traffic unit?

?
NF1 NF2 NF4

NF3

9

Our idea: BDU as model of traffic unit

Light IPS

suspicious?
or benign?

Located packet
(e.g., Pyretic, HSA)
struct locPkt {

IPHder ipHdr;

NetworkPort port;
};

Context-carrying
located packet

struct CntxlocPkt {

IPHder ipHdr;

NetworkPort port;

Context context;
};

struct BDU{

IPHeader ipHdr;

NetworkPort port;

Context context;
…

HTTPHdr httpHdr
…

};

BUZZ Data Unit (BDU)

Expressive

Expressive

Scalable

Expressive

Scalable

✗

✔

✔

✔
✗

…
IP packets IP packets

…
BDU BDU

10

Our idea: NF as an ensemble of FSMs
Light IPS

NF model expressiveness

NF model
scalability

Transfer function
(e.g., Pyretic, HSA)

YesNo

No

Yes

state?

middlebox
code

large codebase
(e.g., 300K LoC)

bugs?
A monolithic FSM

counthost1, counthost2,…

counthost1++, counthost2,…host 1 makes
a conn. attempt

…

Ensemble of FSMs

counthost1 counthost1++

counthost2 counthost2++

…

Insight 1: Decoupling
independent connections

Insight 2: Decoupling
independent tasks

host 1
host 2

✔

✔

T(.)
located
packet

located
packet

Putting it together: Composing NF models

11

Individual
NF models

Data plane
model

Data plane
model

Operator

stateful data plane

FW ProxyIPS

Test traffic
generation

12

context-dependent
policies Challenge 1:

Expressive
models?

Challenge 2:
Scalable state

space exploration

test
traffic

Challenge 2: Scalable test traffic generation

Challenge 2: Exploring data plane state space

13

coun%ng'IPS'per'host'modeling'

1'

<0,$0>$

<1,0>$ <0,1>$
<10,0>$

…
$

<10,1>$ <11,0>$…
$

<0,10>$

<0,10>$ <0,11>$
…

$

…
$

ini#al&state&

• Conceptual view of test traffic generation: How to reach a
colored state through a sequence of traffic units?

• Challenge of scalability wrt traffic space and state space
– Strawman 1: All possible sequences of traffic units

– Strawman 2: Generate random traffic units (e.g., fuzzing)

– Strawman 3: Naïve use of exploration tools (e.g., model checking)

Light IPS
host 1
host 2

suspicious?

Our idea: Test traffic generation using
optimized symbolic execution

• Optimized symbolic execution:
– Minimize the number of symbolic BDUs
– Scoping values of symbolic BDUs

14

coun%ng'IPS'per'host'modeling'

1'

<0,$0>$

<1,0>$ <0,1>$
<10,0>$

…
$

<10,1>$ <11,0>$…
$

<0,10>$

<0,10>$ <0,11>$
…

$

…
$

ini#al&state&

• Our high-level approach: Symbolic execution

Light IPS
host 1
host 2

suspicious?

Outline

• Motivation and challenges

• Design of BUZZ

• Implementation and evaluation

15

Implementation

16
https://github.com/network-policy-tester/buzz

Policy parser

Network
operator

Data plane model
instantiation (C)

BDU-level test
traffic generation

(KLEE+optimizations)

Translation into test
scripts (custom
library + code)

Library of
NF models (C)

Test resolution
(custom code)

monitoring
logs

(tcpdump)

intended
policies

stateful data plane under test

FW ProxyIPS

Evaluation: Effectiveness of BUZZ
• Found new bugs in recent SDN-based systems

– Violations due to reactive control in Kinetic

– Incorrect state migration in OpenNF

– Faulty policy composition in PGA

– Incorrect traffic tagging in FlowTags

…

• Found known violations

– Broken link

– Incorrect NAT configuration

– SDN controller bug

…

17

Evaluation: Scalability of BUZZ

18

Test generation takes < 2min for a network with 600
switches and 60 middleboxes

Topology size (# of switches)
6 52 92 196 400 600

T
e

s
t

tr
a

ff
ic

 g
e

n
.

la
te

n
c
y
 (

s
)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

BUZZ
Naive Symbolic Execution
Model Checking

• Existing work has fundamental limitations in checking
context-dependent policies in stateful data planes

• Challenges:

• Expressive-yet-scalable model of stateful data planes

• Scalable state space exploration

• Our solution is BUZZ:

• BUZZ Data Unit (BDU) as traffic unit model

• Ensemble of FSMs as a network function (NF) model

• Scalable exploration via domain-specific optimizations

• BUZZ can help find bugs and is scalable

19

Conclusions

