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Motivating Example
Pursuer/Evader Example

• Pursuer and Evader given random initial positions 

(𝑥𝑝, 𝑦𝑝) and (𝑥𝑒 , 𝑦𝑒) near center of region.

• Evader attempts to reach safe zone in corner.

• Faster moving pursuer attempts to catch evader 

before it reaches safe zone.

Statistical Model Checking (SMC)

• Let ℳ be the model for the pursuer/evader 

scenario and Φ be the property “the evader 

reaches safe zone”.

• SMC attempts to answer the question, “What is 

the probability that ℳ ⊨ Φ? "

Input Attribution (IA)

• Asks the question “Why do I get a particular 

probability estimate?”

• Analog to counter-example in model checking.

• Expressed in terms of the inputs as 

approximation for the model?

Pursuer/Evader Example

Evader
(𝑥𝑒 , 𝑦𝑒)

Pursuer
(𝑥𝑝, 𝑦𝑝)

Safe 
Zone

What is primary factor influencing 
success for the evader?

Perhaps distance characterized by

𝑥𝑝 − 𝑥𝑒
2
+ 𝑦𝑝 − 𝑦𝑒

2

Can we synthesize this automatically 
from the trial data?



4
Input Attribution for SMC using Logistic Regression

September 29, 2016

© 2016 Carnegie Mellon University

Distribution Statement A Approved for Public Release; Distribution is Unlimited

Statistical Model 
Checker

Any system ℳ that 

takes random inputs

Probabilistic 

Temporal Logic 

Formula 𝝓

Estimated 

Probability that 

ℳ ⊨ 𝝓 with relative 

error 𝑹𝑬

Statistical Model Checking (SMC)

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑬𝒓𝒓𝒐𝒓 =
𝑺𝒕𝒅.𝑫𝒆𝒗.

𝑴𝒆𝒂𝒏

• System properties described in formal language (UTSL, BLTL, etc.)

• Property is tested on “sample trajectories” (sequence of states)

• Each outcome can be treated as a Bernoulli random variable (i.e., coin flip)

Based on Monte-Carlo 
Simulation
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For low probabilities, approximate 
number of samples required to evaluate 

to a relative error of RE is:  𝑵 ≈
𝟏

𝒑(𝑹𝑬)𝟐

Statistical Model Checking with Crude Monte-Carlo

The probability that condition Φ holds in model 

ℳ when the input  𝑥 is distributed according to 

joint pdf 𝑓  𝑥 is the expected value of that 

indictor function and can be calculated as:

𝑝 = 𝐸[𝐼ℳ⊨Φ(  𝑥)] =  𝐼ℳ⊨Φ(  𝑥)𝑓  𝑥 𝑑  𝑥

where 𝐼ℳ⊨Φ(  𝑥) is an indicator function for the 

model.  This can be estimated with Crude 

Monte-Carlo simulation as:

 𝑝 =
1

𝑁
 

𝑖=1

𝑁

𝐼ℳ⊨Φ(  𝑥𝑖)

where each  𝑥𝑖 is a sample vector drawn from 

𝑓  𝑥 .  As 𝑁 gets large,  𝑝 will converge to 𝑝.
 𝑝 =
1

10
= 0.1

# of samples in 

fault region

total # of samples

Estimated Failure Probability

fault 

region
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Input Attribution – The “Why” of SMC
Problem – Standard SMC provides an estimate on 
probability that a predicate is satisfied, but does not 
address why a particular result was obtained.

Goal – Provide investigator with informative non-
redundant representation of how system inputs 
relate to the property being tested:

1. Describes relationship that actually exists in data

2. Is presented in a way that is quantitative and 
understandable

3. Gives investigator new insights

4. Is resilient to randomness in the system

Approach – Apply machine learning and feature 
extraction techniques.

• Use Logistic Regression to identify “predictors” that 
affect the probability that a predicate is satisfied.

• Calculate p-values for predictors to indicate 
significance.

• Look for sets of predictors that can be factored into 
larger expressions.

System ℳ Predicate Φ

Expression p-Value

0.62 𝑎 − 1.01𝑑 2 0.0013

4.3𝑏 0.0042

1.3(2.3 − 𝑐)^2 0.0172

Input Attribution
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Odds vs Probability

Logistic Regression reasons about “odds”

• Alternate representation of probability

• Think of horse racing odds like “7:1”.

• The odds 𝛾 of event is related to the 

probability 𝑝 as: 

𝑝 =
𝛾

𝛾 + 1
=
1

1 + 1/𝛾

• Odds fall in interval:

0 < 𝛾 < ∞

• Log of odds fall in interval:

−∞ < log(𝛾) < ∞

• Unbounded nature of “log odds” makes it 

suitable for linear regression analysis.

SAT

UNSAT 200

100

Odds

𝛾𝑆𝐴𝑇 =
100

200
= 0.5

Probability:

𝑝𝑆𝐴𝑇 =
100

100 + 200
= 0.333

Example
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Logistic Regression (LR)

Logistic Regression

• Regression model useful when 
dependent variable is Boolean.

• Based on the logistic function.

• Linear fit of the log of the “odds”.

• Estimates probability that for a 
particular input the result variable will 
be true.

Input

• Set of “trials” consisting of vectors of 
“predictors” (e.g., input variables) and 
a dependent Boolean random variable.

Output

• Set of coefficients for each predictor 
that fit a linear expression.

• Standard error for each predictor from 
which a p-Value can be computed.

𝑡 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑁𝑥𝑁

Log Odds or “Logit”

𝐿 𝑥 =
1

1 + 𝑒−𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑁𝑥𝑁

LR Model

𝑝 𝑡 =
1

1 + 𝑒−𝑡

𝑝 𝑡

Logistic Function 

t
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Evaluating LR Results (Linear Case)

Name 𝜷 Std.Err. p-Value

− -4.28 0.874 0.0000

𝑎 0.154 0.0138 0.0000

𝑏 -1.91 0.3551 0.0000

𝑐 0.0635 0.0277 0.0219

𝑑 5.05 2.77 0.0685

Predictors

Constant Term

The factor by which the log odds of a 
predicate will increase per unit increase of 
input. Positive values represent increase 
and negative values represent decrease. 

Error in estimation of 𝛽.

• Calculated by applying 
inverse normal distribution 
to ratio of standard error 
and 𝛽. 

• Represents probability that 
𝛽 = 0 can explain the data.

• Values above a threshold 
(e.g., 0.05) indicate relation 
between input and 
predicate is not statistically 
significant.

This predictor is 
not statistically 
significant since its 
p-value is greater 
than 0.05. 
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Polynomial Input Attribution

Non-Linear Predictors

• By including non-linear predictors, it 

may be possible to find a statistically 

significant solution when linear only 

terms fail.

• In our work to date, we have focused 

on quadratic terms (e.g., 𝑥2, y2, xy)

• Higher order or non-polynomial terms 

could be useful for some systems.

Factoring

• Factored polynomials are easier for 

humans to understand.

• Since coefficients are approximated, 

perfect factorings may not be possible.

• Look for approximate factorings which 

do not adversely affect original 

coefficients.

1.01 𝑎 − 1.01𝑏 2

1.01𝑎2 − 2.04𝑎𝑏 + 1.03𝑏2

Re-expand and accept 
approximation if  error is 
within set factor of std. error.

Name 𝜷 Std.Err. p-Value

⋮ ⋮ ⋮ ⋮

𝑎2 1.01 0.0148 0.0000

𝑎𝑏 -2.04 0.0362 0.0000

𝑏2 1.02 0.0193 0.0219

⋮ ⋮ ⋮ ⋮

Complete square 
to create candidate 
factoring

Find variable pairs with 
squares and cross terms
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𝝉 = ∞

𝝉 = −∞

Evaluating LR Fit

Model Verification

• Results of LR only meaningful if overall 
model fits data.

• LR model 𝐿(𝑥) predicts probability that 
input 𝑥 will satisfy predicate.

ROC Analysis

• ROC curve is plot of

- true positives P[𝐿 𝑥𝑖 > 𝜏|𝜙𝑖] vs

- false positives P[𝐿 𝑥𝑖 > 𝜏|𝜙𝑖]

- for −∞ < 𝜏 < ∞

• Area Under Curve (AUC)

- Represents P[𝐿 𝑥𝑆𝐴𝑇 > 𝐿 𝑥𝑈𝑁𝑆𝐴𝑇 ] where 
𝑥𝑆𝐴𝑇 and 𝑥𝑈𝑁𝑆𝐴𝑇 are arbitrary inputs 
resulting in SAT and UNSAT of Φ.

- Values range between 0.5 (model is no 
better than chance) to 1.0 (perfect fit).

Ground Truth

LR
 D

et
ec

to
r

UNSAT SAT

SA
T

U
N

SA
T

True
Negatives

False
Negatives

False
Positives

True
Positives
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Evaluating LR Fit

Model Verification

• Results of LR only meaningful if overall 
model fits data.

• LR model 𝐿(𝑥) predicts probability that 
input 𝑥 will satisfy predicate.

ROC Analysis

• ROC curve is plot of

- true positives P[𝐿 𝑥𝑖 > 𝜏|𝜙𝑖] vs

- false positives P[𝐿 𝑥𝑖 > 𝜏|𝜙𝑖]

- for −∞ < 𝜏 < ∞

• Area Under Curve (AUC)

- Represents P[𝐿 𝑥𝑆𝐴𝑇 > 𝐿 𝑥𝑈𝑁𝑆𝐴𝑇 ] where 
𝑥𝑆𝐴𝑇 and 𝑥𝑈𝑁𝑆𝐴𝑇 are arbitrary inputs 
resulting in SAT and UNSAT of Φ.

- Values range between 0.5 (model is no 
better than chance) to 1.0 (perfect fit).

- Use average of 5-fold cross validation to 
avoid bias.

5-Fold Cross Validation

4 chunks used to 
create model 𝐿(𝑥)

Simulation data with input and predicate 
results 𝑥𝑖 , 𝜙𝑖 partitioned into 5 chunks

Average AUC (Area 
Under Curve) for the 5 
folds represents quality 
of LR model.

5th chunk compared with 
model to create ROC curve.
(repeated for each chunk)
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V-REP Simulator
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Demeter

Goal: Develop parallel infrastructure for SMC 

of systems with probabilistic behaviors.

Primary target is autonomous systems. 

Demeter components

• Client runs in web browser (e.g. firefox)

• Master runs in Apache server with PHP

• Data stored in MySQL database

• Input Attribution uses R statistical system

• Individual simulations conducted in Docker 

containers.  Managed by “Runner”.

Demeter
Master

(Apache+PHP)

Results

(MySQL)

Job

(.smc)

SMC
Runner

Simulation

Docker Container

trial

trial

Input
Attribution

(with R)

SMC
Runner

Simulation

Docker Container

Trials

(.csv)

Demeter
Client

(firefox)
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SMC-Runner operate as a 
Docker container. Each 
Docker container is 
managed by Rancher
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Target/Threat Experiment

Scenario

• Drone flies pre-programmed path over area.

• Along path are “targets” to be photographed.

- Close to ground → Better chance of good photo.

• Path also includes “threats” to be avoided.

- Close to ground → More likely to be destroyed.

• Adaptive algorithm with imperfect sensors, sense 

threats ahead and controls altitude.

Inputs

• Number of targets/threats

• Target detector range (down)

• Target/Threat detector range/accuracy (forward)

• Threat range

Predicate

• Drone photographs at least 50% of targets while 

avoiding being destroyed by threats.

Drone path

Famous 
Physicist Bodyguard
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Target/Threat Experiment

Key Observations

• False positives on threats reduce the 

probability of detecting targets.

- Reacting to threats that are not there 

results in drone flying at higher altitude 

when not necessary and missing 

some targets.

• Increasing number of targets reduces 

probability of survival.

- Drone takes more risks by flying lower 

to photograph targets.

• False negatives on threat and target 

detection do not have statistically 

significant effect on mission, detection or 

survival probabilities.

- Verified with additional simulations 

varying false negative rate.  Could 

indicate problem with adaptation 

algorithm controlling drone.

Name 𝜷
mission

𝜷
detect

𝜷
survive

Target Detector Range 1.33 1.46

Threat Range -1.57 -1.189 -2.37

Threat Lookahead 0.233 0.194 0.377

Number of Threats -0.0892 -0.0943 -0.0792

Number of Targets -0.0296

Target False Positives -17.81

Threat False Positives -3.26 -10.04 32.74

Simulation Results
#Trials: 22,560
P[SAT-mission]: 0.308
P[SAT-survive]: 0.618
P[SAT-detect]: 0.361
Relative Error: 0.05
Batch Size: 120
Run Time: 10 hours, 6 min

Input Attribution (AUC=0.926)
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Motivating Example - Revisited

Initial hypothesis was that initial distance between 

pursuer and evader was deciding factor for 

survival of evader.

Factoring the IA predictors gives us:

0.0602 𝑥𝑒 − 1.03𝑥𝑝
2
+ 0.0561 𝑦𝑒 − 1.09𝑦𝑝

2

With error less than 4𝑠𝑒(𝛽) on each coefficient.

Resulting IA expression very close to square of 

Euclidean distance.  Constant factor represents 

relation between distance and log odds of survival.

Pursuer/Evader Example

Evader
(𝑥𝑒 , 𝑦𝑒)Pursuer

(𝑥𝑝, 𝑦𝑝)

Safe 
Zone

Name 𝜷 𝒔𝒆(𝜷) p-value

𝑥𝑒𝑥𝑝 -0.124 0.0027 < 10−4

𝑦𝑒𝑦𝑝 -0.122 0.0027 < 10−4

𝑥𝑒
2 0.06 0.0031 < 10−4

𝑦𝑒
2 0.056 0.0031 < 10−4

𝑥𝑝
2 0.056 0.0031 < 10−4

𝑦𝑝
2 0.056 0.0031 < 10−4

Simulation Results
#Trials: 36,960
# SAT: 7,900
P[SAT]: 0.214
Relative Error: 0.01
Batch Size: 120
Run Time: 5 hours, 20 min

Input Attribution (AUC=0.77)



23
Input Attribution for SMC using Logistic Regression

September 29, 2016

© 2016 Carnegie Mellon University

Distribution Statement A Approved for Public Release; Distribution is Unlimited

Summary

Addresses the “Why” of SMC

• Concise human understandable justification for SMC probability estimate

• Modeled as expression correlated with the predicate

• Shows which variables are most important

Uses Logistic Regression

• Regression model useful when dependent variable is Boolean.

• Not dependent on input distribution.

• Commonly used in machine learning applications.

Extended to Non-Linear Attribution

• Adds non-linear functions of inputs as predictors to model.

• Can find attributions where linear attribution fails.


