Design, Implementation and Verification of an
eXtensible and Modular Hypervisor Framework*

Amit Vasudevan, Sagar Chaki Limin Jia*, Jonathan McCurie James Newsorfieand Anupam Datta
*CyLab, Carnegie Mellon University (amitvasudevan@acg).bminjia@cmu.edu, danupam@cmu.edu)
TSEI, Carnegie Mellon University (chaki@sei.cmu.edu)
fGoogle Inc. (jonmccune@google.com)
8Independent Consultant (jim@jimnewsome.net)

Abstract— We present the design, implementation, and
verification of XMHF — an eXtensible and Modular Hypervisor
Framework. XxMHF is designed to achieve three goals modu-
lar extensibility, automated verification and high performance
XMHF includes a core that provides functionality common
to many hypervisor-based security architectures and suppis
extensions that augment the core with additional security o
functional properties while preserving the fundamental hyper-
visor security property of memory integrity(i.e., ensuring that
the hypervisor's memory is not modified by software running
at a lower privilege level). We verify the memory integrity o
the XMHF core —6018 lines of code — using a combination of
automated and manual techniques. The model checkerBMmC
automatically verifies 5208 lines of C code in about80 seconds
using less tham2GB of RAM. We manually audit the remaining
422 lines of C code and388 lines of assembly language code that
are stable and unlikely to change as development proceedsu®©
experiments indicate thatxmMHF’s performance is comparable
to popular high-performance general-purpose hypervisorsfor
the single guest that it supports.

KeywordsHypervisor Framework, Memory Integrity, Verifi-
cation, Hypervisor Applications (“Hypapps”)

I. INTRODUCTION

This paper describes the design, implementation and ver-
ification of an open-source eXtensible and Modular Hyper-
visor Framework XMHF) that can serve as a platform for
performing security-oriented hypervisor research anceHev
opment. Observing that hypervisor-based security saiatio
often rely on a common core functionality given a particular
CPU architecturexmHF is designed to provide this core
functionality while at the same time supporting extensions
that can provide custom hypervisor-based solutions (“hyp-
ervisor applications” or “hypapps”) for specific functidna
and security properties. The corexfiHF thus has a small
TCB. All extensions reuse the core, avoiding the need to
re-implement it correctly. Furthermore, thevHF design
enables automated verification of relevant security pitigser
of its core and ensures that the properties are preserved as
extensions (hypapps) are added as long as the extensions ma-
nipulate security-sensitive state using prescribed fates
provided by the core. At the same tim@HF’s performance
is comparable to popular high-performance general-p@pos
hypervisors for the single guest that it supports.

XMHF supports a single full-featured commodity guest

Hypervisor-based architectures for improving system se©S (‘rich” guest). We make this design decision in order

curity have been extensively explored in recent years [1]40 achieve our design goalswedular extensibility au-
[16]. These systems are designed to provide interesting séomated verification and high performance Specifically,
curity and functional properties including secrecy of sggu ~ XMHF Ieverages hardware virtualization pr|m|t|v§§ to allow
sensitive application code and data [7], trusted user anél® guest direct access to all performance-critical system
application interfaces [2], [4], [13], application intéyrand devices and QeV|ce mterr.upts._ This mod(_el results in re-
privacy [3], [5], [10], [11], [17], debugging support [8], duced hypervisor complexity (since all devices are diyectl
malware analysis, detection and runtime monitoring [6],controlled by the OS) and consequently TCB, as well as
[9], [14]-[16] and trustworthy resource accounting [1]. A Promising high guest performance (since device interrupts
majority of these hypervisor-based solutions are designefl® Nnot trap to the hypervisor). Further, the single-guest
and written from scratch with the primary goal of achieving Model allowsxMHF to be designed for sequential execution
a low Trusted Computing Base (TCB) while providing a (e.g.,no mterrupts_wnhln the hyperwspr) while allowitige
specific security property and functionality in the contextguest to use multiple CPUs, be multi-threaded and handle
of an operating system or another (more traditional) hyperdevice interrupts. As a result, the automated component
visor [2]-[10]. Other hypervisor-based approaches layera of our ver|f|cat|on.onlly requires model checking sequential
existing general-purpose virtualization solutions (exgn, ~ Programs, rendering it more tractable. S
VMware, Linux KVM) for convenience, but generally don’t The focus of our verification efforts imemory integritya

require such functionality [1], [11], [13]-[17]. fundamental hypervisor security property. Roughly, memor
integrity denotes that hypervisor memory regions can only

*XMHF is open-source software and is availableatp:/xmhf.org be modified by instructions that are an intended part of

the hypervisor. Without memory integrity, portions of the We list the contributions below, which also serves as a
hypervisor that manage the isolation of memory pagesoadmap to the paper:

are open to n_1a|icious modifications, thereby allowing one, \\e present th®RIVE methodology for designing, devel-
guest to m_odn‘y the code_ or data_ of another guest or the oping, and verifying hypervisamemory integrity(§!11).
hypervisor itself. Memory integrity is therefore essehfia « We design and implementvHF, a hypervisor framework

realizing other important security goals of the hypervisor pased orprivE which supports modular development of
and hypapps, such as data secrecy and availability of the fytyre hypapps (§1V).

hypervisor as well as guests. o « We verify the memory integrity of the<MHF runtime
We call our design methodologgrIVE — “Designing implementation usin@RIVE, and show how to discharge
hypervisors for Rigorous Integrity VErificationbRIVE is the DRIVE verification conditions onxMHF using the

composed of a set of hypervisor properties and system goftware model checkezBmc [22] (§V).

invariants. The hypervisor properties entail the invasan , we carry out a comprehensive performance evaluation of
which in turn imply the hypervisor's memory integrity. — xunr (§VI).

Some of the properties and invariants are guaranteed by
the hardware and the system architecture, while others are Il. GoALS, BACKGROUND AND ATTACKER MODEL
discharged via automated verificati@rIVE makes explicit

which (properties and invariants) must be verified, which ar A. Modular Development and Verification

assumed and which are guaranteed. ThmsivE enables Our overarching goal is to create a hypervisor framework
a synergy between architecture and automated analysis tfat promoteslevelopmenof custom hypapps, while simul-
ensure hypervisor memory integrity. taneously allowingverification of security properties. We

There have been several efforts to verify security-relevanfocus on verifying memory-integrity — a fundamental secu-
properties of hypervisor systems [18]-[21]. However, ¢hes 'ity property and a major component of the tamperproofness
approaches rely on theorem proving, and are less automate@f. any hypapp. This enables the development of hypapps
In addition, they are not focused on designing the targetithout having to worry about the low-level infrastructure
hypervisor in a way that reduces re-verification effortsupo grunge or the hypervisor's memory integrity.
changes to its implementatioxMHF is architected such ~ We strive for a minimal TCB hypervisor design that
that the portions requiring manual re-auditing are smallenables automatic verification of its implementation. Ac-
stable and unlikely to change as development proceedsordingly, we propose &ch single-guest execution model
We emphasize automated verification of the portions of th¢8IV-A). Thus, XMHF supports only a single-guest that
XMHF code base that are subject to change as developmegirectly accesses and manages platform devices after ini-
proceeds, e.g., guest event handling and new hypapps. Coiti@lization. XMHF consists of a core and small supporting
pared to existing effortsgMHF allows verification during its ~ libraries. These are extended, and leveraged, by each pypap
development. This fulfills the design goal ®f1HF to serve to implement its functionality. Our specific design goale:ar
as a framework on which developers build their specific 1) Modular Core and Modular ExtensibilityThe XMHF
hypapp(s) without sacrificing memory integrity. core is built in anodularway. It handles a set of events from

The xMHF implementation currently supports both Intel the guest (e.g., hypercall, nested page-faults) udisginct
and AMD x86 hardware virtualized platforms and is ca-event handlers. Each eventis handled in a sequential manner
pable of running unmodified legacy multiprocessor capableither directly by thexmHF core or handed over to a hypapp
OSes such as Windows and Linux. TR&HF core has a handler, which then performs the desired functionality by
TCB of 6018 SLoC, and its performance is comparabldeveraging a set of APIs exposed ByHF (81V-B1). This
to popular high-performance general-purpose hypervisorgnodular extensibilityallows a hypapp to extendMHF to
We verify memory integrity oikmHF following the prive offer custom features and desired properties.
methodology. Most of th®RIVE verification conditions are 2) Verifiability: The rich single-guest model results in
discharged using the software model checkemc [22]. reduced hypervisor complexity (since all devices are diyec
Out of the 6018 lines of code that comprise theHF core, controlled by the guest) and consequently TCB. Further,
cBMC automatically verifies 5208 lines in about 80 secondsxMHF’s modular coredesign allows independent automated
using less than 2GB of RAM. We manually audit the remain-analysis of the event handlers, which constitute the rumtim
ing 422 lines of C code and 388 lines of assembly languagattack surface. In particular, it enables a software model
code which we anticipate to remain mostly unchanged ashecker to ignore irrelevant code (e.g., via slicing) when
development proceeds. The manual audits include construcverifying a particular property (§8V).
that cemc cannot verify, including loops that iterate over 3) Performance: The rich single-guest model promises
entire page tables, platform hardware initialization amtér- high guest performance as all performance-critical system
action, and concurrent threads coordinating multiple CPUslevices and device interrupts are directly handled by the
that are challenging for current model-checkers. guest without the intervention ofMHF (8VI-B).

B. Hardware Virtualization Primitives Ill. THE DRIVE METHODOLOGY

We focus on the following hardware virtualization prim- We model the virtualized system as a tuplé =
itives offered by the system platform. These primitives are(H, G, D, M), where H is the hypervisor,G represents
supported by current x86 platforms [23], [24], and are alsathe guest,D represents devices, ant is the hypervisor
making their way on embedded ARM architectures [25]. memory containing both hypervisor code and data. B&th
« The CPU executes in two modes, each with a separatend D are attacker controlled. We omit the guest memory,

address space: (a)ost-mode(or privileged mode) — which is separate from\t and irrelevant to memory in-
where the hypervisor executes, and (h)est-modegor tegrity, from the modelbRIVE consists of a set of properties
unprivileged mode) — where the guests execute. aboutH, system invariants, and a proof thatAf satisfies

« At system boot time, the hypervisor is able to execute d&hose properties then the invariants hold on all executidns
designated piece of code in complete isolation. V. This, in turn, implies the memory integrity df in V.

« At system runtime, the hardware provides mechanisms to . .)
ensure that all accesses to system memory are subjectéy HYPervisor Properties Required mRIVE
to an access control mechanism. DRIVE identifies the following six properties that restrict

o The execution state of the guest is maintained in a datthe hypervisor design and implementation, response to the

structure that is inaccessible and/or access controlted fr attacker’s actions, and writes to memory.

unprivileged mode. N Modularity (Mob). Upon hypervisor initialization, control
« The hypervisor is able to associaietercept handlers s transferred to a functionit(). When an intercept is

with certain events caused by a guest (e.g., instructiongriggered, the hardware transfers control to one of the
I/O operations, exceptions and interrupts). The hardwargytercept handlershy (), ..., ihx()

ensures that upon the occurrence of an eventhe Atomicity (AToMm). This property ensures the atomicity

following sequence of actions occur: (1) the execution . .. 7 % . i
state of the guest is saved, (2) execution is switched tgf initialization and intercept handling on the CPU(s). It

host mode, (3) the intercept handler feris executed consists of o Sub-propertiesTAMiy; — at the start of
(4) execution is switched back to guest mode, and (5) the‘z/,s execution,init() runs completely in a single-threaded
’ environment before any other code executeSOwy, —

execution state of the guest is restored and guest executit%ﬁue intercept handlersh, () ihe() always execute in a
. 10)s -0, thy
is resumed. single-threaded environment.

C. Attacker Model Memory Access Control Protection MPROT). H uses

We consider attackers that do not have physical access memory access control mechanistacM. All MacM
to the CPU, memory and the chipset (our hardware TCB)related state is stored ifrf. MacM consists of two parts: (1)
Other system devices and the guest constitute the attackéacMs — for the guest, and (2ylacMp — for the devices.
This is a reasonable model since a majority of today’s atackcorrect Initialization (INIT). After H’s initialization,

are mounted by malicious software or system devices. AfjacM protectsM from the guest and devices. The intercept

attacker can attempt to access memory either (i) duringntry points intoH points to the correct intercept handler.
hypervisor initialization; or (ii) from within the guest dn

by using system devices; or (iii) via hypervisor intercept
handlers triggered by the guest.

Proper Mediation (MED). MacM is active whenever
attacker-controlled programs execute. This implies: @) b
fore control is transfered to the guest)(the CPU is set to
D. System Assumptions execute in guest mode to ensure tN&cM is active, and

We assume that the our hardware TCB provides thd2) MacMp is always active.
correct functionality and that the hypervisor has contmhfl ~Safe State UpdatesRAFEUPD). All updates to system state

integrity [26], i.e., the control flow during the executioh o including M and control structures of the hardware TCB
the hypervisor respects its source code. Ensuring CFI fo(e.g., guest execution state and chipset 1/O), by an inpérce
systems software is an orthogonal challenge to verifyinghandler: (1) preserve the protectionof by MacMin guest

memory integrity. As future work, we plan to reinforce mode and for all devices; and (2) do not modify the intercept

XMHF with CFI and verify its correctness. We also assumeentry point intoH, and (3) do not modifyH's code.

that a hypapp built on top okMHF uses the prescribed _

XMHF core APIs (e.g., changing guest memory protection®- System Invariants

and performing chipset 1/0) and that it does not write to ar- We define two system invariants far that imply H'’s
bitrary code and data. In fact, these are the only assungptiormemory integrity. We say that preserves an invariamt, if
required of any new hypapp to ensure the memory integritywvheninit() finishes,e holds; and at all intermediate points
property ofXMHF. We plan to explore modular verification during the execution o¥’, ¢ holds. The memory invariants,
of the XMHF core composed with hypapps as future work. denotedpr, require thatM is properly protected and that

Primary Partition Secondary Partitions

both the entry point ta/ and the code stored in the entry Mernory and | Bt oads
point have not been modified. Invariapt;.q; requires that > DMA (e.g., portion of
DMA protection has not been disabled. (Sves cparainassem)| consirained | Suesteode
pm =M is designated read-only iMacM and Guest-mode
intercepti jumps to the starting address f; (). T T T T T T mtereepts | T T T T T T T
©umed = MacMp is always active. A I \
Informally, ensuring that these invariants hold on all g X
executions ofV requires bothH and G to preserve these a A 4 :
) . L . . < = cventhub :
invariants. The properties in Section IlI-A entail that } T 5
preserves the invariants. The hardware and the protections | &i :
set up prior to the execution of the guest ensures hat §
cannot violate the invariants as well. = R :
Based on the system invariants apRIVE properties, we Callbacks _‘””s’&’ﬁﬁé}i{r{é’ﬁé}é}i’é;“
extract a sequentialized execution modelifgrwhich makes Y | (orntine copi,Uiin TPM)
a_utomatgd ver|f|_cat|on obRIVE properties feasible. As we '% @I g
discuss in Section V, we use a software model checker |§'\ ‘————F == =, XMHF Runtime,.* | B
cBMmc to verify properties of the C implementation of g Hostmode _ _ _ _ _ _ _ _ _ _ 0N\ ____ ___ p)f
XMHF. CBMC assumes sequential execution, and therefore, | %
the sequentialized execution model makes sure that using |® @
CBMC is appropriate. Properties & and Arom allow V'’s < Platform Hardware)‘_
execution to be sequentialized assuming that the entryt poin

from G to H remain unchanged. The first step after system_ o _ ,
_on is initialization. Subseguently. the svstem aies Figure 1. XMHF rich single-guest architecturexMHF consists of the
ppwer onis iniia :) q .yj Yy XMHF core and small supporting libraries that sit directly on top
either: (1)G (e.g., guest OS) in unprivileged mode; or (2) the platform hardware. A hypapp extends theHF core to implement
D (e_g_ network and graphics card) and is able to perforr‘rﬁhe desired (security) functionalitk\MHF allows the guest direct access
direct ' DMA): int t to all performance-critical system devices and devicerinfgs resulting
irec memory accesse_s (o)’ or (:H (e.g., Intercep in reduced hypervisor complexity, consequently Trustedn@ating Base
handlers triggered byr) in privileged mode. (TCB), as well as high guest performance. Shaded portigmesent code
Given two sequential programé and g, f + g denotes isolated from the rich guest.
the sequential program that non-deterministically exexut
either f or g (but not both), andf | ¢ denotes the parallel
composition of f and g. Both + and | are commutative in host mode. Thus, it must be the case that the guest has
and associative. We writ¢f(x) to denote the execution exited to enteld. Using Mob and Arom and that the entry
of function f given an arbitrary input. The sequentialized point to # and the code off has not been modified, we
executions ofi”, denotedSeq (V) is defined formally as: know that the write must have been called from one of the

Seq(V) = init(x); intercept handlergh; (). O
while(true) {(G + ihy(*) + - -+ + ihg (%)) | D}

C. Proof of Memory Integrity IV. XMHF DESIGN AND IMPLEMENTATION

The key part of the proof is Lemma 1 stating that the
hypervisor properties ensure the invariants; and ¢aseq
hold at all times on all execution traces &f. In other
work, we have formally modeled the program logic 6f
and verified Lemma 1 using a novel logic [27]. Briefly, the
proof is by induction over the length of the execution trace

We highlight the design and implementation decisions that
help makexmMHF minimalistic, enable verification arRIVE
properties onxMHF's C implementation, and make auto-
mated re-verification in the process of hypapp development
possible. We first discuss thech single-guest execution
‘'model of XMHF, show how it enables us to achieve our
Lemma 1. If H satisfiesMoD, AToM, MPROT, MED, INIT design goals (8ll), and provide details of its implemeatati
and SAFEUPD, then o, and g are invariants of all We then show howxMHF’s design and implementation
executions of/. achieve the properties mandatedd®VE to ensure memory
integrity. The high-level design principles behirgiHF are
platform independent. ThemHF implementation currently
supports both Intel and AMD x86 hardware virtualized plat-
forms, and unmodified multi-processor Windows (2003 and
Proof (sketch): Given any write toM, using Lemma 1 and XP) and Linux as guests. HowevemHF design principles
the property of the hardware, we know that write must occumpply to other architectures, such as ARM, as well.

Theorem 2. If H satisfiesMoD, AToM, MPROT, MED,
INIT and SAFEUPD, then in all executions of’, any write
to M after initialization is withinih; ().

A. Rich Single-guest Execution Model 2) Implementation FeaturesiWe discuss the salient im-

. . lementation features of thewiHF rich single-guest execu-
We designxMHF as a Type-1 (or native, bare metal) hyp- 'Ei)on model below gle-9

ervisor that runs directly on the host's hardware to control " 5 o cocs to critical system devic@xitical sys-

the hardware -a_nd to manage a guest OS. Th_e guest runs 8 devices — such as the DMA protection hardware and the
another (unprivileged) level above the hypervisor. Thebar system memory controller — expose their interfaces through

metal design allows for a small-TCB and high performance_:)
hypervisor code base. Recall thawHF consists of the either legacy or memory-mapped l/O. For example, Intel and

XMHF core and small supporting libraries that sit directly AMD x86 platforms expose the DMA protection hardware

‘ f the platf hard A h tends th through the Advanced Configuration and Power Manage-
on top of Ihe piatiorm haraware. ypapp extends WM&, qni interface (ACPI) and the Peripheral Component Inter-
XMHF core and leverages the basic hypervisor and platfor

. . . . "M 5 nnect (PCI) subsystems, respectively. With the richleing
‘E‘;ggﬂ‘;;‘a"}y prc_>V|de_d by t_he core to implement the des'erguest model, the guest could perform direct I/O to these
X y) functionality (Figure 1)XMHF s_upports only a evices, effectively compromising the memory and DMA

single-guest and aII(_)WS the gl_JeSt to directly access an?rotections.XMHF marks the ACPI and PCI configuration
manage platform devices. The §|ngle-guest model allows (Cspace of critical system devices ast-presentusing the
CIogdwsor [5] and-TurtIes [2.8]) s ggest o be another (enor Hardware Page Tables (HPT) (see § IV-B3), and makes the
tradmona!) hyperwsor rur_mmg multiple guest OS?S memory-mapped I/O space of these devices inaccessible to
1) Achieving<MHF Design Goals:We now describe how e guest. A well-behaved guest OS should never attempt to
the rich single-guest model enables us to achieveiF's ;-.ess these regions.
design goals previously presented in 8. Guest memory reportingA native OS during its bootup
Modular Core and Modular Extensibilityin the rich yses the BIOSI(NT 15h E820 interface) to determine
single-guest execution model, the hypervisor interacts wi the amount of physical memory in the system. However,
the guest via a well-defined hardware platform interface. Inyith xmHE loaded, there must be a mechanism to report
XMHF, this interface is handled by thevHF core or hypapp a reduced memory map excluding the hypervisor memory
handlers. ThexmHF core and supporting libraries expose aregions to the guest. If not, the guest at some point during it
small set of APIs that allow a hypapp to extend theHF jnjtialization will end up accessing the protected hypsovi
core to offer custom features and security guarantees. memory areas, which is difficult to recover from gracefully.
Verifiability: Since all devices are controlled directly Currently, this causesMHF to halt. XMHF leverages HPTs
by the guest,XMHF does not have to deal with per- to reporta custom system memory map to the guest. During
device idiosyncrasies that arise from devices that are ndhitialization XMHF replaces the original NT 15 BIOS
completely standards-compliant. In additionyHF does interface handler with a hypercall instruction. TR&HF
not need to perform hardware multiplexing, an inherentlyhypercall handler then presents a custom memory map
complex mechanism that can lead to security issues [30}yith the hypervisor memory region marked raservedand
[31]. This results in a small and simple hypervisor code-resumes the guest.
base. Further, the system devices (including interrupt con))
trollers) are directly in control of the guest. Therefor#, a B- Ensuring Memory Integrity
(device) interrupts are configured and handled by the guest To achieveDRIVE properties,XMHF relies on platform
without the intervention okMHF. This allowsxMHF to be hardware support, which includes hardware virtualizgtion
designed for sequential execution (i.e., no interruptfiwit two-level Hardware Page Tables (HPT), DMA protection,
the hypervisor) while at the same time allowing the guest teand dynamic root of trust (DRT) support. These capabilities
use multiple CPUs and be concurrent. The sequentializatioare found on recent Intel and AMD x86 platforms. Similar
together with the small and simple hypervisor code-baseapabilities are also forthcoming in ARM processor plat-
enables us to dischargerIVE verification conditions on forms [25]. While this breaks backward compatibility with
the XMHF code-base automatically using a software modeblder hardware, it allowsMHF’s design to be much smaller
checker (8V). and cleaner while achieving tlERIVE properties to ensure
Performance: Since all (device) interrupts are config- memory integrity.
ured and handled by the guest without the intervention 1) EnsuringMoD: TheXMHF core and a hypapp interact
of XMHF, guest performance overhead is minimal (thewith a guest environment via an event-based interface. Un-
guest still incurs hardware memory/DMA protection over- like regular application interfaces, this event-baseedrfate
head) and comparable to popular high-performance generab supported by the underlying hardware and is well-defined.
purpose hypervisors (8VI-B). The xMHF core only handles a small subset of this interface
and allows a hypapp to configure and handle only the
1This requires emulation of hardware virtualization supperhich is required events. This reduces the interface surface andsavo
feasible in around 1000 lines of additional code as evidgigeKVM [29]. unnecessary guest event traps at runtime. Nevertheless, th

event-based interface is versatile enough to enable develoquiescing Specifically, when an intercept is triggered on a
ment of a variety of applications with interesting security CPU C, XMHF acquires a global intercept lock and sends an
properties and functionality [1]-[11], [13]-[16], [32]. NMI to all other CPUs (excluding’ itself). Since the NMI
XMHF leverages CPU support for hardware virtualizationcannot be masked, this causes the target CPUs to receive an
to capture and handle events caused by a guest operatitfdMI. The NMI handler is invoked, which is an idle spin-lock
environment. For example, recent x86 and embedded ARNbop that stalls the CPU on which it runs. Once the intercept
hardware virtualized platforms define a setrikrceptsthat has been handled ofi, XMHF signals the spin-lock which
transfer control to the hypervisor upon detecting certaincauses the other CPUs to resume.
guest conditions [23]-[25]. ThexMHF core gets control Note that DRT automatically disables NMI generation,
for all intercepted guest events and in turn invokes theso the xMHF secure-loaderand runtime initialization are
correspondingkMHF/hypapp callback to handle the event guaranteed to be single-threaded. TheHF core then sets
(Figure 1). ThexmHF/hypapp callback has the option of up the NMI handler as described above. At runtime, a NMI
injecting the event back into the guest for further progessi handler execution on a given CPU is also guaranteed to be
if desired. The event-callback mechanism therefore allowsitomic. The CPU initiating the quiescing will wait for all
hypapps to easily extend corxaiHF functionality to realize the other CPU NMI handlers to enter the idle spin-lock loop
desired functionality in the context of a particular guest. before proceeding to execute an intercept handler.

Both Intel and AMD x86 platforms transfer control to a 3) EnsuringMPROT: XMHF uses HPTs for efficient guest
single designated entry point within the hypervisor upon amemory access control. In particular, the hardware ensures
guest intercept. The core@venthubcomponent is the top- that all memory accesses by guest instructions go via a
level intercept entry point inKMHF. For each intercepted tyo-|evel translation in the presence of the HPT. First, the
class of event theventhubcomponent invokes a distinct jrtyal address supplied by the guest is translated to atgues
hypapp callback with the associated parameters in the corynysical addresses using guest paging structures. Next, th
text of the CPU on which the intercept was triggered. gy est physical addresses are translated into the actdaisys

2) EnsuringATom: For the initializationinit(), XMHF pnysical addresses using the permissions specified within
leverages DRT to ensure its execution atomicity @Mint). the HPT. If the access requested by the guest violates the
A DRT is an execution environment created through apermissions stored in the HPT, the hardware triggers an
disruptive event that synchronizes and reinitializes &S intercept indicating a violation.

In the system to a known good stat.e. It also disables all XMHF leverages hardware DMA protections to protect its
interrupt sources, DMA, and debugging access to the neW,o o1y regions from direct access by devices. The DMA
Enwrclmrr(;ent.;(MHF S L?}JECh prost;_s CO(;‘SI'StZ Off“'HF protection is part of the hardware platform (e.g., chipaag
oot-loaderthat establishes a DRT and loads thBIHF g ghecified using a DMA table withirMHE. In particular,
secgre-loadenn_a memory constrained hardware protectedthe hardware ensures that all memory accesses by system
envgonment (l;lgurel 1)('1 he GETSED S devices are translated using the permissions specifiedwith

-l(; g XMHF COOt' oader uses the TI EC[d ENTER] 86 the DMA table. The hardware disallows DMA if the access
and SKINI'T CPU ‘instructions on Intel and AMD x86 ¢4 ested violates the permissions stored in the DMA table.
platforms respectlvgly, to create a DRT an_d bootstrap the XMHF uses the Extended Page Tables (EPT) and Nested
XMHF secure-loadein a memory-protected single-threaded Page Tables (NPT) on Intel and AMD x86 platforms respec-
ﬁ'\rilt\i/glorr]ng?nn;.r Thg('\i/'nHF;ne dCUIST\;IleadreCJrltgcttliJ(;E Zitj tL: znt;‘(;rs tively for guest memory access control. On Intel platforms,

y paging P . XMHF uses the VT-d (Virtualization Technology for Directed
control t.o theTXM.HF. co.restartupcomponent which performs 1/0) support to provide DMA protection. The VT-d page ta-
the runt_lme _|n|t|al|zat|0n. . bles contain mappings and protections for the DMA address

T_he rich smgle-gue_st execut_|0n r.nOdel.a"OMHF FO be space as seen by system devices. On AMD platfoxmisiF
designed for sequential execution (i.e., without any nofets relies on the Device Exclusion Vector (DEV) for DMA

within the hypervisor). However, on multicore platforms - L .
there can st)i/IF be cor)murrent execution within t'r)]e hyper_protectlon. DEV's bitmap structure allows DMA protection

. . . . to be set for a given memory address range.
visor during intercept handling. Thus, to ensurg&oAiy, 9 y g

XMHF uses a technique call&@PU-quiescing Using CPU- 4) EnsuringINIT: During_inij[ializationXMHF sets up the
quiescing, the moment an intercept is triggered on a specifi!” 1S and DMA table permissions so that memory addresses

CPU, xMHF stalls the remaining CPUs. Once the interceptcOesponding to the hypervisor memory regions are marked
has been handled, the stalled CPUs are resumed and contfgd-onlyand therefore cannot be modified by either the

is transferred back to the guest. The quiescing latency i§UeSt Or system devices.

low enough so as not to break any delay-sensitive device The XMHF core memprotand dmaprot components set
/0 (see §VI-B2). up the EPT/NPTs and the VT-d/DEV DMA protection

XMHF uses the Non-Maskable Interrupt (NMI) f@PU- permissions on Intel and AMD x86 platforms respectively.

5) EnsuringMED: During initialization,XMHF activates /O encompassing a single physical memory pageHr
the platform hardware DMA protection mechanism that endeverages Hardware Page Tables (HPTSs) to trap and intercept
forces DMA access control for hypervisor memory accesseaccesses to the LAPIC memory page by the guest OS.
by system devices. More concretely, theHF coredmaprot Subsequently, any writes to the LAPIC ICR by the guest
component activates the VT-d and DEV DMA protection causes the hardware to trigger a HPT violation interceps. Th
mechanisms on Intel and AMD x86 platforms respectively,XMHF core handles this intercept, disables guest interrupts
to prevent system devices from accessing memory regiorand sets the guestap-flag and resumes the guest. This
belonging toXMHF. causes the hardware to immediately trigger a single-step
Access control protections for guest memory accessestercept, which is then handled by theHF core to process
are described by the HPTs and enforced by the CPUhe instruction that caused the write to the LAPIC ICR. If
when operating within guest-modgMHF usespartitions a startup command is written to the ICRMHF voids the
to contain guest code and data. A partition is essentially @nstruction and instead runs the target guest code on that
bare-bones CPU hardware-backed execution container thaore in guest-mode.
enforces system memory isolation for the guest or a portion 6) EnsuringSAFEUPD. XMHF requires both thexmHF
of it based on HPTs that are initialized by the hypervisor.core and the hypapp to use a set of well-defined interfaces
XMHF creates a primary partition in order to run the guestprovided by the core to perform all changes to the HPTs.
operating environmenkMHF can also instantiate secondary These interfaces upon completion, ensure that permissions
partitions on demand when requested by a hypapp. Theder the hypervisor memory regions remain unchanged. In
secondary partitions are capable of running specified codéhe currentxMHF implementation, a singlexmHF core
within a low-complexity isolated environment, which is APl function set prot provided by the corememprot
explicitly designed without support for scheduling or aevi component allows manipulating guest memory protections
interaction (Figure 1). This is useful when a hypapp wishesia the HPTs.
to implement desired security properties at a fine grartylari

e.g., portions of an untrusted application within the ofirca hi . ificati ff h
environment (e.g., TrustVisor [7] and Alibi [1]). In this section we present our verification efforts on the

The XMHF core partition component uses the XMHF implementation. We discuss whi@RIVE properties
VML AUNCH VVRESUME and VMRUN CPU instructions on &€ manually audited and why they are likely to remain valid
Intel and AMD x86 platforms respectively to instantiate 9Uring XMHF development. We also show how most of the
partitions. The following paragraphs describe howHF verifications of DRIVE properties are reduced to inserting

supports multi-processor guests while ensuring hypeirvisoassert'or'S I'InXMHFS source code, WP'Ch IS then c_r;e_cked
memory protection. automatically usingcBmc [22]. As our focus is on verifying

On x86 platforms, only one CPU — called the boot-strapthe memory integrity of thexMHF core, we use a simple

processor (BSP) — is enabled when the system starts. Tﬁ’g{p_apﬁ) fc;]r verificl‘l';lt.ion ?urposes. Th_e fllypapp implements
other CPUs remain in halted state until activated by softwar & SINGI€ Nyperca énter ace to mglnlpu ate_guest memory
running on the BSP. During its initializatiomMHF activates protections via Hardware Page Tables (HPT).

the remaining CPUs and switches all the CPUs (includingA. Overview

the BSP) to host-mode. NexxMHF sets up the HPTS on 1he ymue verification process is largely automated. We
all the cores and switches the BSP to guest-mode to Stafﬁanually audit 422 lines of C code and 388 lines of
the guest; the remaining CPUs idle in host-mode Wlthlnassemb|y language code. The manual auditing applies to
XMHF. Finally, the XMHF core smpguesttomponent USeS fnctions in xMHF core that are unlikely to change as

a combination of HPTs and intercept handling (describedjeyelopment proceeds. The automatic verfication of 5208
below) to ensure that the remaining cores are switched tQnes of C code usesBMC.

guest-mode before they execute guest code. This ensutes tha|, aqdition to the system assumptions presented in 8lI,

HPT access control is always enabled for all CPU cores. the soundness of our verification results depends on two
A native multicore capable OS, on the x86 platform, usesggitional assumptions: (BMc is sound. i.e., ifcBMC

the CPU Local Advanced Programmable Interrupt Controllerreports thatxMHF passes an assertion, then all executions

(LAPIC) for multicore CPU initialization [23], [24]. More of ymHE satisfy that assertion: and (i) themMHF core

specifically, the LAPIC Interrupt Control Register (ICR) is jnterface — determined by the available types of hardware

used to deliver the startup sequence to a target core. Qpyalization intercepts — is complete, i.MHF handles
x86 platforms, the LAPIC is accessed via memory-mappeg| possible intercepts from guests.

V. XMHF VERIFICATION

2Such CPU execution containers are often called hardwateatima- ~ B. Verifying Modularity M oD)

chines in current parlance. However, this is a misnomer incase since, W . M b . . th d f
technically, a virtual machine presents to the guest aalided view of € Ve”fy OD Dy engineering € source code o

the system devices in addition to enforcing memory isatatio XMHF to ensure that the implementations ofit() and

. . //start a partition by switching to guest-node
ih1(), ..., ihi() are modular (recall 8llI-A). ThexmMHF //cpu = CPU where the partitionis started

core startup component implements theénit() function void xmhf_partition_start(int cpu)
in XMHF. It first performs required platform initialization,
initializes memory such that MBOT holds, then starts the 4 fdef VER FY

guest in guest-mode. ThemHF core eventhubcomponent assert(cpu_HPT enabled);
i ; ; i P assert(cpu_HPT base == HPT_base);
implementsih (), ..., ihi() in XMHF. More specificially, assort(opuintercept handl ar == i hub):

the eventhulcomponent consists of a single top-level inter- 4ongi

cept handler function which is called whenever any guest //switch to guest-node

intercept is triggered. We refer to this function #s:b(). }

The arguments ofhub() indicate the actual intercept that Figure 2. Outline ofxnmhf partition_start, the function

: : used to execute a targetpu in guest-mode.cpu_HPT_enabl ed
was triggered. Based on the value of these arguménisy) and cpu_HPT_base enforce hardware page table (HPT) protections.

executes an appropriate sub-handler. cpu_i nt er cept _handl er is where the CPU transfers control to when
an intercept is triggered in guest-moddPT_base and i hub are the
C. Verifying Atomicity ATom) XMHF initialized HPTs and the intercept handler hub respegtivEhese

. . assertions allow automatic verification bRIVE properties NIT and MED
We rely on the hardware semantics of Dynamic ROOt-in xmHr using a model checker.

of-Trust (DRT) (81V-B2) to discharge POMyi. There are
preliminary verification results of the correctness of DRT
at the design-level [33], which forms the basis of our The manual audits involve 311 lines of C code and 338
assumptions on DRT'’s semantics. lines of assembly language code which include platform
We check Aowmy, by manually auditing the functions hardware initialization, loops including runtime pagingda
implementing CPU-quiescing (8IV-B2). More specifically DMA table and HPT setup, and concurrency in the form
we manually audit three C functions which are responsibledf multicore initialization withinXMHF. Given the stable
for stalling and resuming the CPUs and for handling thehardware platform and multicore initialization logic aslwe
NMI used for CPU quiescing, to ensure proper intercep@as paging, DMA and HPT data structure initialization re-
serialization. While these checks are done manually, wejuirements, we postulate that the manually audited code
believe that it is acceptable for several reasons. Firgt, thwill remain mostly unchanged as development proceeds,
functions total to only 60 lines of C code. They are largelyensuring minimal manual re-auditing effort.
self-contained (no dependent functions and only four dloba 1) DMA table and HPT initialization:The XMHF secure-
variables) and invoked as wrappers at the beginning antbader and theXxMHF core startup component set up the
end of the intercept handlers. Therefore, we only need t®@MA table to prevent system devices from accessingiF
perform manual re-auditing if any of the CPU-quiescingmemory regions. We manually audit the C functions respon-
functions themselves change. Given the simple design ansible for setting up the DMA table to verify that the functgon
functionality of quiescing, and based on our developmengassign entries in the DMA table such that all addresses in
experience so far, we anticipate the quiescing functions toV are desighatedead-onlyby devices.

remain mostly unchanged as development proceeds. Before thexmMHF init() function transfers control to the
o guest, it calls a C function to setup the HPTs for the guest.
D. Verifying MPROT We manually audit this C function to verify that the function

MPRoOT is always preserved bymHF since the HPTs and assigns each entry in the HPTs such that all addressé$ in
DMA protection data structures are statically allocate@ W are designated read-only by the guest.
verify MPROT automatically by employing a build script ~ 2) Intercept entry point: The XMHF init() function
that inspects relevant symbol locations in the object andinally invokes thexmhf _partition_start function to
executable files produced during the build process to ensurgtart the guest in guest-mode. We insert an assertion
that the DMA protection and HPT data structures residdn xmhf _partition_start and use cBMC to auto-
within the correct data section in hypervisor memavy. matically verify the assertion. The inserted assertion in

o xnmhf _partition_start checks that the CPU is setup to

E. VerifyingINIT transfer control taihub() on an intercept (Figure 2).

INIT is checked by a combination of manual audits and o
automatic verification on th&MHF source to ensure that F VerifyingMeD
beforexMHF’s init() function completes, the following are ~ MED is verified by ensuring the following: (LXMHF’s
true: DMA table and HPTs are correctly initialized so thatinit() function in the end sets the CPU to execute in guest-
memory addresses corresponding to the hypervisor memorypode with the appropriate hardware memory protections
regions cannot be changed by either the guest or systein place. In particular, in a multicore system, every CPU
devices; and the intercept entry point ¥MHF points to that is initialized is set to execute in guest-mode. (2) DMA
ihub(). protection is always active duringvuHF runtime. We insert

. . //top-level intercept handler
assertions irKMHF source code and USEBMC to automat- ;/cpy = CPU where intercept triggered

ically verify these assertions. /1x = triggered intercept
1) Guest-mode execution: XMHF initializes VO;/d Ihﬁgi(lnngogsubfl imhu)t;){
memory protection for a CPU and finally uses thegfdef VER EY
xmhf _partition_start function to execute a target CPU assert(cpu_HPT_enabl ed);
in guest-mode. Therefore, we verify that CPU transitions g:::;:g ggﬂ—i'*rﬁ’jgf’izgt = Ml base) o .
to the correct guest-mode by model-checking the validityyengi - - ’
of assertions inserted in thenhf partition_start }
f_unctlo_n (Figure 2). The assertions check that appropriate, = . page fault handl er
fields in the MMU data structures are set to point to theyoid ih_npfe(){
correct HPTs and that HPT protections are in effect beforeti f def VERI FY

using the CPU instruction that performs the switch to#eingffpre—“pfe = NPFELAPI C_TRI GGEREY) ;

guest-mode. /1...main body of ih npfe
On a multicore platformxmMHF uses a combination of #ifdef VERIFY
the nested page fault’(_npf) and the single-stepif_db) ~, assert (tpre_npfe [| GUEST_TRAPPING(cpu));

intercepts to ensure that each CPU that is initialized iscset
execute in guest-mode (via return frohub()) before it ex- _ _
ecutes any attacker code (recall §1V-B5). More specifically%iszj”?'he;jgz)e? exception handler
XMHF maps the LAPIC to a page it during initialization. 4 f def VER FY
Subsequently, assumingpnSEUPD holds, ensuring MD on int pre_dbe = LAPI C_I| CRWRI TE() ;
multicore systems reduces to verifying that: {f)_npf () #e??'f . .
.main body of ih_db
disables guest interrupts and sets the guest trap-flag QR fdef VER FY
access to the LAPIC memory-mapped I/O page, and (ii) assert (!pre_dbe || CORE_PROTECTED(cpu));
ih_db() prevents a direct write to the LAPIC Interrupt #endif
Control Register (ICR) upon detecting a startup command_ _ _ _ _
and instead runs the target guest codeCoin guestmode P % Oulne ofit(), te fop ke miercept hander unctn,
We check this property by a combination of manualNPFELAPI C_TRI GGERED() = true iff the npf intercept was trig-
audits and automatic verification by model-checking thegered in response to the guest accessing the LAPIC memqopeda
valdity of asserions inserted (), . npi andih db /0, 8% SEST_TRPR \eicpu) = we i e CPU cenied by
(Figure 3). The assertions check that the appropriate coreapi c | CRAWRI TE() = true iff a write was performed to the LAPIC
is switched to guest-mode if the single-step intercept igCR. CORE_PROTECTED(cpu) = true iff the LAPIC ICR write was
triggered. The manual audits comprise of 51 lines of C Cod%sallowed upon detecting a startup commaogu_HPT_enabl ed and

A . pu_HPT_base are the MMU fields that enforce hardware page tables
which correspond to the LAPIC page mapping setup angHPT). cpu_i nt er cept _handl er is the field that the CPU transfers

haning wthinini() _npt and i, ol i s W Y e e o o e

) 2) DMA protect_lon: Th_e XMHF secure-loadeis started tively. These macros and assertions allow a modelFz:hecl<amltt|rmaticalIyp
via a DRT operation which ensures that thecure-loader verify priveE MED in XMHF.

memory is automatically DMA-protected by the hardware

(8IV-B2). The XMHF secure-loademactivates DMA protec-

tion for thexmHF runtime before transferring control to the or the hypapp modify their own code regions and the entry
XMHF core startup component which, during initialization, point to the hypervisor, verification ofASEUPD is reduced
re-activates DMA protection before transferring contml t to checking that wheset prot completes, all hypervisor
the guest. The DMA protection activation is done by settingmemory addresses are still protected. We additionally know
the appropriate bits in the DMA protection hardware regis-that afterxMHF’s init() function completes, the hypervisor
ters to enforce DMA protection. We verify this by model- memory is protected (§8V-E), so we further reduce the
checking the validity of a properly inserted assertion inverification obligation to checking thatet prot does not
XMHF, as shown in Figure 4. The inserted assertion checkslter the protection bits of hypervisor memory regions

that the relevant (enable) bit is set in the DMA protection Similar to before, we useBMC to automatically verify
hardware register value before writing to the register toset prot does not alter the protection bit of the hypervisor

enable DMA protection. memory by inserting an assertion preceding every write op-
o eration to the HPTSs, checking that the address being written
G. Verifying SAFEUPD to does not belong to the hypervisor. More concretely, the

Under the assumption that tkkHF core and the hypapp hypervisor memory is maintained in a contiguous set of ad-
only modify guest memory protections through the coredresses beginning &VLO and ending aHVHI . Therefore,
API function set prot, and that neither thkMHF core every statement that potentially modifies the permission of

/lactivate DVA protection . .
challenges that continue to garner attention from the re-

#i f def VERIFY search community. For example, a number of other tools
#eﬁfo”(control reg_val ue & DVAP_ENABLE) ; (see [35] for a list) are being developed for verifying
DMAPwr i t e(control reg, control reg val ue): concurrent C programs. There are design-level verification

techniques [36], [37] that could be employed to address the

Figure 4. Outline of DMA protection activation iMHF. control reg Scalability problem (e.g. loops) with current model-chersk
and control reg_val ue are the DMA protection hardware control for hypervisor designs. We plan to explore their applidabil
register and register value respectivdl/AP_ENABLE enables the DMA in the future

protection andDVAPwr i t e writes a value to a given DMA protection :
hardware register. The assertion allows a model checkeutmretically

verify DMA protection activation and consequentyrIVE MED in XMHF. VI. EVALUATION
//set pernission of address a to p We present the TCB size ofMHF’s current implemen-
void xmhf_menprot_setprot(int a, int p) tation and describe our efforts in porting several recent
{ hypervisor-based research efforts as hypapps running on
//the fol | owing assertion precedes every XMHF. We then present the performance impact on a legacy
//statement that sets perm ssion of guest operating system running @mHF and evaluate the
#i]{szgdi/gafma(top performance overhead thatvHF imposes on a hypapp.
assert (a < HVLO || a > HVHI); We also comparexMHF’s performance with the popular
#endi f open-source Xen hypervisor. These results explain the basi
y hardware virtualization overhead intrinsic to the desidn o

XMHF. Finally, we discuss our verification results.
Figure 5. Outline of thexmHF core API functionset pr ot , which is y

used to modify guest memory protections via the Hardwaree Piaples . .
(HPT). The assertion allows a model-checker to verifive SAFEUPD. A. XMHF TCB and Case Studies with hypapps

XMHF's TCB consists of thexMHF core, the hypapp

a memory address is preceded by an assertion that checksanOI supporting libraries used by the hypapp. i

thata < HVLOV a > HVHI , as shown in Figure 5. supportmg I|brar|es.(t0tallng _around 8K lines of_C code)
currently include a tiny C runtime library, a small library o

H. Discussion cryptographic functions, a library with optional utilityc-
1) Modular Development and VerificatiorMHE's ver- tions such as hardware page table abstractions and command
ification is intended to be used as part of theHF build line parsing functions, and a small library to perform usefu

process automatically. Developers of hypapps are not rel M operations. From a hypapp’s perspective, the minimum
quired to deal with the verification directly. This is simita 1B _€xposed byxMHF comprises thexmHF core which
other approaches such as the SDV tool [34] which packagetonsists of 6018 SLoC.

the device driver verifier as part of the driver verifier kit e demonstrate the utility ofMHF as a common frame-
for Windows. Developers, however, must adhere to theVOrk for developing hypapps by porting several recent open-
prescribedxMHF core APIs when changing guest memory SOUrce research efforts in th.e hypervisor spacevsF. Fig-
protections or accessing the hardware TCB control strastur Uré 6 shows the SLoC metrics and platform support for each
(e.g., performing chipset 1/O or accessing hardware virtuayPapp before and after the porbteiHF. Trustvisor [7] and
machine control structures). Developers must also ensurePckdown [2] are fully functional, and their code sizes are
that hypapp code does not perform writes to code or writdrécise. The development of HyperDbg [8], XTRec [6] and
to arbitrary data that is not part of the hypapp. SecVisor [10] is sufficiently advanced to enable estimation

Note that the assertions and verification statements in@f their final sizes via manual inspection of their existing
serted in thexMHF code are for use bgewmc only. Once ~ SOUrces and q_|ﬁerept|at|pn between the hypervisor cote an
CBMC reports a successful verification, these statements arftyPapp-specific logic. Figure 6 shows that teHF core
assertions are proven unnecessary, and can therefore [¥MS 48% of a hypapp’s TCB, on average. This supports
removed in the production version aivHF, so that they ©Ur hypothesis that these hypervisors share a common
do not hinder performance. hypervisor core that is re-used or engineered from scratch

2) Manual Audits: The manual audits described in the With every new application. Also, usingvHF endows the
previous sections include constructs taavc cannot ver- NYPapps with support for x86 muticore platforms from both
ify, including loops that iterate over entire page tableg(e Ntel and AMD for free.
runtime paging, DMA table and HPTSs), platform hardware
initialization and interaction (e.g., CPU, LAPIC, BIOS and B. Performance Measurements
PCI) and concurrency (e.g., multicore initialization viith We measurexMHF’s runtime performance using two
XMHF and multicore guest setup). These are verificatiormetrics: 1) guest overhead imposed solely by the framework

Original On XMHF

hypapp SLoC Arch. Support| Multicore | XMHF hypapp | Total % XMHF | Arch. Support Multicore

Support core + libs. | SLoC core Support

SLoC SLoC

TrustVisor | 6481 x86 AMD No 6018 9138 15156 | 40% x86 AMD, Intel | Yes
Lockdown | ~10000 | x86 AMD No 6018 9391 15409 | 40% x86 AMD, Intel | Yes
XTRec* 2195 x86 AMD No 6018 3500* 9500* 63%* x86 AMD, Intel | Yes
SecVisor* | 1760 x86 AMD No 6018 2200* 8200* 73%* x86 AMD, Intel | Yes
HyperDbg* | 18967 | x86 Intel No 6018 17800* | 23800* | 25%* x86 AMD, Intel | Yes

Figure 6. Porting status of several hypervisor-based spenee research efforts asHF hypapps. Note (*) the development of HyperDbg, XTRec and
SecVisor is sufficiently advanced to enable estimation efrtfinal sizes via manual inspection of their existing sesrand differentiation between the
hypervisor core and hypapp-specific logic

(i.e., without any hypapp), and 2) base overhead imposed btpalization including HPT and DMA protections (8VI-C).

XMHF for a given hypapp. We expect these overheads to diminish with newer HPT
Our platform is an HP Elitebook 8540p with a Quad-Coreand DMA protection hardware. In general, for both compute

Intel Core i7 running at 3 GHz, 4 GB RAM, 320GB SATA and I/0 benchmarksyMHF with 2MB HPT configuration

HDD and an Intel e1000 ethernet controller, using Ubuntuperforms better thanmHF with 4KB HPT configuration.

12.04 LTS as the guest OS running the Linux kernel v3.2.2.

For network benchmarks, we connect another machine via a 2) Performance of hypappsA hypapp built on top of

1 Gbps Ethernet crossover link and run the 8540p as a servetMHF incurs two basic runtime overheads: (a) when the

We usexMHF with both 4K and 2MB hardware page table hypapp is invoked via intercepted guest events (including

(HPT) mappings for measurement purposes. a hypercall), and (b) when the hypapp quiesces cores in a
1) Guest PerformanceWith the rich single-guest execu- multi-core system in order to perform HPT updates.

tion model (8IV-A) all platform devices are directly acceds

and managed by the guest without any intervention (traps? When the hypapp is invoked, the CPU switches from guest
by XMHF. Further, thexMHF runtime gets control only when 0 host mode, saving the current guest environment state and

a configured guest event is explicitly triggered (§IV-B1). !oading the host env.ironment state. After the hypappfirs'she
Thus, when a well-behaved legacy guest runs, the perfOIIIS task, the CPU switches back to guest mode by performing

mance overhead is exclusively the result of the hardward1® reverse environment saving and loading. Thus, there is

virtualization mechanisms, particularly the Hardware éag & Performance impact from cache and TLB activity. We

Tables (HPT) and the DMA protection. measure this overhead by invoking a simple hypercall within
We execute both compute-bound and 1/O-bound applith® guest and measuring the round-trip time.

cations with XMHF. For compute-bound applications, we aq described in §8IV-B2xMHF employs CPU-quiescing

use the SPECint 2006 suite. For 1/O-bound applicationsy, gpvp platforms to ensure intercept serialization xAsiF

we use the iozone (disk read and write), compilebenchqas the NMI for this purpose (8IV-B2), it results in a

(project compilation), and unmodified Apache web server e formance overhead. We measure this overhead by using
performance. For iozone, we perform the disk read and, gimple hypapp that quiesces all other cores, performs a
write benchmarks with 4K block size and 2GB file size. Nop, and then releases them, all in response to a single guest

We use the compile benchmark from compilebench. We rufy nercall event. We use a guest application that invokes the
Apache on top ofxMHF, and use the Apache Benchmark hypercall and measure the round-trip time.

(ab) included in the Apache distribution to perform 200,000
transactions with 20 concurrent connections. The hypapp overheads otMHF for both 4K and 2MB

Our results are presented in Figure 7. Most of the SPEGPT configurations, for intercepted guest events and quiesc
benchmarks show less than 3% performance overhead. Howrg are on average 10 and 13.9 micro-seconds respectively.
ever, there are four benchmarks with over 10%, and twdMe note that these hypapp overheads occur every time
more with 20% and 55% overhead. For I/O applicationa guest event is intercepted. Depending on the hypapp
benchmarks, read access to files and network access incdtsctionality this may happen less frequently (a typical
the highest overhead (40% and 25% respectively). Thand desirable approach today, as evidenced by the hypapps
rest of the benchmarks show less than 10% overhead. Wdiscussed in 8VI-A) or more frequently. In either case, the
attribute the high compute and I/O benchmark latency taverheads are chiefly due to the hardware (intercept world-
benchmark operations that stress the paging logic invglvin switch and NMI signaling). We expect this to diminish as
the HPT and 1/0 DMA logic involving the DMA access con- hardware matures. As these overheads reduce, we could
trol tables. These overheads are comparable to other deneraonceivably have hypapps interact with the guest in the same
purpose high-performance hypervisors using hardware virspirit as regular applications interact with OS kernelsatod

B xmhf-4K B xmhf-2M B xmhf-4K B xmhf-2M

100 1 _. 100
o} o}

£ 80 A £ 80

2 2 60
< 60 - <

E + 40
[}

S 40 - ® 20
£ £

o 20 1 o 0
2 >
E 0 E
NI > & K Q xR

°© 80@'\\0\0,‘;‘? Q?S' &5 éoé‘_&@é é\é‘o" o'bé& "9&& Qrz’,‘q ’b'—}:S\ zé:c ° 00
£ O D LS DTS SN A
@09 L G b‘-”&é‘}\ & Q\," 4 sg,.*-)

Figure 7. xmHF Application Benchmarksxmhf-4K = 4K HPT mapping;xmhf-2M = 2MB HPT mapping.

Prog. OoP SP VCC Vars CLS Tp T M

 xmhf-4K B xmhf-2M P | 1654 | 1452 | 111 | 437K | 1560K | 25 | 76 | 1.9

= xen-dom0 u xen-domU-hvm P | 1667 | 1465 | 116 | 438K | 1561K | 27 | 81 | 1.9

 xen-domU-pehvin xen-domU- passthry PJT | 1668 | 1466 | 116 | 438K | 1561K | 25 | 79 | 1.9
5 PM | 1669 | 1467 | 116 | 438K | 1561K | 25 | 79 | 1.9
5 P | 1653 | 1451 | 117 | 463K | 1668K | 25 | 80 | 1.9
2100 PL [1679 | 1477 | 111 | 476K | 1728K | 28 | 82 | 1.9
T 80 PL | 1654 | 1452 | 111 | 437K | 1550K | 25 | 79 | 1.9
£ 60 PL | 1652 | 1450 | 111 | 437K | 1550K | 25 | 79 | 1.9
< 40 PL | 1634 | 1441 | 111 | 437K | 1560K | 25 | 79 | 1.9
s 20 PL | 1652 | 1450 | 111 | 437K | 1560K | 24 | 78 | 1.9
g 0 PL | 1652 | 1450 | 111 | 437K | 1560K | 25 | 79 | 1.9
R

Figure 9. xMHF verification results withcemc. OP = number of
assignments before slicing; SP = number of assignmentssiifteng; VCC

= number of VCCs after simplification; Vars = number of vakesbin SAT

formula; CLS = number of clauses in SAT formulay E time (sec) taken
by SAT solver; T = total time (sec); M = maximum memory (GB)

Figure 8. xMHF Performance Comparison with XermMHF and Xen have
similar performance for compute-bound and disk 1/0-boupglieations;
XMHF performance is closer to native speed than Xen for netw@k-I

overhead (20-30%). xen-domO0 and xen-domU-passthru incur
a 45% and 60% overhead respectively, while xen-domU-hvm
C. Performance Comparison and xen-domU-pvhvm have more than 85% overhead.

We now comparexMHF’s performance with the popular
Xen (v 4.1.2) hypervisor. We use three hardware virtual
machine (HVM) configurations for domU, that are identical We now describe our experiments in verifyirmrIVE
in memory and CPU configuration to the native system:properties and invariants by model-checking theHF
HVM domU (xen-domU-hvm), HYM domU with paravirtu- implementation. These verification problems are reduced
alized drivers (xen-domU-pvhvm) and HYM domU with pci- to proving the validity of assertions in a sequential C
passthrough (xen-domU-passthru). We also use domO0 (xefprogrampP (8V). We discuss our experience in using several
domO) as a candidate for performance evaluation. We use theublicly available software model checkers to verify All
compute and 1/0-bound application benchmarks as describegkperiments were performed on a 2 GHz machine with a
previously (see 8VI-B1). Figure 8 shows our performancetime limit of 1800 seconds and a memory limit of 10GB.
comparison results. For compute-bound applicatiomsiF 1) Experience withcemc: cBMcC [22] is a bounded
and Xen have similar overheads (around 10% on averagefhodel checker for verifying ANSI C programs. It supports
with the 2MB xMHF HPT configuration performing slightly advanced C features like overflow, pointers, and function
better. For disk I/O benchmarksmHF, xen-domO and xen- pointers, and can find bugs such as pointer dereferencing
domU-pvhvm have the lowest overheads (ranging from 310 unallocated memory and array out-of-bounds accesses.
20%). BothxmHF and Xen have higher overheads on thelt is therefore uniquely suited to verify system software
disk read benchmark when compared to other disk benchsuch asxMHF. cBMC is only able to verify programs
marks. For network-l/O benchmarkmHF has the lowest without unbounded loopd? (XMHF core) complies with this

D. Verification Results

requirement. During verification aP, cBMC automatically —complexity arising from device multiplexing and increased
sliced away unreachable code and unrolled the remaininfCB make them prone to security vulnerabilities [51]-[55].
(bounded) loops. OsKit [56] provides a framework for modular OS devel-
The version ofcBmc available publicly when we began opment.xMHF provides a similar modular and extensible
our experiments was 4.0. This version did not handle two Gnfrastructure for creating hypapps.
features that are used i — function pointers and typecasts A sound architecture [57], [58] is known to be essential
from byte arrays to structs. We believe that these featurefor the development of high quality software. Moreover,
are prevalent in system software in general. We contactethere has been a body of work in using architectural
cBMC developers about these issues, and they incorporatemnstraints to not only to drive the analysis of important
fixes in the next public releaseBmC 4.1.cBMmC 4.1 verifies quality attributes — but also to make such analysis more
P successfully. tractable [59]. Our work reaffirms these ideas, and demon-
We also seeded errors i to create ten additional buggy strates concretely the synergy between — and importance of
programs. Four of the buggy prograni3’{ — P}) contain — architecture and analysis in the context of developing an
memory errors that dereference unallocated memory. Thmtegrity-protected hypervisor.
remaining six buggy programsPf — PF) have logical The idea of an interface constrained adversary [33], [60]
errors that cause assertion violations. In each caseic has been used to model and verify security properties of a
finds the errors successfully. Table 9 summarizes the dverahumber of systems. In particular, pinning down the attasker
results forceMc 4.1. Note that the SAT instances producedinterface enables systematic and rigorous reasoning about
are of non-trivial size, but are solved by the back-end SATsecurity guarantees. This idea appears in our work as well.
solver used byBMmc in about 25 seconds each. Also, aboutSpecifically, restricting the attacker’s interface to a sét
75% of the overall time is required to produce the SATintercept handlers is crucial for the feasibility DRIVE.
instance. This includes parsing, transforming the progam A number of projects have used software model checking
an internal representation (called a GOTO program), gjicin and static analysis to find errors in source code, without
simplification, and generating the SAT formula. a specific attacker model. Some of these projects [61]-[63]
2) Experience with Other Model Checkelle also tried target a general class of bugs. Others focus on specific types
to verify P and the ten buggy programs with three otherof errors, e.g., Kidd et al. [64] detect atomic set serializ-
publicly available software model checkers that target Cability violations, while Emmi et al. [65] verify correctse
code —BLAST [38], SATABS [39], and WOLVERINE [40]. of reference counting implementation. All these approache
All these model checkers are able to verify programs withrequire abstraction, e.g., random isolation [64] or pratic
loops and use an approach called Counterexample Guideabstraction [65], to handle source code, and therefore, are
Abstraction Refinement (CEGAR) [41], [42] combined with unsound and/or incomplete. In contrast, we focus on a
predicate abstraction [43BLAST 2.5 could not parse any methodology to develop a hypervisor that achieves a specific
of the target programs. In contrastaTABS 3.1 timed out Security property against a well-defined attacker.
in all cases after several iterations of the CEGAR loop. On Finally, there has been several projects on verifying se-
the other handwoLVERINE 0.5c ran out of memory in all curity of operating system and hypervisor implementations
cases during the first iteration of the CEGAR loop. Neumann et al. [66], Rushby [67], and Shapiro and We-
ber [68] propose verifying the design of secure systems by
manually proving properties using a logic and without an
BitVisor [44] and NoHype [45], [46] are hypervisors that explicit adversary model. A number of groups [18]-[20]
eliminate runtime complexity by running guests with pre- have employed theorem proving to verify security propsrtie
allocated memory, and direct access to devigegdF also of OS implementations. Barthe et al. [69] formalized an
advocates theich single-guest execution model (8 IV-A). idealized model of a hypervisor in the Coq proof assistant
However, xMHF is designed to provide a common hyper- and Alkassar et al. [70], [71] and Baumann et al. [72] anno-
visor core functionality given a particular CPU architeetu tated the C code of a hypervisor and utilized the VCC [21]
while at the same time supporting extensions that cawerifier to prove correctness properties. Approaches based
provide custom hypervisor-based solutions (“hypappst) fo on theorem proving are applicable to a more general class
specific functional and security properties. The extefigibi of properties, but also require considerable manual effort
of XxMHF allows hypapps to be built around it while preserv- For example, the selL4 verification [20] shows a form of
ing memory integrity. Xen [47], KVM [29], VMware [48], functional correctness, essentially relating the C imgam
NOVA [49], Qubes [50] and L4 are general purpose (open+ation with a high level specification and required several
source) hypervisors and micro-kernels which have been usedan years effort. Since the high-level specification dods no
for hypervisor based research [11]-[16], [28]. However,include an explicit adversary that is trying to break memory
unlike XMHF, they do not present clear extensible interfacedntegrity, the verification does not imply the security peoty
for hypapp developers or preserve memory integrity. Furthe of interest to us. In contrast, our approach is more autainate

VII. RELATED WORK

but we focus on a specific security property (memory [4] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune,

integrity) with an explicit adversary model. However, ®nc
we do not verify full functional correctness, we cannot, for

example, claim that our system will not crash.

VI1Il. CONCLUSION AND FUTURE WORK

We propose an eXtensible and Modular Hypervisor
Framework kMHF) which strives to be a comprehensible [7]
and flexible platform for building hypervisor applications
(“hypapps”). XMHF is based on a design methodology 8]
that enables automated verification of hypervisor memory
integrity. In particular, the automated verification was-pe
formed on the actual source code wfHF — consisting
of 5208 lines of C code — using thesmc model checker
We believe thatxMHF provides a good starting point for [10]
research and development on hypervisors with rigorous and
“designed-in” security guarantees. GivamHF's features
and performance characteristics, we believe that it ca@nll]
significantly enhance (security-oriented) hypervisoeegsh

and development.

One direction for future work is modular verification of
the XMHF core composed with hypapps. Another direction[13]
is to extendDRIVE to other security properties such as
secrecy. A challenge here is that for such a property, the
attacker’s interface is much less well-defined compared td14]
memory integrity, due to the possibility of covert channels
etc. Yet another direction is to include support for conentr
execution withinxMHF and the hypapps. The question here
is whether, or how, we can still guarantee memory integrity.

Acknowledgements. We thank our shepherd, William
Enck, for his help with the final version of this paper, as well
as the anonymous reviewers for their detailed commentg17]
We also want to thank Adrian Perrig, Virgil Gligor and

Zongwei Zhou for stimulating conversations gRMHF. This

work was partially supported by NSF grants CNS-1018061,
CCF-0424422, CNS-0831440, and an AFOSR MURI on[18g]
Science of Cybersecurity. Copyright 2012 Carnegie Mellon

University and IEEE.

REFERENCES

[1] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. 8eka
“Towards verifiable resource accounting for outsourced-com

putation,” in Proc. of ACM VEE 2013.

[2] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig,
“Lockdown: Towards a safe and practical architecture for
security applications on commodity platforms,” Rroc. of

TRUST Jun. 2012.

[3] Z. Wang, C. Wu, M. Grace, and X. Jiang, “Isolating commod-
ity hosted hypervisors with hyperlock,” iRroc. of EuroSys

2012

3This material is based upon work funded and supported by tee D
partment of Defense under Contract No. FA8721-05-C-00QB @arnegie

Mellon University for the operation of the Software Engirieg Institute,

a federally funded research and development center. Thisri@ahas been

approved for public release and unlimited distribution. DPDO090

“Building verifiable trusted path on commodity x86 comput-
ers,” in Proc. of IEEE S&R May 2012.

F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor:
retrofitting protection of virtual machines in multi-terian
cloud with nested virtualization,” ifProc. of SOSP2011.

A. Vasudevan, N. Qu, and A. Perrig, “Xtrec: Secure reéwet
execution trace recording on commodity platforms,Proc.
of IEEE HICSSJan. 2011.

J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig, “TrustVisor: Efficient TCB reduction and
attestation,” inProc. of IEEE S&R May 2010.

A. Fattori, R. Paleari, L. Martignoni, and M. Monga, “Dy-
namic and transparent analysis of commodity production
systems,” inProc. of IEEE/ACM ASE 2010

L. Litty, H. A. Lagar-Cavilla, and D. Lie, “Hypervisor fu
port for identifying covertly executing binaries,” iRroc. of
USENIX Security Symposiur008.

A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A
tiny hypervisor to provide lifetime kernel code integrityrf
commodity OSes,” irProc. of SOSP2007.

X. Xiong, D. Tian, and P. Liu, “Practical protection oéknel
integrity for commodity os from untrusted extensions,” in
Proc. of of NDSS 2011

L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth, “Reidg
TCB complexity for security-sensitive applications: Tére
case studies,” iflProc. of EuroSys2006.

R. Ta-Min, L. Litty, and D. Lie, “Splitting Interfacedviaking
Trust Between Applications and Operating Systems Config-
urable,” in Proc. of SOSP2006.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
malware analysis via hardware virtualization extensfoims,
Proc. of of ACM CCS 2008

] D. Quist, L. Liebrock, and J. Neil, “Improving antivisu

accuracy with hypervisor assisted analysiks,Comput. Virol,
vol. 7, no. 2, May 2011.

16] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm

monitoring using hardware virtualization,” iRroc. of ACM
CCS 20009.

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports,
“Overshadow: A virtualization-based approach to retriofitt
protection in commodity operating systems,” Froc. of
ASPLOS Mar. 2008.

B. J. Walker, R. A. Kemmerer, and G. J. Popek, “Specifi-
cation and verification of the UCLA Unix security kernel,”
Communications of the ACM (CACMjol. 23, no. 2, 1980.

C. L. Heitmeyer, M. Archer, E. |. Leonard, and J. D. Mchea
“Formal specification and verification of data separatiomin
separation kernel for an embedded systempPiac. of ACM
CCS 2006.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. ¢k
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood, “selL4: formal
verification of an OS kernel,” ifProc. of SOSP2009.

E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies, “VCC:
A Practical System for Verifying Concurrent C,” iroc. of
TPHOLs 20009.

E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checgin
ANSI-C Programs,” inProc. of TACAS2004.

Intel Corporation, “Intel 64 and 1A-32 ArchitecturesfBvare
Developer's Manual Combined Volumes:1, 2A, 2B, 2C, 3A,
3B, and 3C,” 2011.

Advanced Micro Devices, “AMD64 architecture program-
mer’'s manual: Volume 2: System programming,” AMD Pub-

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

lication no. 24594 rev. 3.11, Dec. 2005.
ARM Limited, “Virtualization extensions architectirspeci-
fication,” http://infocenter.arm.com, 2010.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
Flow Integrity principles, implementations and applioas,”
TISSEC vol. 13, no. 1, 2009.

L. Jia, D. Garg, and A. Datta, “Compositional security [50]

for higher-order programs,” Carnegie Mellon University,

Tech. Rep. CMU-CyLab-13-001, 2013, online at http://www. [51]

andrew.cmu.edu/user/liminjia/compositional.
M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,

A. Yassour, “The turtles project: design and implementatio
of nested virtualization,” irProc. of OSDI 2010

RedHat, “KVM — kernel based virtual machine,” http:ittuw.
redhat.com/f/pdf/rhev/DOC-KVM.pdf, 2009.

P. Karger and D. Safford, “I/O for virtual machine maori:
Security and performance issueEE Security and Privagy
vol. 6, no. 5, 2008.

N. Elhage, “Virtunoid: Breaking out of kvm,” Defcon, 2Q.

Z. Wang and X. Jiang, “Hypersafe: A lightweight apprbac
to provide lifetime hypervisor control-flow integrity,” iRroc.

of IEEE S&R 2010.

A. Datta, J. Franklin, D. Garg, and D. Kaynar, “A logic of
secure systems and its application to trusted computimg,” i

Proc. of IEEE S&P 2009.

T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichten
berg, “The static driver verifier research platform,” Rmoc.
of CAV, 2010.

J. Alglave, D. Kroening, and M. Tautschnig, “Partial-or
ders for efficient bmc of concurrent softwareCoRR vol.
abs/1301.1629, 2013.

J. Franklin, S. Chaki, A. Datta, and A. Seshadri, “Sbida
Parametric Verification of Secure Systems: How to Verify
Reference Monitors without Worrying about Data Structure
Size,” in Proc. of IEEE S&R 2010.

J. Franklin, S. Chaki, A. Datta, J. M. McCune, and A. \@su
van, “Parametric Verification of Address Space Separdtion,
in Proc. of POST 2012.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre z{ta
Abstraction,” inProc. of POPL. 2002.

E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav,
“SATABS: SAT-Based Predicate Abstraction for ANSI-C,” in
Proc. of TACAS2005.

D. Kroening and G. Weissenbacher, “Interpolation-&hs
Software Verification with Wolverine,” ifProc. of CAV 2011.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbol
model checking,"Journal of the ACMvol. 50, no. 5, 2003.
T. Ball and S. K. Rajamani, “Automatically Validatingein-
poral Safety Properties of Interfaces,”mnoc. of SPIN2001.

S. Graf and H. Saidi, “Construction of Abstract State@s
with PVS,” in Proc. of CAV 1997.

T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato,
“Bitvisor: a thin hypervisor for enforcing i/o device sedyy’
in Proc. of ACM SIGPLAN/SIGOPS VEE 2009

J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Elinting
the hypervisor attack surface for a more secure cloud,
Proc. of ACM CCS2011.

E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “Nohype:
virtualized cloud infrastructure without the virtualiiat,” in
Proc. of ISCA 2010.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. HarrisH#,

[49]

oy, [52]
N. Har'El, A. Gordon, A. Liguori, O. Wasserman, and B.- [53

[54]
[55]

[56]

[57]

[58
[59]
[60]

(61]

(62]
(63]
(64]
(65]
(66]

(67]
[68]

[69

[70]

R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. of SOSP2003.

[48] VMware Corporation, “VMware ESX, bare-metal hypewiis

for virtual machines,” http://www.vmware.com, Nov. 2008.
U. Steinberg and B. Kauer, “Nova: a microhypervisosdi
secure virtualization architecture,” Proc. of the Eurosys
J. Rutkowska and R. Wojtczuk, “Qubes os architectuné:
/lqubes-os.org, 2010.

R. Wojtczuk, “Detecting and preventing the Xen hypsori
subversions,” Invisible Things Lab, 2008.

“Elevated privileges,” CVE-2007-4993, 2007.

“Multiple integer overflows allow execution of arbitga
code,” CVE-2007-5497, 2007.

R. Wojtczuk and J. Rutkowska, “Xen Owning trilogy,” lisy
ible Things Lab, 2008.

R. Wojtczuk, “Subverting the Xen hypervisor,” Invih
Things Lab, 2008.

B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers, “The flux oskit: A substrate for os and language
research,” inProc. of ACM SOSP 1997

M. Shaw and D. GarlarSoftware architecture - perspectives

on an emerging discipline Prentice Hall, 1996.

L. Bass, P. Clements, and R. Kazm&uftware Architecture

in Practice Addison Wesley, 2003.

K. Wallnau, “Volume IIl: A Technology for Predictable
Assembly from Certifiable Components,” Software Engineer-
ing Institute, Carnegie Mellon University, Technical repo
CMU/SEI-2003-TR-009, 2003.

D. Garg, J. Franklin, D. K. Kaynar, and A. Datta, “Compos
tional System Security with Interface-Confined Adversatie
ENTCS vol. 265, 2010.

S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and
language for building system-specific, static analyses.”

H. Chen and D. Wagner, “MOPS: an infrastructure for ex-
amining security properties of software,” idroc. of CC$
2002.

J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi, “Ugin
model checking to find serious file system errors,”Aroc.
of OSDI| 2004.

N. Kidd, T. Reps, J. Dolby, and M. Vaziri, “Finding
Concurrency-Related Bugs Using Random IsolationPiac.
of VMCAI, 2009.

M. Emmi, R. Jhala, E. Kohler, and R. Majumdar, “Verifgin
Reference Counting Implementations,” Rroc. of TACAS
20009.

P. Neumann, R. Boyer, R. Feiertag, K. Levitt, and L. Rwbi
son, “A provably secure operating system: The system, its
applications, and proofs.” SRI International, Tech. R&p80.

J. M. Rushby, “Design and Verification of Secure Systéms
in Proc. of SOSP1981.

J. S. Shapiro and S. Weber, “Verifying the EROS Confineme
Mechanism,” inProc. of IEEE S&R 2000.

G. Barthe, G. Betarte, J. D. Campo, and C. Luna, “Forynall
Verifying Isolation and Availability in an Idealized Modeff
Virtualization,” in Proc. of FM, 2011.

E. Alkassar, M. A. Hillebrand, W. J. Paul, and E. Petrova
“Automated Verification of a Small Hypervisor,” iRroc. of
VSTTE vol. 6217, 2010.

» in[71] E. Alkassar, E. Cohen, M. A. Hillebrand, M. Kovalev, and

W. J. Paul, “Verifying shadow page table algorithms,Proc.
of FMCAD, 2010.

[72] C. Baumann, H. Blasum, T. Bormer, and S. Tverdyshey,

“Proving memory separation in a microkernel by code level
verification,” in Proc. of AMICS 2011.

