Assurance Cases for Proofs as Evidence

Sagar Chaki Arie Gurfinkel Kurt Wallnau Charles Weinstock
Software Engineering Institute, Carnegie Mellon University
Pittsburgh, PA
{chaki|arie|kcw|weinstock}@sei.cmu.edu

Abstract

Proof-carrying code (PCC) provides a “gold standard” faakshing formal and objective con-
fidence in program behavior. However, in order to extend twelbits of PCC — and other formal
certification techniques — to realistic systems, we musthdish the correspondence of a mathemat-
ical proof of a program’s semantics and its actual behauiothis paper, we argue that assurance
cases are an effective means of establishing such a consipee. To this end, we present an assur-
ance case pattern for arguing that a proof is free from vanwaof hazards. We also instantiate this
pattern for a proof-based mechanism to provide evidencetabgeneric medical device software.

1 Introduction

Today'’s information-based society is dependent on software for itshe@tly. Software is ubiquitous
and invisible in everything from entertainment to critical infrastructure;t “olusight, out of mind”
describes current public sentiment about this dependence. Moreofevare components are being
interconnected in ways that were never anticipated, or in some cases thtefue adverse effects of
software failures resulting from this increased coupling are difficult tiaa. Software development has
become a commodity service, and software supply chains span the glopegteeance of any complex
software package is, and will likely remain, unknown. Thus, there is geniiand well recognized need
for justifiable confidence that software will behave as intended by theurner. Moreover, the source
of this confidence must be the software artifact itself, and not the identityrdhe processes used by,
the software producer. Known provenance and processes dig, usé are not always available to
consumers, and do not guarantee acceptable behavior.

Proof-carrying code (PCC) [9] is a “gold standard” for establishirsgifiable confidence in program
behavior, and has been the epicenter of many recent technical advanis. For example, Chaki et al.
have developed [3] a certifying model checker (CMC) and associateHiney to produce PCC against
any linear temporal logic (LTL) specification. However, in order to extiégvedoenefits of PCC, and other
formal technologies, to large complex systems, we must establish cordesmmanof a mathematical
proof within aformal systenand the behavior that is exhibited in treal world. In this paper, we argue
that assurance cases [5] (or cases, for short) provide an effeciiution to this correspondence problem.
An assurance case is a structured argument that a claimed system-wettpthas been achieved.
Assurance cases employ defeasible reasoning, where a premise (ultirnatiynceusuallyimplies a
conclusion. Defeasible reasoning offers an intermediate ground befiweeal notions of soundness
and completeness and the intrinsic uncertainty and incompleteness of angdatg, complex system.

We present an assurance case pattern for arguing that any foonéigpfree from various hazards to
proof validity. Our pattern handles proof hazards arising fromusenf the formal technology (did we
model the right behavior?), as well as from the technolitggif (do we trust the theorem prover?). Our
approach has several benefits. First, it captures, in pattern formeanaf threats to the validity of any
formal evidence, in effect normalizing and improving the quality of suchendd. Second, the pattern
can be extended to argue about the benefits of specific technologiesafople to show why PCC allows
us to eliminate model checkers, theorem provers, and even compilersHeotmusted computing base.
Finally, case patterns and their instances are amenable to being expregssaise notation, recorded,
shared, reviewed, and revised. We demonstrate the effectivenmsisaafse pattern by instantiating it for
a specific application of CMC and PCC technology to provide evidence abftware in a hypothetical
infusion pump. Our results are preliminary, but encouraging. We beliate uhimately, such use of
cases improves the transitionability of formal techniques to practical situations

| C: Software <S> satisfies desired safety policies <P>

CtxO0: This is a safety property. It can be +
[fety property.]17/ S0: Prove absence of assertion failures

reduced to a set of program assertions.

C: Property <X>: Property
<X> holds (for the actual
system)

Ctx1: Certificate
Hazards. Unrecognized
assumptions, invalid
assumptions, modeling
abstraction error,
unsound proof logic,
implementation
inconsistent with
model

| CO: Property: Assertion <X> is never violated |

Ev0: Safety
Theorem: If
there exists an
Invariant with a
valid VC, then the
assertion <X> is
never violated

S1: Certificate Hazards:
Argue over the various
ways in which the
certificate could be wrong

Evi1:
Certificate:
Invariant <I>
and Proof <Pr>
of Verification
Condition

Ev: Proof: Proof of
property <X>, e.g,
results of model
checking various
safety and liveness
properties on a state

C4: Implementation
and model are
consistent: The

C1: Assumptions v

valid: All assumptions -
machine model of relevant to the ; y C2: Sumcwnﬂy_ accurate ,“,mdel_: The implementation is
the system certificate are valid C3: Sound proof: model used in the certificate is consistent with the
The chain of logic sufficiently accurate to justify the del
A in the proof <Pr> | |certificate’s conclusions in the real world mo
is sound A A

Figure 1: (Left) GSN notation; (Right) top-level GIP assurance cagermpa

2 Assurance Cases and Infusion Pump Scenario

An assurance case uses a claims-argument-evidence structure to tlatadhs truth of some assertion.
It consists of a top-level claim supported by subclaims. Each subclainmtiefudecomposed into sub-
subclaims, and so on, until a claim is directly supported by evidence, i.ethdaia sufficient to support
a claim without further argument. Typical examples of evidence are tegktseanalyses, information
about the competency of personnel, etc. The quality of the case (i.e., itdregas and the extent to
which it is convincing in supporting its top-level claim) depends on the clainctstre and the quality of
the presented evidence.

An assurance case is an example of defeasible reasoning, i.e., rgaatmre “the correspond-
ing argument is rationally compelling but not deductively valid ... the relationshgupport between
premises and conclusion is a tentative one, potentially defeated by additiborahation” [10]. The
logical form of a defeasible inference i$:E then(usually) C unlessR,S T, etc. In other words, claim
C follows from evidenceE, unless this inference is invalidated by deficiend®es, T, etc. The set of
deficiencies is never completely known. Even if we argl#e =S, and—T, new information (e.g.l)
could invalidate thé&e = C inference, or the demonstration of, sayR. Therefore, confidence i@ is
improved by capturing as many deficiencies as possible, and showinglikeice.

Infusion Pump ScenarioAn infusion pump infuses fluids, medication or nutrients into a patient’s
circulatory system. Our case study involves a Generalized Infusion P@iR), which includes a built-
in drug library. The drug library contains a list of drugs, and, for edrely, the following: (a) drug name,
(b) drug concentration, and (c) for each clinical setting, the soft ferd) minimum (and maximum)
allowed infusion rates. The acceptable infusion rate in an emergencyemant may be significantly
higher than that in a patient room. The acceptable infusion rate for anradwlbe significantly higher
than for an infant. The GIP consults the drug library when the caregiy@ogramming an infusion.

We assume the following scenario: (i) the GIP uses an established softndigardware architec-
ture, (ii) the GIP software is supplied by third parties, and (iii) the GIP marufar requires certifiable
assurance that the delivered GIP software satisfies the following thubdiqly specified) safety poli-
cies:(P1)if the infusion rate of the selected drug is within the soft bounds appropddke setting, the
GIP accepts the programmin@?2) if the infusion rate is outside of the soft bounds but within the hard
bounds the GIP accepts the programming only after a warning and a ikquiaide by the caregiver;

| C1: Assumptions valid: All assumptions relevant to the certificate are valid |

/\

C5: Assumptions identified: All assumptions relevant| [C6: No invalid assumptions: Every identified assumption|
to the certificate’s identity have been identified used in the certificate is valid for the actual system

(o o
further

C7: Assumption valid: <Assumption i> is valid |

C8: Past Experience: In similar

systems, <Assumption i> has one or more

proven to be valid

C11: Failure Analysis: No

C9: Assumption Defensi hedk S test failures invalidates
Analysis: <Assumption i>| | C10: Defensive check: <Assumption i> is <Assumption i>
is proven to be valid validated at runtime by the implementation

Ev3: Analysis Results

Ev2:
Experience

Ev5: Failure Analysis Results
Ev4: Code review results

Ctx2: Sufficiently accurate: Aspects C2: Sufficiently accurate model: The model used
ignored by the model used in the in the certificate is sufficiently accurate to justify
proof do not invalidate the proofs the certificate’s conclusions in the real world

v

| C12: VC-Gen correctness: Model <M> of program execution used by the VC generator <G> is sufficiently accurate

—
C13: Logical C13 Past v ‘C16 Testi ~| c17: Mechanical
Consistency: The 1ras : Py— : lesting: roving: The
y Experience: C15: Human review: Results of No test failure p 4

logic <L> used by -
<G> is believed to be| |Previous uses of <G>
consistent have not revealed

any inaccuracies in
A its model

Ev7: Experience

correctness of <M> has|
been proved manually.

human review of the code show
that <G> models the hardware
instruction set semantics correctly

invalidates <M>.
Test cases used
are adequate.

Ev6: Scrutiny
and Peer-
review results

Ev10: Manually
generated proofs

Ev8: Code review
results

Figure 2: Case patterns for “assumptions valid” (top) and “sufficienttyieate model” (bottom).

(P3) the GIP cannot be programmed with an infusion rate outside of the hardi®oun

3 GIP Assurance Case Pattern and Instantiation

We use the graphical goal structuring notation (GSN) [5] to expressasse cases. Fig. 1(left) shows, in
GSN, the case that “propergX>" holds because there is a proof of the property. Specifically, “ptgper
<X> holds” is the claim, and “Proof of propergk>" is the evidence presented in support of this claim.
A rectangle indicates a claim, always phrased as a predicate. A circldif@ekindicates evidence
(always stated in a noun phrase), and the arrow linking the claim to thenedédimplies that the claim is
supported by the evidence. The little triangles at the bottom of the rectardjlgrale indicate that the
claim and evidence are generic and need to be instantiated when this padigpliésl. Angled brackets
(<>) characterize what is to be instantiated. In the remaining cases, we omitisungftes when there is
an explicit<X> to be instantiated. Also, we use the following additional GSN features. Algiagram
refers to a strategy, while a rounded rectangle refers to a context. Emaptyids refer to parts that
have been left out, but must be expanded further. Solid diamondsteegechoice between various
alternatives. A solid circle denotes iteration.

Fig./1(right) shows, in GSN, the top-level assurance case patterrefgetieric claim “Softwares>
satisfies desired safety policigg>". It leaves the following four sub-claims to be expanded further:

| C3: Sound proof: The chain of logic in the proof <Pr> is sound |

one or more -
C20: Human review:

C18: Validated prover. The <T> tool External reviewers have

used to create the proofs is known to - - confirmed the soundness
produce valid proofs C19: Mechanical check: A (mechanical) proof of <Pr>

checker <C> has confirmed the validity of <Pr>

A 4 /
EVl_l: C21: Reliable proof checker: <C> can be
Experience relied on to detect invalid proofs

Ev13: Review
Results: Results of
proofreview,

| C22: Validated checker: <C> has been validated | ch:?lge vglgill)ze:ir::nce

\ of reviewers, etc.
Ev14: Checker Validation:)
Validation evidence S2: Checker h.azar(.is. A.rgue over possible ‘
shortcomings in validating <C>.

C23: Past Experience: Previous uses| | C24: Testing: No test failures | [C25: Human review: Results of human
of <C> has not revealed any errors in| |indicate errors in <C>. Test cases| | code review have not unearthed any
its operation used are adequate. checker errors in <C>.

Ev15: Experience Ev16: Testing results Ev17: Code review results

[Ctx3: Model of program execution C4: Implementation and model are consistent: The

Ev12: Checker
Results: Results
from <C>

used by compiler and VC generator implementation is consistent with the model

|C26: Model of program execution used by the compiler <Co> and VC generator <G> are sufficiently similar

C27: Testing: No test failures C28: Human review: Results of C29: Mechanical proving:
differentiate between program human review of the code show Correspondence between <G>’s model
execution models used by <Co> and conformance between execution and <Co>’s model has been proved
<G>. Test cases used are adequate. models used by <Co> and <G> mechanically

@nually generat@

Ev18: Testing results Ev19: Code review results

Figure 3: Case patterns for “sound proof” (top) and “implementation ancgehawd consistent” (bottom).

(C1) assumptions valid,C2) sufficiently accurate mode{C3) sound proof, andC4) implementation
and model are consistent. The case patter{@dy) and(C2) are shown in Fig. 2. Note that the case
for (C1) has a sub-claim “assumptions identified” that we do not expand furthdréwity. The case
patterns fo(C3) and(C4) are shown in Fig. 3.

Certification MechanismWe consider a specific certification mechanism, called®vc, that uses
a combination of PCC and CMC to provide formal evidence of safe runtimavilmhof programs [3].
The input to R.cCwmc is a C progranP containing an assertionsrT. The output is a proof-certificate
consisting of an invariantvvAR and a prooPROOF Let P be the GIP software such thasrRT enforces
the desired safety policid®81-P3 Then a run of BcCMc on P consists of the following steps: (i)
INVAR is generated using a certifying software model checkec; (ii) a verification conditionvc is
generated using weakest preconditions byc¥€N tool; intuitively, vc is a logical formula in a suitable
logic .Z expressing thatnvAR is inductive and implieasRT; (iii) PROOFis generated by checking the
validity of vC using a proof-generating theorem proP®oVER (iv) PROOFis checked via @HECKER
The correctness ofd&cCmc relies on the “safety theorem” which basically states Ehdbes not violate
ASRT at runtime if there exists amvar for which thevc is valid.

Pattern InstantiationWe now instantiate our assurance case patterns in the contegio@iNeC. In
the top-level pattern (see Fig. 1) we instantiateith the GIP Softwarep with P1-P3 andX with ASRT.
Also, we instantiat@ with INVAR, andP by PROOF In the pattern foC1, we identify and instantiate as
many assumptions as possible that are relevant to the certificate. In the pat@2, we instantiate by
V CGEN, M by the execution semantics of the GIP Software used b¢EN, andL by .Z. In the pattern
for C3, we instantiate® by PROOF, T by PROVER andC by CHECKER. Finally, in the pattern fo€C4, we
instantiatez by VCGEN andC by compPILER used to compile the GIP software before deployment.

Related WorkKelly [5] provides more information on assurance cases and GSN. WHahaloc-
uments the use of assurance cases (and case patterns) in softwaueande cases have been used to
address system safety [6], and to justify safety and dependability clajm&rfey et al. have developed
a set of requirements and a hazard analysis for a generic infusion gym@dodenough and Wein-
stock [4] explore demonstrating the quality of the evidence in an assucases and using assurance
cases for medical devices [12]. Basir et al. [2] have looked at autoatigtgenerating safety cases from
the formal annotations used to construct Hoare-style proofs of progoarectness. Our approach is less
automated, but potentially applicable to a wider class of proof-generatibnitees. PCC [9] was intro-
duced by Necula and Lee and provides an effective means for prgvidijective evidence of memory
safety properties of low-level. CMC [8] aims to generate proof-certifichyeextending model checking
algorithms. Chaki et al. [3] have explored combinations of PCC and CMEnermgte proof-certificates
of expressive properties on low-level programs. Our work is aimegtahding these, and other, formal
techniques to provide objective confidence about the safe executiealistic systems.

Conclusion and Future WorkWe report on preliminary work in using assurance cases to bridge
the gap between a proof about a program’s semantics in a formal systdnits attual behavior in
the real world. To this end, we present an assurance case pattemgfiomg that a proof is free from
various validity hazards. We also instantiate this pattern for a specific ajptic formal certification
technology to an infusion pump software. An important question is if our paiseinstantiable with
formal certification schemes other thaadCmc, and how to make it more robust and complete.

References

[1] D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky. €sierinfusion Pump Hazard Analysis and Safety
Requirements. Technical report MS-CIS-08-31, UniversftiPennsylvania, October 2008.

[2] N. Basir, E. Denney, and B. Fischer. Constructing a safate for automatically generated code from formal
program verification information. IRroc. of SAFECOMP2008.

[3] S. Chaki, J. Ivers, P. Lee, K. Wallnau, and N. Zeilberddodel-driven construction of certified binaries. In
Proc. of MODELS$2007.

[4] J. Goodenough and C. Weinstock. Hazards to Evidence: dpstrating the Quality of Evidence in an
Assurance Case. Technical Report CMU/SEI-2008-TN-016, Z¥8. in preparation.

[5] T. Kelly. Arguing Safety PhD thesis, Univ. of York, 1998.

[6] T. Kelly and R. Weaver. The Goal Structuring Notation — Af&y Argument Notation. IfProc. of the
Dependable Systems and Networks Workshop on Assurancg 2@34.

[7] L. Millett. Software for Dependable Systems: SufficientEvidence?, 2007.
http://www.nap.edu/catalog.php?recads11923.

[8] K. S. Namjoshi. Certifying Model Checkers. Rroc. of CAV 2001.
[9] G. C. Necula. Proof-Carrying Code. Rroc. of POPL. 1997.
[10] Stanford Encyclopedia of Philosophy: Defeasible Reazy, 2005.
[11] R. WeaverThe Safety of Software — Constructing and Assuring ArgusnBhD thesis, Univ. of York, 2003.

[12] C. Weinstock and J. Goodenough. Towards AssurancesClaseMedical Devices. Technical Report
CMU/SEI-2009-TN-018, SEI, 2009. in preparation.

	Introduction
	Assurance Cases and Infusion Pump Scenario
	GIP Assurance Case Pattern and Instantiation

