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Abstract

Proof-carrying code (PCC) provides a “gold standard” faakshing formal and objective con-
fidence in program behavior. However, in order to extend twelbits of PCC — and other formal
certification techniques — to realistic systems, we musthdish the correspondence of a mathemat-
ical proof of a program’s semantics and its actual behauiothis paper, we argue that assurance
cases are an effective means of establishing such a consipee. To this end, we present an assur-
ance case pattern for arguing that a proof is free from vanwaof hazards. We also instantiate this
pattern for a proof-based mechanism to provide evidencetabgeneric medical device software.

1 Introduction

Today'’s information-based society is dependent on software for itshe@tly. Software is ubiquitous
and invisible in everything from entertainment to critical infrastructure;t “olusight, out of mind”
describes current public sentiment about this dependence. Moreofevare components are being
interconnected in ways that were never anticipated, or in some cases thtefue adverse effects of
software failures resulting from this increased coupling are difficult tiaa. Software development has
become a commodity service, and software supply chains span the glopegteeance of any complex
software package is, and will likely remain, unknown. Thus, there is geniiand well recognized need
for justifiable confidence that software will behave as intended by theurner. Moreover, the source
of this confidence must be the software artifact itself, and not the identityrdhe processes used by,
the software producer. Known provenance and processes dig, usé are not always available to
consumers, and do not guarantee acceptable behavior.

Proof-carrying code (PCC) [9] is a “gold standard” for establishirsgifiable confidence in program
behavior, and has been the epicenter of many recent technical advanis. For example, Chaki et al.
have developed [3] a certifying model checker (CMC) and associateHiney to produce PCC against
any linear temporal logic (LTL) specification. However, in order to extiégvedoenefits of PCC, and other
formal technologies, to large complex systems, we must establish cordesmmanof a mathematical
proof within aformal systenand the behavior that is exhibited in treal world. In this paper, we argue
that assurance cases [5] (or cases, for short) provide an effeciiution to this correspondence problem.
An assurance case is a structured argument that a claimed system-wettpthas been achieved.
Assurance cases employ defeasible reasoning, where a premise (ultirnatiynceusuallyimplies a
conclusion. Defeasible reasoning offers an intermediate ground befiweeal notions of soundness
and completeness and the intrinsic uncertainty and incompleteness of angdatg, complex system.

We present an assurance case pattern for arguing that any foonéigpfree from various hazards to
proof validity. Our pattern handles proof hazards arising fromusenf the formal technology (did we
model the right behavior?), as well as from the technolitggif (do we trust the theorem prover?). Our
approach has several benefits. First, it captures, in pattern formeanaf threats to the validity of any
formal evidence, in effect normalizing and improving the quality of suchendd. Second, the pattern
can be extended to argue about the benefits of specific technologiesafople to show why PCC allows
us to eliminate model checkers, theorem provers, and even compilersHeotmusted computing base.
Finally, case patterns and their instances are amenable to being expregssaise notation, recorded,
shared, reviewed, and revised. We demonstrate the effectivenmsisaafse pattern by instantiating it for
a specific application of CMC and PCC technology to provide evidence abftware in a hypothetical
infusion pump. Our results are preliminary, but encouraging. We beliate uhimately, such use of
cases improves the transitionability of formal techniques to practical situations
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Figure 1: (Left) GSN notation; (Right) top-level GIP assurance cagermpa

2 Assurance Cases and Infusion Pump Scenario

An assurance case uses a claims-argument-evidence structure to tlatadhs truth of some assertion.
It consists of a top-level claim supported by subclaims. Each subclainmtiefudecomposed into sub-
subclaims, and so on, until a claim is directly supported by evidence, i.ethdaia sufficient to support
a claim without further argument. Typical examples of evidence are tegktseanalyses, information
about the competency of personnel, etc. The quality of the case (i.e., itdregas and the extent to
which it is convincing in supporting its top-level claim) depends on the clainctstre and the quality of
the presented evidence.

An assurance case is an example of defeasible reasoning, i.e., rgaatmre “the correspond-
ing argument is rationally compelling but not deductively valid ... the relationshgupport between
premises and conclusion is a tentative one, potentially defeated by additiborahation” [10]. The
logical form of a defeasible inference i$:E then(usually) C unlessR,S T, etc. In other words, claim
C follows from evidenceE, unless this inference is invalidated by deficiend®es, T, etc. The set of
deficiencies is never completely known. Even if we argl#e =S, and—T, new information (e.g.l)
could invalidate thé&e = C inference, or the demonstration of, sayR. Therefore, confidence i@ is
improved by capturing as many deficiencies as possible, and showinglikeice.

Infusion Pump ScenarioAn infusion pump infuses fluids, medication or nutrients into a patient’s
circulatory system. Our case study involves a Generalized Infusion P@iR), which includes a built-
in drug library. The drug library contains a list of drugs, and, for edrely, the following: (a) drug name,
(b) drug concentration, and (c) for each clinical setting, the soft ferd) minimum (and maximum)
allowed infusion rates. The acceptable infusion rate in an emergencyemant may be significantly
higher than that in a patient room. The acceptable infusion rate for anradwlbe significantly higher
than for an infant. The GIP consults the drug library when the caregiy@ogramming an infusion.

We assume the following scenario: (i) the GIP uses an established softndigardware architec-
ture, (ii) the GIP software is supplied by third parties, and (iii) the GIP marufar requires certifiable
assurance that the delivered GIP software satisfies the following thubdiqly specified) safety poli-
cies:(P1)if the infusion rate of the selected drug is within the soft bounds appropddke setting, the
GIP accepts the programmin@?2) if the infusion rate is outside of the soft bounds but within the hard
bounds the GIP accepts the programming only after a warning and a ikquiaide by the caregiver;
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Figure 2: Case patterns for “assumptions valid” (top) and “sufficienttyieate model” (bottom).

(P3) the GIP cannot be programmed with an infusion rate outside of the hardi®oun

3 GIP Assurance Case Pattern and Instantiation

We use the graphical goal structuring notation (GSN) [5] to expressasse cases. Fig. 1(left) shows, in
GSN, the case that “propergX>" holds because there is a proof of the property. Specifically, “ptgper
<X> holds” is the claim, and “Proof of propergk>" is the evidence presented in support of this claim.
A rectangle indicates a claim, always phrased as a predicate. A circldif@ekindicates evidence
(always stated in a noun phrase), and the arrow linking the claim to thenedédimplies that the claim is
supported by the evidence. The little triangles at the bottom of the rectardjlgrale indicate that the
claim and evidence are generic and need to be instantiated when this padigpliésl. Angled brackets
(<>) characterize what is to be instantiated. In the remaining cases, we omitisungftes when there is
an explicit<X> to be instantiated. Also, we use the following additional GSN features. Algiagram
refers to a strategy, while a rounded rectangle refers to a context. Emaptyids refer to parts that
have been left out, but must be expanded further. Solid diamondsteegechoice between various
alternatives. A solid circle denotes iteration.

Fig./1(right) shows, in GSN, the top-level assurance case patterrefgetieric claim “Softwares>
satisfies desired safety policigg>". It leaves the following four sub-claims to be expanded further:
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Figure 3: Case patterns for “sound proof” (top) and “implementation ancgehawd consistent” (bottom).

(C1) assumptions valid,C2) sufficiently accurate mode{C3) sound proof, andC4) implementation
and model are consistent. The case patter{@dy) and(C2) are shown in Fig. 2. Note that the case
for (C1) has a sub-claim “assumptions identified” that we do not expand furthdréwity. The case
patterns fo(C3) and(C4) are shown in Fig. 3.

Certification MechanismWe consider a specific certification mechanism, called®vc, that uses
a combination of PCC and CMC to provide formal evidence of safe runtimavilmhof programs [3].
The input to R.cCwmc is a C progranP containing an assertionsrT. The output is a proof-certificate
consisting of an invariantvvAR and a prooPROOF Let P be the GIP software such thasrRT enforces
the desired safety policid®81-P3 Then a run of BcCMc on P consists of the following steps: (i)
INVAR is generated using a certifying software model checkec; (ii) a verification conditionvc is
generated using weakest preconditions byc¥€N tool; intuitively, vc is a logical formula in a suitable
logic .Z expressing thatnvAR is inductive and implieasRT; (iii) PROOFis generated by checking the
validity of vC using a proof-generating theorem proP®oVER (iv) PROOFis checked via @HECKER
The correctness ofd&cCmc relies on the “safety theorem” which basically states Ehdbes not violate
ASRT at runtime if there exists amvar for which thevc is valid.



Pattern InstantiationWe now instantiate our assurance case patterns in the contegio@iNeC. In
the top-level pattern (see Fig. 1) we instantiateith the GIP Softwarep with P1-P3 andX with ASRT.
Also, we instantiat@ with INVAR, andP by PROOF In the pattern foC1, we identify and instantiate as
many assumptions as possible that are relevant to the certificate. In the pat@2, we instantiate by
V CGEN, M by the execution semantics of the GIP Software used b¢EN, andL by .Z. In the pattern
for C3, we instantiate® by PROOF, T by PROVER andC by CHECKER. Finally, in the pattern fo€C4, we
instantiatez by VCGEN andC by compPILER used to compile the GIP software before deployment.

Related WorkKelly [5] provides more information on assurance cases and GSN. WHahaloc-
uments the use of assurance cases (and case patterns) in softwaueande cases have been used to
address system safety [6], and to justify safety and dependability clajm&rfey et al. have developed
a set of requirements and a hazard analysis for a generic infusion gym@dodenough and Wein-
stock [4] explore demonstrating the quality of the evidence in an assucases and using assurance
cases for medical devices [12]. Basir et al. [2] have looked at autoatigtgenerating safety cases from
the formal annotations used to construct Hoare-style proofs of progoarectness. Our approach is less
automated, but potentially applicable to a wider class of proof-generatibnitees. PCC [9] was intro-
duced by Necula and Lee and provides an effective means for prgvidijective evidence of memory
safety properties of low-level. CMC [8] aims to generate proof-certifichyeextending model checking
algorithms. Chaki et al. [3] have explored combinations of PCC and CMEnermgte proof-certificates
of expressive properties on low-level programs. Our work is aimegtahding these, and other, formal
techniques to provide objective confidence about the safe executiealistic systems.

Conclusion and Future WorkWe report on preliminary work in using assurance cases to bridge
the gap between a proof about a program’s semantics in a formal systdnits attual behavior in
the real world. To this end, we present an assurance case pattemgfiomg that a proof is free from
various validity hazards. We also instantiate this pattern for a specific ajptic formal certification
technology to an infusion pump software. An important question is if our paiseinstantiable with
formal certification schemes other thaadCmc, and how to make it more robust and complete.
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