
Non-Preemptive Fixed-Priority Uniprocessor
Scheduling where the Execution Time of a Job

Depends on the Scheduling of Jobs that Executed
Before it

Björn Andersson, Dionisio de Niz and Sagar Chaki
Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA, USA
{baandersson, dionisio, chaki}@sei.cmu.edu

Abstract— We consider non-preemptive fixed-pri ori ty scheduling
of a set of constrained-deadline sporadic tasks on a single
processor. We assume that the execution time of a job J depends
on the sequence of jobs executed before J, that is, the execution
time of a job of a task is not a constant. We raise the following
two open problems (i) given a prior ity assignment, can the
response time of a task be computed in pseudo-polynomial t ime?
and (ii) how to create an optimal pri ori ty-assignment scheme?

I. MOTIVATION

With today’s processors, the execution time of a task is
heavily dependent on whether a memory operation (load/store)
results in a cache hit or a cache miss. Even with non-
preemptive scheduling and even with a single processor, the
execution time of a job of a task depends on the scheduling of
other tasks. As an ill ustration, consider tasks W1, W2 and W3 which
are scheduled non-preemptively on a single processor. Jobs of
task W1 start their execution by reading a variable x, where x is
an array. Ditto for the jobs of task W2: jobs of task W2 start their
execution by reading a variable x. However, jobs of task W3
never access variable x. For each of the tasks W1 and W2, it holds
that its jobs have the execution time 5 milliseconds if variable
x was not in the cache. If a job of task W2 executed immediately
after a job of task W1, then W1‘s job will experience a cache miss
when referencing the variable x but we may be able to prove
than when the job of task W2 references variable x, it results in
cache hits when W2 references x and hence the execution time
of W2‘s job becomes 4 milli seconds.

Therefore, we need a scheduling theory which takes into
account the fact that the execution time of a job may depend on
which jobs executed just before it. Unfortunately, the current
research literature offers no such scheduling theory.

II. MODEL

Task and platform characteri zation. We consider a system
comprising a single processor and a software system

comprising a task set W composed of n constrained-deadline
sporadic tasks. A task Wi�W is characterized by integers Di and
Ti with the interpretation that the task generates a (potentially
infinite) sequence of jobs where the arrival times of jobs by Wi
are separated by at least Ti time units and a job of task Wi must
finish its execution within Di time units after its arrival.

The execution time of a job depends on the job executing
before it, and we therefore define the following concepts for
taskWi. The symbol nhistoriesi is an integer greater than or equal
to one. historylengthi

h is an integer greater than or equal to one
and it is defined for 1 d h d nhistoriesi. The symbol
historyitemi

h,k is an integer in {1,2,3,…,n} and it is defined for
1d h dnhistoriesi and 1d k dhistorylengthi

h.

We say that the for job J generated by task Wi, the execution
time Ci

h is historyallowed if it holds for the historylengthi
h jobs

that executed before J that for each j�{ 1,2,…,historylengthi
h} ,

the jth job before J is the generated by the task with index
historyitemi

h,j. The execution time of a job is the minimum
among all its historyallowed execution times. Note that Ci

h is
historyallowed if historylengthi

h=0. We assume that for each
task Wi there is one h such that historylengthi

h=0.

Figure 1a shows an example task set in this model.

Scheduling. We assume that each task Wi is assigned a priority
prioi and each job generated by task Wi is given the priority of
the task that generated the job. We say that a job J is eligible
for execution at time t, if (i) job J arrives at t or earlier and (ii)
job J finishes execution later than t.

We assume non-preemptive scheduling, that is, if a job has
started to execute then it will continue to execute until it
finishes. When a job finishes, the job selected for execution is
the one with the highest priority among the jobs that are
eligible for execution at that time. Figure 1(b) and Figure 1(c)
show examples of schedules.

RTSOPS 2011 9 Porto, Portugal

n=3,

T1=50, D1=11, T2=150, D2=14, T3=500, D3=500,

nhistories1=2 nhistories2=2 nhistories3=1

C1
1=5, historylength1

1=0 C2
1=5, historylength2

1=0 C3
1=5, historylength3

1=0

C1
2=4, historylength1

2=1, historyitem1
2,1=2 C2

2=4, historylength2
2=1, historyitem2

2,1=1

(a) An example of a task set. This task set models that task W1 and W2 share some variables and therefore executing one of them just
before the other reduces the execution time of the other.

(b) A schedule generated for a specific arrival pattern for the task set in (a).

(c) A schedule generated for another specific arrival pattern for the task set in (a).

Figure 1. An example of a task set and two examples of schedules that can be generated for different arrival patterns.

Response time and schedulabili ty. The response time of a job
is the time that the job finishes execution minus the arrival time
of the job. The response time of a task Wi (denoted Ri) is the
maximum response time that a job of Wi can experience. We say
that a task set is schedulable with respect to priority assignment
P if �i: Ri d Di. We say that a task set is non-preemptive fixed-
priority feasible if there exists a priority assignment such that
the task set is schedulable with respect to this priority
assignment. We say that a priority-assignment scheme A is
optimal if for each task set that is non-preemptive fixed-priority
feasible, the task set is schedulable with respect to the priority
given by the priority-assignment scheme A.

Note that in Figure 1(b), the job of task W2 has execution time
of four time units because it executes after a job of task W1.
Hence the job of task W2 meets its deadline. Classical non-
preemptive analysis however, which does not consider that the
execution time of a job depends on the job that executes before
it, would calculate an upper bound on the response time being
one time unit longer than the one in the example in Figure 1(b)
and hence classical non-preemptive analysis would deem the
task set in Figure 1(a) unschedulable.

Figure 1(c) shows an example of a schedule for another
arrival pattern. Note here that the job by W2 does not execute

directly after a job of task W1 and hence the execution time of
the job of task W2 is five, that is, one time unit more than it was
in Figure 1(b).

III. OPEN PROBLEM FORMULATION

We propose the following two open problems:

OP1. Is it possible to create an algorithm, with
pseudo-polynomial time-complexity, which computes
Ri?

OP2. How to create an optimal priority assignment
scheme.

We believe these two problems are interesting because both
of them have (aff irmative/positive) answers/solutions for the
case that the execution time of a job does not depend on its
history. But for our model they are unresolved.

ACKNOWLEDGMENT

We are grateful to discussions with Russell Kegley
(Lockheed Martin), Brian Dougherty (Virginia Tech) and Jules
White (Virginia Tech) who brought to our attention this
problem.

W1

time

W1

W2

W3
W3

W2

0 5 10 15

W1

time

W1

W2

W3
W3

W2

0 5 10 15

RTSOPS 2011 10 Porto, Portugal

