
Statistical Model Checking of Distributed
Adaptive Real-Time Software

David Kyle Jeffery Hansen Sagar Chaki
{dskyle,jhansen,chaki}@sei.cmu.edu

Abstract. The problem of estimating quantitative properties of dis-
tributed cyber-physical software that coordinate and adapt to uncertain
environments is addressed. A domain-specific language, called dmpl, is
developed to both describe such a system and a target property. Sta-
tistical model checking (SMC) is used to estimate the probability with
which the property holds on the system. A distributed SMC tool is devel-
oped and described. Virtual machines are used to implement a realistic
execution environment, and to isolate simulations from one another. Ex-
perimental results on a coordinated multi-robot example are presented.

1 Introduction

A Distributed Adaptive Real-Time (DART) system consists of a set of physically
disjoint nodes that communicate and coordinate to achieve a set of objectives,
and increase the likelihood of achieving these objectives (i.e., success) under an
uncertain environment via self-adaptation. Given a stochastic system M, an
event Φ in its execution, and an error bound RE , statistical model checking
(SMC) [10] is a systematic use of Monte-Carlo simulations to estimate the prob-
ability of Φ with an error of no more than RE . In this paper, we present and
evaluate an approach for statistical model checking of DART systems (DARTs).

We make three contributions. First, we develop a language called the DART
Modeling and Programming Language (dmpl). A dmpl program P is a triple
(M, Φ, T ), whereM is the DART system, and T (a time limit) and Φ (a predicate
over executions of M) express the target property. Our goal is to estimate the
probability p that Φ holds on a random execution of M of duration T . Second,
we develop a compiler, dmplc, that given a dmpl program P, generates: (i) a
log generator LogG ; a run of LogG produces one log for each node of M; and
(ii) a log analyzer LogA that combines all the logs from one execution of LogG ,
and produces the value of Φ at time T . Finally, we implement a distributed SMC
tool, smcd, that uses LogG and LogA to estimate p with a target precision.

We evaluated our approach on a DART example with mobile robots, where
success involves avoiding collisions, while maximizing speed, and minimizing
exposure to environmental hazards. For our experiments, we use the ZSRM [7]
scheduler, the v-rep [9] physics engine, and the madara [5] middleware. Our ap-
proach easily handles this example system with 5 nodes, each running 3 threads,
and should scale to much larger systems. We also demonstrated running on
clusters with 5 VMs. Further details are provided in Sec. 4.



1 pure double coverage ()
2 {
3 double cover = 0.0, dist , lat , lng , xd , yd;
4 lat = GET_LAT ();
5 lng = GET_LNG ();
6 forall_other(nid) {
7 xd = GET_LAT ()@nid -lat;
8 yd = GET_LNG ()@nid -lng;
9 dist = LL2M * sqrt(xd*xd + yd*yd);

10 if(dist == 0.0) continue;
11 cover = cover+asin(RAD/dist)/M_PI;
12 }
13 return cover;
14 }
15
16 @AtLeast (0.5) expect(coverage () > 0.9);

Leader 

Protectors 

Protected 
Area 

Total 
Coverage 

𝜃 = 2sin−1
𝑟

𝑑
 

𝑑 
𝑟 

𝜃 

Single Protector 
Coverage 

Fig. 1. A dmpl property for coverage, with geometric justification.

Related Work. SMC has been applied to various types of “models”: stochastic
hybrid automata [3], real-time systems [4], and Simulink models of cyber-physical
systems [2]. Our work bridges the gap between what is analyzed and what will
be executed. In addition, unlike current distributed SMC tools, smcd handles
dynamic addition and removal of simulators. Younes [11] showed that naive
parallelization of SMC is incorrect due to a bias caused by differences in execution
time, and that [11] this bias is eliminated by performing simulations in “rounds”.
Bulychev, et. al. [1] proposed two optimizations to round-based parallelization –
batching and buffering. Since we simulate the actual system for time T , the time
to perform a simulation is relatively large, and the simulation times for “true”
and “false” results are close. Hence, we do not believe that batching or buffering
will be helpful for us, but we do apply the basic round-based approach to avoid
bias. SMC performance can also be improved via techniques orthogonal to ours,
e.g., importance splitting [6], and importance sampling [8].

2 The dmpl Language

A dmpl program P is a triple (M, Φ, T ). The system M is a triple (V, F, T ),
where V is a set of shared variables; F is a set of procedures (functions); T is a
set of threads. dmpl definesM and Φ, through a mostly C-like syntax; however:

– dmpl does not support pointers, to avoid variable aliasing complications.

– dmpl functions in F can be declared pure. These functions cannot modify
V ; dmplc will reject code that violates this.

– dmpl defines threads statically, like functions, but with the thread keyword.
dmpl automatically spawns these threads. dmpl threads are inherently pe-
riodic; each thread’s code runs within an implied infinite loop.

– dmpl variables, comprising V , may be defined as local or global. Threads
on a given node share local variables, while threads across all nodes share
global variables. dmpl uses a “read-execute-write” computation model.
Threads operate on cached copies of these variables, read atomically at the
start of each period, and write atomically back at the end. Additionally,



each node publishes its own version of global variables, which other nodes
cannot “overwrite”. Nodes, however, can “read” others’ versions.

– dmpl supports defining a Φ as part of its source, using expect clauses.
These clauses specify a Boolean expression, over values in V and returned
from pure functions, whose truth SMC will evaluate.

– dmpl can call arbitrary extern C++ functions; however, these functions
cannot directly access V . They may be labeled pure, indicating that they
are safe to call from expect clauses, i.e., they do not affect runtime behavior,
only gather information about it. dmplc does not enforce this contract.

dmplc creates LogG and LogA from a dmpl program. LogG includes an
observer thread which periodically logs (with a timestamp) all variables in V
appearing in expect clauses. The read-execute-write model ensures consistent
state observation. Functions declared pure are executed in either LogG or LogA
as needed. LogA uses the timestamps to cross-reference the logs and evaluate
each expect clause. Figure 1 shows an example dmpl program for a scenario
used later in Experiment 1. The @AtLeast(0.5) annotation in the expect clause
means that the specified coverage property should hold true at least 50% of the
the time for a mission run to be successful. dmpl also supports an @AtEnd

annotation; such expect clauses must hold true at the end of a mission run.

3 Statistical Model Checking (SMC)

The goal of SMC is to estimate the probability that the property Φ holds in
the system M. We model this as an indicator function IM|=Φ : x → {0, 1}
where x ∼ f (i.e., x is a random input vector distributed by f). We can then
state the SMC problem as determining the probability p = E[IM|=Φ(x)] =∫
IM|=Φ(x)f(x)dx which can be estimated as: p̂ =

∑N
i=1 IM|=Φ(xi), where xi

is the i-th of N trials. The precision of p̂ is quantified by its “relative error”

RE(p̂) =

√
Var(p̂)

E[p̂] where Var(p̂) is the variance of the estimator. It is known [2]

that: RE(p̂) =
√

1−p
pN ≈

1√
pN

and N = 1−p
pRE2(p̂) ≈

1
pRE2(p̂) .

Our SMC tool smcd consists of one or more collectors and an aggregator.
Each collector is deployed on a VM, where it: (i) awaits a signal from the aggre-
gator; and (ii) runs a simulation η, computes the result η |= Φ, and transmits
it back to the aggregator. The aggregator manages the SMC in rounds to avoid
execution time bias [11]. At the beginning of each round, the aggregator sends
a message to each collector to begin a simulation. After all collectors have re-
ported their result, the current probability and relative error is calculated. If the
calculated relative error is less than the target relative error RE , the algorithm
terminates. If not, a new round of simulations is started.

Since our simulations execute the actual system code, each may take signif-
icant time. Moreover, we know that many simulations (N) are needed if p and
RE are small. Thus, to analyze systems of realistic complexity, smcd collectors
might be deployed on large clusters of machines with varying availability. Hence,
the aggregator is designed so that collectors may join and drop at any time. If



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Te
st

 S
uc

ce
ss

 P
ro

po
rt

io
n

Risk Threshold

25% of Time 

50% of Time 

62% of Time 

75% of Time 

85% of Time 

90% of Time 

95% of Time

0

0.2

0.4

0.6

0.8

1

High Poor

Te
st

 S
uc

ce
ss

 P
ro

po
rt

io
n 

LowMedium
Network Quality

Fig. 2. Graphs of results from experiments 1 (left) and 2 (right).

a collector joins during a round, it is held in reserve until the next round but
not used during the current round. If a collector disconnects during a round, an
“abort” message is send to the other collectors, and the results of that round
are discarded. Thus, we avoid any potential bias in the probability estimation.

4 Experiments

Our scenario (c.f. Figure 1 for dmpl code fragment) involves a reconnaissance
mission with five flying robots (i.e., nodes) on a 2-dimensional grid. One node
(leader) has mission-critical sensors, while the others (protectors) provide phys-
ical defense from attackers (so we want to maximize coverage). The leader
must follow a specific flight path, and reach a particular location by time T
while maintaining a minimum level of protection for mission success. Nodes
execute a (presumed correct) collision-avoidance protocol, which slows down
the the fleet, due to additional coordination. Each grid cell has a random haz-
ard level with known probability distribution. The system has two formations:
(i) tight – the protectors are closer to the leader, and (ii) loose – protectors
are further apart. The tight formation provides better coverage to the leader
but is about twice as slow. The leader executes a self-adaption algorithm for
formation selection, based on upcoming hazards and remaining mission time,
to increase likelihood of mission completion. Further details are not germane
to this paper. However, our tools and the complete example is available at
http://www.andrew.cmu.edu/~schaki/misc/smc-dart.tgz.

Experiment 1: Quality of Formation. First, we analyzed the quality
of formation-keeping by the protectors. At any time instant, let us define the
leader’s risk (R) as the product of the hazard at its location and its exposure (one
minus its coverage, computed via the method shown in Figure 1). We selected
14 R values: {2, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 95}, and 7 @AtLeast

values: {.25, .50, .62, .75, .85, .90, .95}. For each R value ρ and @AtLeast value al ,
we defined an expect clause to express mission success only if the leader’s risk

http://www.andrew.cmu.edu/~schaki/misc/smc-dart.tgz


remains below ρ for at least al fraction of the time. This yielded 98 properties,
whose probabilities were computed using smcd. We ran 603 simulations, on
5 VMs in parallel, using T = 115s. This achieved RE = 0.1 for most of the
properties. A few properties had RE > 0.1, and would require techniques to
handle rare events [6,8]. Our results are summarized in Figure 2. Each curve
corresponds to a different @AtLeast value. As expected, the probability increases
with the risk threshold, but falls with increasing @AtLeast value.

Experiment 2: Resilience to Network Disruption. Next, we instru-
mented our simulation to randomly drop messages between the nodes. This
slows down the fleet due to increased coordination time for collision avoidance.
We defined four network categories based on drop rate ranges: high (0% to
20%), medium (20% to 40%), low (40% to 60%), and poor (60% to 80%). Us-
ing an @AtEnd expect clause we defined the following property: at the end of
the mission, the leader must be at the target location. We then computed the
probability of this property for each network category. For each experiment for
a category, we randomly selected a drop rate from that category’s range, uni-
formly distributed. To achieve RE = 0.1, we needed 35 experiments for “high”,
43 experiments for “medium”, and 264 for “low”. Fig. 2 shows the results. As
expected, the probability drops with decreasing network quality. For the “poor”
network, we stopped after 43 experiments, since we saw no successes. Techniques
to handle rare events in SMC [6,8] are needed for this case as well1.

References

1. Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.:
Checking and Distributing Statistical Model Checking. In: Proc. of NFM (2012)

2. Clarke, E.M., Zuliani, P.: Statistical Model Checking for Cyber-Physical Systems.
In: Proc. of ATVA (2011)

3. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M.: Optimizing Control
Strategy Using Statistical Model Checking. In: Proc. of NFM (2013)

4. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Proc. of CAV (2011)

5. Edmondson, J.R., Gokhale, A.S.: Design of a Scalable Reasoning Engine for Dis-
tributed, Real-Time and Embedded Systems. In: Proc. of KSEM (2011)

6. Jégourel, C., Legay, A., Sedwards, S.: Importance Splitting for Statistical Model
Checking Rare Properties. In: Proc. of CAV (2013)

7. de Niz, D., Lakshmanan, K., Rajkumar, R.: On the Scheduling of Mixed-Criticality
Real-Time Task Sets. In: Proc. of RTSS (2009)

8. Srinivasan, R.: Importance Sampling: Applications in Communications and Detec-
tion (2002)

9. V-REP website, http://www.coppeliarobotics.com
10. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-

chronous Events. Ph.D. thesis, Carnegie Mellon University (2005)
11. Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Proc. of CAV (2005)

1
This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. This material has been
approved for public release and unlimited distribution. DM-0002365

http://www.coppeliarobotics.com

	Statistical Model Checking of Distributed Adaptive Real-Time Software

