Non-Preenptive Hxed-Priority Uniprocesor
Scheduling where the Execution Time of a Job
Dependson he Scheduling of Jobstha Executed
Before it

Bjorn Andersson, Dionisio de Niz and Sigar Chaki
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA, USA
{baarderson, dionisio, chaki}@ sei.cmu.edu

Abstract— We casider non-preemptive fixed-pri ority scheduling
of a =t of constrained-deadline sporadic tasks on a sngle
procesor. We assume that the execuion time of a job J depends
on the equence d jobs executed before J, that is, the execution
time of a job of a tas is not a constant. We raise the following
two open problems (i) given a priority assgnment, can the
response time of a task be computed in pseudo-polynomial time?
and (ii) how to create an optimal pri ori ty-assgnment scheme?

l. MOTIVATION

With today’s processors, the exeaution time of a task is
heavily dependent on whether a memory operation (load/gore)
resuts in a cache hit or a cadhe miss Even with non
preenptive schediling and even with a sngle procesr, the
execution time of a job of atask depends on the scheduling of
othe tasks. As an ill ugtration, consder tasks 7;, 7 and 73 which
are scheduled nan-preemptively on a single procesor. Jobs of
task 7; start their execution by realing avariable x, where x is
an aray. Ditto for the jobs of task z,: jobs of task 7, start their
exeadution by readng a variabde x. Howewer, jobs of tak 7
never acess variade x. For each of thetasks 7 and n, it holds
that its jobs have the exeaution time 5 milliseconds if variable
X was not in thecade If ajob of task 7, executed immedately
after ajob of task 71, then #'s job will experience a cache miss
when referendng the variable x but we may be able to prove
than when the job of task 7, referercesvariale x, it results in
cade hits when », referercesx and hence the execution time
of ©'sjob baomes 4 nilli seaondks.

Therefore, we need a scheduling theory which takes into
acourt the fad that the exeaution time of a job may depend on
which jobs executed jus before it. Unfortunaely, the current
reseach literature off ers no such scheduling theory.

II. MODEL

Task and platform characteri zation. We cansider a system
comprisng a single procesr and a ftware system

RTSOPS 2011

comprising a ak set r composd of n constrained-deadine
sporadic tasks. A task 57 is characerized by integers D; and
T; with the interpretation that the task generates a (potentially
infinite) sequence of jobs where the arrival times of jobs by 7
are gparated by atleas T; time units and ajob of task 7 must
finish its exeaution within D; time units after its arrival.

The edecution time of a job deperds on the job execuing
before it, ard we therefore define the following concepts for
taskz. The symbol nhistories is aninteger greater thanor equal
to ore. historylength,” is an integer greaer than or equd to one
and it is defined for 1 < h < nhistories. The symbad
historyitem™ is an integer in {1,23,...,n} and it is defined for
1< h <nhistories and 1< k <historylength;”.

We say tha the for job J generated by task 7, the execution
time C" is historyallowed if it holds for the historylength" jobs
that executed before J that for eachje{1,2,.. historylength"},
the j™ job beore J is the generated by the task with index
historyitem™. The execttion time of a job is the minimum
among al its historyallowed exeaution times. Note that C" is
historyallowed if historylength"=0. We assume tat for each
task 7 there is one h such tha historylength,"=0.

Figure 1ashows an example task set in this modd.

Schaluling. We asume that eachtak 7 is assgned apriority
prio; and each job geneated by task 7 is given the priority of
the task tha generated the job. We say tha ajob Jis digible
for execution at time t, if (i) job J arrives a t or earlier and (ii)
job J finishesexecuion later thant.

We assume non-preamptive scheduling, that is, if a job has
started to exeaute then it will continue to exeaute until it
finishes. When ajob finishes, the job seleded for exeaution is
the one with the highest priority among the jobs tha are
eligible for exeaution a that time. Figure 1(b) and Figure 1(c)
show examples of schedules.

Porto, Portugal

n=3,
T,=50, D;=11, T,=150, D,=14,
nhistories;=2
C:'=5, historylength,'=0
C:’=4, historylengthy?=1, historyitemy?'=2

nhistories,=2

C,'=5, historylength,'=0
C,’=4, higtorylength,?=1, historyitemy?'=1

T5=500, D3=500,
nhistories;=1
C3'=5, historylengths'=0

(a) An exanple of a lak st Thistak set models thattak 7 and 7, share me variablesard therebre executing one of themjus
before the other reducesthe execution time d the other.

! |

41

|

(]

f
S

73

| 2

OI 5I 1IO 1|5 time
(b) A schedule generatedfor aspedfic arival pattern for the task set in (a).
s }
Q
(73 7 |
f | s]
73
I I I I >
| | I T il
0 5 10 15 time

(c) A schedile gereratedfor arother spedfic arival pattem for the task setin (a).

Figure 1. An example of atak setard two exanplesof schedillesthatcanbe gereratedfor different arrival paterns.

Response time and schedulability. Theresponse time of ajob
is the time that the job finishes exeaution minus the arrival time
of the job. The response time of a task 7 (denoted R) is te
maximum response time that ajob of 5z canexperierce. We sy
that a tesk set is schedulable with resped to priority assigiment
P if Vi: R < D;. We sqay that atak setis non-preemptive fixed-
priority feasible if there exists a priority assgnment such that
the task set is schedulable with resped to this priority
assigiment. We say that a priority-asignmert scheme A is
optimal if for each task set that is non-preemptive fixed-priority
feasible, the task set is schedulable with resped to the priority
given by the priority-assignmert scherme A.

Note tha in Hgure 1(b), the job o task 7> has execution time
of four time units because it executes after a job of task .
Hence the job of task 7, mees its dealline. Classical non-
preenptive aralysis however, which doesnat consider that the
execuion time of a job depemls on the job that executesbefore
it, would cdculate an upper bound a the response time beng
one time unit longe than theone in the example in Fgure 1(b)
ard herce classical non-preemptive andysis would deem the
task set in Fgure 1(a) unshedulable.

Figure 1(c) shows an exanple of a <hedule for ancther
arrival patern. Note here tha the job by 7 does not execute

RTSOPS 2011

10

directly after ajob of tak 7, ard herce the execution time of
thejob oftask z is five, that is, one time unit more than it was
in Figure 1(b).

I1l. OPEN PROBLEM FORMULATION
We propose the foll owing two open problems:

OP1. Is it posshle © create an algorithm, with
pseudo-polynomial time-complexity, which computes
R?

OP2. How to creat anoptimal priority asignmert
schemre.

We believe thes wo problens are intereding becawse toth
of them have (affirmative/postive) answerg/'solutions for the
ca® that the execution time of a job does not depend on its
history. But for our modd they are urresolved.

ACKNOWLEDGMENT

We ae grateful to discussions with Russell Kegley
(Lockheed Martin), Brian Doughety (Virginia Tech) and diles
White (Virginia Tedh) who brought to our attention this
problem.

Porto, Portugal

