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Abstract

Proof-carrying code (PCC) provides a “gold standard” for establishing formal and objective con-
fidence in program behavior. However, in order to extend the benefits of PCC – and other formal
certification techniques – to realistic systems, we must establish the correspondence of a mathemat-
ical proof of a program’s semantics and its actual behavior.In this paper, we argue that assurance
cases are an effective means of establishing such a correspondence. To this end, we present an assur-
ance case pattern for arguing that a proof is free from various proof hazards. We also instantiate this
pattern for a proof-based mechanism to provide evidence about a generic medical device software.

1 Introduction

Today’s information-based society is dependent on software for its well-being. Software is ubiquitous
and invisible in everything from entertainment to critical infrastructure; “out of sight, out of mind”
describes current public sentiment about this dependence. Moreover, software components are being
interconnected in ways that were never anticipated, or in some cases intended. The adverse effects of
software failures resulting from this increased coupling are difficult to contain. Software development has
become a commodity service, and software supply chains span the globe; theprovenance of any complex
software package is, and will likely remain, unknown. Thus, there is an urgent and well recognized need
for justifiable confidence that software will behave as intended by the consumer. Moreover, the source
of this confidence must be the software artifact itself, and not the identity of, or the processes used by,
the software producer. Known provenance and processes are useful, but are not always available to
consumers, and do not guarantee acceptable behavior.

Proof-carrying code (PCC) [9] is a “gold standard” for establishing justifiable confidence in program
behavior, and has been the epicenter of many recent technical advancements. For example, Chaki et al.
have developed [3] a certifying model checker (CMC) and associated machinery to produce PCC against
any linear temporal logic (LTL) specification. However, in order to extendthe benefits of PCC, and other
formal technologies, to large complex systems, we must establish correspondence of a mathematical
proof within aformal systemand the behavior that is exhibited in thereal world. In this paper, we argue
that assurance cases [5] (or cases, for short) provide an effective solution to this correspondence problem.
An assurance case is a structured argument that a claimed system-level property has been achieved.
Assurance cases employ defeasible reasoning, where a premise (ultimately, evidence)usuallyimplies a
conclusion. Defeasible reasoning offers an intermediate ground between formal notions of soundness
and completeness and the intrinsic uncertainty and incompleteness of any large scale, complex system.

We present an assurance case pattern for arguing that any formal proof is free from various hazards to
proof validity. Our pattern handles proof hazards arising from theuseof the formal technology (did we
model the right behavior?), as well as from the technologyitself (do we trust the theorem prover?). Our
approach has several benefits. First, it captures, in pattern form, a variety of threats to the validity of any
formal evidence, in effect normalizing and improving the quality of such evidence. Second, the pattern
can be extended to argue about the benefits of specific technologies, for example to show why PCC allows
us to eliminate model checkers, theorem provers, and even compilers fromthe trusted computing base.
Finally, case patterns and their instances are amenable to being expressedin precise notation, recorded,
shared, reviewed, and revised. We demonstrate the effectiveness ofour case pattern by instantiating it for
a specific application of CMC and PCC technology to provide evidence about software in a hypothetical
infusion pump. Our results are preliminary, but encouraging. We believe that, ultimately, such use of
cases improves the transitionability of formal techniques to practical situations.
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Figure 1: (Left) GSN notation; (Right) top-level GIP assurance case pattern.

2 Assurance Cases and Infusion Pump Scenario

An assurance case uses a claims-argument-evidence structure to demonstrate the truth of some assertion.
It consists of a top-level claim supported by subclaims. Each subclaim is further decomposed into sub-
subclaims, and so on, until a claim is directly supported by evidence, i.e., datathat is sufficient to support
a claim without further argument. Typical examples of evidence are test results, analyses, information
about the competency of personnel, etc. The quality of the case (i.e., its soundness and the extent to
which it is convincing in supporting its top-level claim) depends on the claim structure and the quality of
the presented evidence.

An assurance case is an example of defeasible reasoning, i.e., reasoning where “the correspond-
ing argument is rationally compelling but not deductively valid ... the relationshipof support between
premises and conclusion is a tentative one, potentially defeated by additionalinformation” [10]. The
logical form of a defeasible inference is:if E then(usually) C unlessR,S,T, etc. In other words, claim
C follows from evidenceE, unless this inference is invalidated by deficienciesR, S, T, etc. The set of
deficiencies is never completely known. Even if we argue¬R, ¬S, and¬T, new information (e.g.,U)
could invalidate theE ⇒ C inference, or the demonstration of, say,¬R. Therefore, confidence inC is
improved by capturing as many deficiencies as possible, and showing their absence.

Infusion Pump Scenario.An infusion pump infuses fluids, medication or nutrients into a patient’s
circulatory system. Our case study involves a Generalized Infusion Pump (GIP), which includes a built-
in drug library. The drug library contains a list of drugs, and, for eachdrug, the following: (a) drug name,
(b) drug concentration, and (c) for each clinical setting, the soft (andhard) minimum (and maximum)
allowed infusion rates. The acceptable infusion rate in an emergency environment may be significantly
higher than that in a patient room. The acceptable infusion rate for an adultmay be significantly higher
than for an infant. The GIP consults the drug library when the caregiveris programming an infusion.

We assume the following scenario: (i) the GIP uses an established softwareand hardware architec-
ture, (ii) the GIP software is supplied by third parties, and (iii) the GIP manufacturer requires certifiable
assurance that the delivered GIP software satisfies the following three (publicly specified) safety poli-
cies:(P1) if the infusion rate of the selected drug is within the soft bounds appropriateto the setting, the
GIP accepts the programming;(P2) if the infusion rate is outside of the soft bounds but within the hard
bounds the GIP accepts the programming only after a warning and a required override by the caregiver;
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Figure 2: Case patterns for “assumptions valid” (top) and “sufficiently accurate model” (bottom).

(P3) the GIP cannot be programmed with an infusion rate outside of the hard bounds.

3 GIP Assurance Case Pattern and Instantiation

We use the graphical goal structuring notation (GSN) [5] to express assurance cases. Fig. 1(left) shows, in
GSN, the case that “property<X>” holds because there is a proof of the property. Specifically, “property
<X> holds” is the claim, and “Proof of property<X>” is the evidence presented in support of this claim.
A rectangle indicates a claim, always phrased as a predicate. A circle (or ellipse) indicates evidence
(always stated in a noun phrase), and the arrow linking the claim to the evidence implies that the claim is
supported by the evidence. The little triangles at the bottom of the rectangle and circle indicate that the
claim and evidence are generic and need to be instantiated when this pattern isapplied. Angled brackets
(<>) characterize what is to be instantiated. In the remaining cases, we omit suchtriangles when there is
an explicit<X> to be instantiated. Also, we use the following additional GSN features. A parallelogram
refers to a strategy, while a rounded rectangle refers to a context. Empty diamonds refer to parts that
have been left out, but must be expanded further. Solid diamonds referto a choice between various
alternatives. A solid circle denotes iteration.

Fig. 1(right) shows, in GSN, the top-level assurance case pattern for the generic claim “Software<S>
satisfies desired safety policies<P>”. It leaves the following four sub-claims to be expanded further:
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Figure 3: Case patterns for “sound proof” (top) and “implementation and model are consistent” (bottom).

(C1) assumptions valid,(C2) sufficiently accurate model,(C3) sound proof, and(C4) implementation
and model are consistent. The case pattern for(C1) and(C2) are shown in Fig. 2. Note that the case
for (C1) has a sub-claim “assumptions identified” that we do not expand further for brevity. The case
patterns for(C3) and(C4) are shown in Fig. 3.

Certification Mechanism.We consider a specific certification mechanism, called PCCCMC, that uses
a combination of PCC and CMC to provide formal evidence of safe runtime behavior of programs [3].
The input to PCCCMC is a C programP containing an assertionASRT. The output is a proof-certificate
consisting of an invariantINVAR and a proofPROOF. Let P be the GIP software such thatASRT enforces
the desired safety policiesP1–P3. Then a run of PCCCMC on P consists of the following steps: (i)
INVAR is generated using a certifying software model checkerCMC; (ii) a verification conditionVC is
generated using weakest preconditions by a VCGEN tool; intuitively, VC is a logical formula in a suitable
logic L expressing thatINVAR is inductive and impliesASRT; (iii) PROOFis generated by checking the
validity of VC using a proof-generating theorem proverPROVER, (iv) PROOFis checked via aCHECKER.
The correctness of PCCCMC relies on the “safety theorem” which basically states thatP does not violate
ASRT at runtime if there exists anINVAR for which theVC is valid.



Pattern Instantiation.We now instantiate our assurance case patterns in the context of PCCCMC. In
the top-level pattern (see Fig. 1) we instantiateS with the GIP Software,P with P1–P3, andX with ASRT.
Also, we instantiateI with INVAR , andP by PROOF. In the pattern forC1, we identify and instantiate as
many assumptions as possible that are relevant to the certificate. In the pattern for C2, we instantiateG by
VCGEN, M by the execution semantics of the GIP Software used by VCGEN, andL by L . In the pattern
for C3, we instantiateP by PROOF, T by PROVER, andC by CHECKER. Finally, in the pattern forC4, we
instantiateG by VCGEN andC by COMPILER used to compile the GIP software before deployment.

Related Work.Kelly [5] provides more information on assurance cases and GSN. Weaver [11] doc-
uments the use of assurance cases (and case patterns) in software. Assurance cases have been used to
address system safety [6], and to justify safety and dependability claims [7]. Arney et al. have developed
a set of requirements and a hazard analysis for a generic infusion pump [1]. Goodenough and Wein-
stock [4] explore demonstrating the quality of the evidence in an assurancecase, and using assurance
cases for medical devices [12]. Basir et al. [2] have looked at automatically generating safety cases from
the formal annotations used to construct Hoare-style proofs of program correctness. Our approach is less
automated, but potentially applicable to a wider class of proof-generation techniques. PCC [9] was intro-
duced by Necula and Lee and provides an effective means for providing objective evidence of memory
safety properties of low-level. CMC [8] aims to generate proof-certificates by extending model checking
algorithms. Chaki et al. [3] have explored combinations of PCC and CMC to generate proof-certificates
of expressive properties on low-level programs. Our work is aimed at extending these, and other, formal
techniques to provide objective confidence about the safe execution ofrealistic systems.

Conclusion and Future Work.We report on preliminary work in using assurance cases to bridge
the gap between a proof about a program’s semantics in a formal system, and its actual behavior in
the real world. To this end, we present an assurance case pattern forarguing that a proof is free from
various validity hazards. We also instantiate this pattern for a specific application of formal certification
technology to an infusion pump software. An important question is if our pattern is instantiable with
formal certification schemes other than PCCCMC, and how to make it more robust and complete.
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