
Input Attribution for Statistical Model Checking
using Logistic Regression?

Jeffery P. Hansen, Sagar Chaki, Scott Hissam
James Edmondson, Gabriel A. Moreno, and David Kyle

Carnegie Mellon University, Pittsburgh, PA, USA
{jhansen,chaki,shissam,jredmondson,gmoreno,dskyle}@sei.cmu.edu

Abstract. We describe an approach to Statistical Model Checking
(SMC) that produces not only an estimate of the probability that spec-
ified properties (a.k.a. predicates) are satisfied, but also an “input attri-
bution” for those predicates. We use logistic regression to generate the
input attribution as a set of linear and non-linear functions of the inputs
that explain conditions under which a predicate is satisfied. These func-
tions provide quantitative insight into factors that influence the predicate
outcome. We have implemented our approach on a distributed SMC in-
frastructure, demeter, that uses Linux Docker containers to isolate sim-
ulations (a.k.a. trials) from each other. Currently, demeter is deployed
on six 20-core blade servers, and can perform tens of thousands of tri-
als in a few hours. We demonstrate our approach on examples involving
robotic agents interacting in a simulated physical environment. Our ap-
proach synthesizes input attributions that are both meaningful to the
investigator and have predictive value on the predicate outcomes.

1 Introduction

Statistical model checking (SMC) [18, 1] has emerged as a key technique for quan-
titative analysis of stochastic systems. Given a stochastic system M depending
on random input x, and a predicate Φ, the primary goal of SMC is to estimate
the probability P [M |= Φ] that Φ is satisfied inM within some specified level of
confidence (e.g., relative error). SMC, which is based on Monte-Carlo methods,
has some major advantages over methods such as probabilistic model checking.
It can be applied to larger and more complex systems, and to the actual sys-
tem software rather than an abstract model of that software. Moreover, it can
analyze a system as a “black box” observing only its inputs and outputs.

While estimating the probability that a predicate holds is important, it is
also important to understand the factors that contribute to that estimate. We
refer to this as input attribution. More specifically, an input attribution is a

? This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research and
development center. DM-0003895



2 Hansen et al.

human-understandable quantitative model explaining the relationship between
the random inputs and the specified predicate Φ (e.g., a mathematical expression
of the input variables that predicts whether Φ will be satisfied). A good input
attribution must: (i) describe a relationship that actually exists in the system;
(ii) be presented in a way that is quantitative, meaningful and understandable to
the investigator; (iii) give the investigator new insights into the system; and (iv)
be resilient to additional hidden or uncontrolled randomness (e.g., randomness
due to the physics in the system not included in the input x).

In this paper, we address the input attribution problem for SMC, and make
the following contributions. First, we present an approach to input attribution
that builds a statistical model from the simulation data collected during SMC.
Among several potential statistical modeling methods, we focus on logistic re-
gression [10] (LR). Logistic regression is targeted at systems with a binary (or
categorical) dependent variable, which is exactly the case in SMC. The result
of an LR analysis is a function that predicts the probability that the dependent
binary variable will be 1 as a function of the input variables. One advantage of
LR over other techniques, such as linear discriminant analysis, is that it makes
no assumptions on the distribution of the inputs. We show how to compute both
linear and polynomial input attributions via LR.

Second, we implement our approach in a distributed SMC infrastructure,
called demeter, that uses a dispatch and join pattern to run many simulations
in parallel across a set of machines. demeter uses Docker [?] containers to isolate
simulations from each other, and batching to avoid statistical bias in results [17].
Using six blade servers, demeter has to date run millions of simulations over
many days, demonstrating its robustness. Finally, we validate our approach over
a set of examples involving one or more agents that operate under uncertainty to
achieve specific goals. Our results indicate that the LR-based approach is able to
synthesize input attributions that are both meaningful to the investigator and
have predictive value on the predicate outcomes.

The rest of this paper is organized as follows. In Section 2 we discuss related
work; in Section 3 we discuss some basic concepts and theory of Statistical
Model Checking; in Section 4 we discuss our approach to input attribution; in
Section 5 we describe demeter; in Section 6 we present our results in applying
our techniques to three different examples; and in Section 7 we conclude.

2 Related Work

SMC, developed by Younes [18], has been applied to a wide variety of sys-
tem models including stochastic hybrid automata [4], real time systems [5], and
Simulink models for cyber-physical systems [1]. In contrast, we apply SMC di-
rectly to the system executing in an operating environment that includes uncer-
tainty from scheduling and communication. Our prior work [11] also presented
a distributed SMC infrastructure for dmpl [?] programs, but used a manually
managed set of virtual machines to isolate trials from each other logically. In
contrast, demeter uses lighter weight Docker [?] containers for isolation, and



Input Attribution for SMC 3

Rancher [?] for automated launching and failover. In addition, it is able to carry
out trials involving a broader class of applications, not just those generated from
dmpl programs.

The prismatic [13] project investigated “counterexample generation and cul-
prit identification” in the context of probabilistic verification. It used machine
learning (specifically the Waffles tool) to construct decision trees from runs of
the system. From the decision tree, one can infer the component that is most
responsible for failure. Their approach has limited effectiveness when a combi-
nation of several components leads to failure. In contrast, we use LR to give
numeric weights to input variables, as well as polynomial terms of such vari-
ables. This makes our approach more effective when a combination of multiple
random inputs is the more likely cause of failure. In addition, the prismatic tool
is built on top of prism [?] and can analyze models, while we analyze system
executables.

The problem of determining under which conditions a program will fail has
also been explored in the context of non-stochastic software. For example, Cousot
et al. [3] use abstract interpretation [2] to statically compute an expression over a
function’s parameters (i.e., a precondition) under which the function will always
fail a target assertion. Similarly, the daikon system [6] dynamically constructs
likely program invariants from collected execution traces using machine learning
techniques. Our goals are similar, in that we want to produce artifacts that pro-
vide insight about a program’s behavior, but our focus is on stochastic systems,
and we use logistic regression.

3 Background

Consider a system M with a finite vector of random inputs x over domain Dx.
The SMC problem is to estimate the probability p = P [M |= Φ] thatM satisfies
a predicate Φ given a joint probability distribution f on x. Let us write x∼f to
mean x has distribution f . SMC involves a series of Bernoulli trials, modeling
each trial as a Bernoulli random variable having value 1 with probability p, and
0 with probability 1 − p. For each trial i, a random vector xi∼ f is generated,
and the system M is simulated with input xi to generate a trace σi. The trial’s
outcome, yi, is 1 if Φ holds on σi, and 0 otherwise.

Traditionally, we would assume that whether M |= Φ is satisfied under a
specific input x is deterministic. However, since we are considering physical sim-
ulations of agents, the physics engine itself may introduce additional randomness
that is not under our control. For this reason, we weaken our deterministic out-
put assumption and assume the outcome yi of M |= Φ for a specific input xi is
itself a Bernoulli random variable with an unknown probability JM|=Φ(xi) that
M |= Φ is satisfied. An alternative and equivalent way to model this is to in-
troduce a hidden random variable u∼U(0, 1) to represent randomness inherent



4 Hansen et al.

in the simulation.1 We then have a system with input x, u for which M |= Φ is
satisfied when JM|=Φ(x) ≥ u.

Define an indicator function IM|=Φ : Dx × [0, 1] → {0, 1} that returns 1 if
M |= Φ under input x, u, and 0 otherwise. Then, when x∼ f , and u∼U(0, 1),
the probability p = E[IM|=Φ(x, u)] that M |= Φ holds can be estimated as

p̂ = 1
N

∑N
i=1 IM|=Φ(xi, ui), where N is the number of trials. Note that, while we

observe the values of xi for each trial simulation, we can see only the resulting
outcome IM|=Φ(xi, ui) and not the value of the hidden variable ui itself.

The precision of p̂ is quantified by its relative error RE(p̂) =

√
Var(p̂)

p̂ where

Var(p̂) is the variance of the estimator. It is known [1] that for Bernoulli trials,
relative error is related to the number of trials N and the probability of the

event p as RE(p̂) =
√

1−p
pN ≈

1√
pN

. Thus, we have N = 1−p
pRE2(p̂) ≈

1
pRE2(p̂) .

4 Input Attribution

Statistical learning is a field of statistics that is concerned with finding a model
that relates a stimulus to some response [7]. In the case of statistical model
checking, the stimulus is the set of random input variables and the response
is the outcome of a trial. There are two main uses for these learned models:
prediction and inference. Prediction is using the model to predict the response
given a stimulus, while inference is learning something about the relationship
between the stimulus and the response. Input attribution is primarily concerned
with inference, though we do evaluate the predictive power of the model to ensure
validity of any input attribution generated by our approach.

One technique used in statistical learning is logistic regression. In logistic
regression, a linear function of “predictors” is fit to the log of the odds (often
called a “logit”) ratio that a binary response variable holds. Here, odds are
simply an alternative way of representing probability such that p = γ

1+γ is the
probability where γ is the odds. For example, if the odds of an event are 4 to 3,
then γ = 4

3 and the probability is p ≈ 0.57.
In this paper, we take the predictors to be either the input variables, or

a combination of the input variables and functions of the input variables. For
simplicity we assume all random variables are continuous or countable, though
it is possible to generalize these results to categorical random variables. The
analysis is performed independently for each predicate defined by the investigator
with a separate result for each. Let xij be the inputs over a set of trials 1 ≤ i ≤ N
with predictors 1 ≤ j ≤ M for each input, and yi be the result of each trial.
Logistic regression will find a linear function of the form:

L : x 7→ β0 +

M∑
j=1

βjxj (1)

1 In this paper we use U(a, b) for the uniform distribution between two real numbers
a ≤ b, and U{a, b} for the uniform integer distribution between a and b, inclusive.



Input Attribution for SMC 5

such that p̂ = 1
1+e−L(xi)

is the predicted probability that we will get a response
of yi = 1 given input xi. The βj for a continuous random variable xj represents
the increase in the “logit” for each unit increase in of xj . When interpreting
the coefficients, it is sometimes useful to think of an “odds ratio”, the factor by
which the odds changes in response to some change. For an increase of ∆ on
variable xj the odds ratio will be eβj∆. Note that βj itself does not necessarily
indicate the importantance of xi as it is also dependentant on the units.

We use the R statistical analysis system [14] to perform the logistic regres-

sion. For each predictor xj , R generates a maximum likelihood estimate β̂j and

a standard error se(β̂j) of the coefficient βj for that predictor. The standard
error is used to perform a Wald test [10] on the significance of βj against the
null-hypothesis that βj could be 0 (i.e., the hypothesis that predictor xj is not
important for determining the outcome). The Wald test involves calculating a

z-value zj =
β̂j−0
se(β̂j)

representing the number of standard deviations from zero of

the β̂j estimate, then looking up that value in the Normal distribution table to
find the p-value representing the probability that the null-hypothesis could occur
by chance. Typically a p-value < 0.05 is considered statistically significant.

Since our goal is to discover relationships between the predictors and the
predicate, the β̂j and the associated p-values for each coefficient are the most

useful for us. Low p-values tell us that a predictor is significant, and the β̂j
tells us the factor by which the log of the odds for the predicate being satisfied
increases which each unit increase in predictor xj .

4.1 Linear Input Attribution

The most straight-forward application of logistic regression is to use each input
xj as a predictor, and report those for which the p-value is below the selected
threshold. Our approach includes this as one of its options, and is the easiest to
use when relationships between input variables and predicates are linear.

Example. As an illustrative example consider a data set consisting of 500
samples of random vectors x = (x1, x2, x3) where x1 ∼ U{1, 6}, x2 ∼ U{1, 6},
x3∼U{1, 12}. Also assume there is a hidden random variable u∼U{1, 10} that
affects the outcome of the trial, but cannot be directly observed. Now assume
the predicate y we are testing is 1 when x2 + x3 + u > 10 and 0 otherwise.
When we apply logistic regression on this data set using R we get: L : x 7→
−2.8 − 0.03x1 + 0.50x2 + 0.64x3, with p-factors well below 0.01 for both x2
and x3, and a p-factor of 0.78 for x1 indicating it is not statistically significant
(which is expected since it was not involved in the predicate being tested). For
this example, our approach generates the input attribution: 0.50x2 + 0.64x3,
excluding the x1 term because it was not statistically significant. The positive
coefficients for both x2 and x3 indicate the probability of y being 1 increases
with an increase in either input, as expected.

Before accepting the result of the logistic regression analysis, we must verify
that the overall logistic model fits the data. We do this using ROC (Receiver
Operating Characteristic) analysis [8]. In ROC analysis, we consider L(x) > T



6 Hansen et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u

e 
Po

si
ti

ve
s

False Positives

Name β se(β) p-value

x1 16.0 2.80 < 10−4

x2 17.8 2.75 < 10−4

x21 -18.1 2.43 < 10−4

x22 -19.2 2.42 < 10−4

x1x2 4.5 2.74 0.0976

(a) (b)

Fig. 1. (a) ROC Curves for Linear Example; (b) Logistic Regression Results for Poly-
nomial Example.

for some threshold T to be the prediction that is compared to the actual result
of the predicate y. We then plot the true positive rate P [y = 1|L(x) > T ] against
the false positive rate P [y = 0|L(x) > T ] for −∞ < T <∞.

The ROC curve for our example data using 5-fold cross validation is shown
in Figure 1(a). In 5-fold cross validation, the trials are randomly partitioned
into 5 chunks then 4/5 of the data are used to build the logistic model while the
remaining 1/5 is used to validate the model. This process is repeated 5 times
with each chunk taking its turn as the test data resulting in curves for each of
the 5 folds shown in the figure. In ROC analysis, curves that approach the upper
left corner are considered “good” detectors while a detector near the diagonal
from the lower left to upper right are no better than random guessing. Another
more succinct way to present the results of an ROC analysis is the AUC (Area
Under Curve). It is known [8] that the AUC is equivalent to the probability
P [L(xsat) > L(xunsat)] where xsat is a randomly selected input that satisfies
the predicate and xunsat is a randomly selected input that does not satisfy the
predicate. An AUC of 1 corresponds to a perfect detector, while an AUC of 0.5
corresponds to a detector that is no better than guessing. Using our sample data,
we computed AUC for each fold yielding values be 0.87 and 0.91 with a mean
of 0.90 indicating good predictive value of the model, and thus indicating our
input attribution is valid.

4.2 Non-Linear Input Attribution

If there are non-linear dependencies between a predictor and the predicate, the
linear analysis techniques described above will fail to find a statistically signifi-
cant relationship. To solve this problem, we include non-linear functions of the



Input Attribution for SMC 7

inputs as predictors. In effect, the non-linear functions are “guesses” on potential
relationships between the inputs and the predicate. Some guesses may result in
statistically significant relationships, while others may not and be discarded.

In this paper, we restrict our guesses to 2nd order polynomials over the input
variables. These are important because in sets of random variables describing
points in space, distances between fixed points, or between pairs of random
points can be described as 2nd order polynomials. Note that it is not necessary
to actually include every possible polynomial of the inputs, we need only include
the monomial building blocks of the possible polynomials. More specifically,
in addition to the linear input terms {x1, . . . , xM}, we include the additional
predictors {x2j | 1 ≤ j ≤M}, and the predictors {xjxk | 1 ≤ j < k ≤M}.

Factored Polynomials. In order to present relationships that are easy to
interpret, our algorithm further attempts to find factored polynomials where
possible. Two types of factors are considered: single variable and two variable.
In each case, we look for subsets of the log odds expression (1) that can be
factored. In the single variable case, we look for predictors βax

2
j and βbxj where

both have a low p-value and factor by completing the squares as:

βa(xj +
βb

2βa
)2 + C = βax

2
j + βbxj (2)

where C is the constant needed to complete the square. But since our goal is to
show relationships, our algorithm only outputs the βa(xi + βb

2βa
)2 part.

Factored Two-Variable Polynomials. Similarly, in the two variable case,
we look for predictors βax

2
j , βbxjxk and βcx

2
k with low p-values, and factor as:

βax
2
j + βbxjxk + βcx

2
k = βa(xj + (h+ g)xk)(xj + (h− g)xk) (3)

where h = βb

2βa
and g =

√
β2
b−4βaβc

2βa
when g is real. Since all of the βi are

approximations, our algorithm suggests the simpler factoring:

βax
2
j + βbxjxk + βcx

2
k ≈ βa(xj + hxk)2 (4)

when |βc−βah2| < Kse(βc) (i.e., when the polynomial coefficient of the x2k term
in βa(xj +hxk)2 is within K standard error of its original value). We use K = 3
in this paper.

Example. Now consider an example with 500 trials with inputs x = (x1, x2)
where x1 ∼U(0, 1) and x2 ∼U(0, 1) are uniformly distributed between 0 and 1
and represent coordinates in a 2D square. Define the predicate y as being true
when the point x is within distance u∼U(0, 0.5) of the center (0.5, 0.5) of the
square but with u being a hidden random variable.

When we first try a linear analysis, we find that the p-factors for both x1 and
x2 are not significant. When we repeat the analysis using polynomial terms we
get the results shown in Table 1(b). The 5-fold cross validation for this exam-
ple results in an average AUC of 0.85 indicating reasonable predictive strength
for the model. Since the p-value for the x1x2 term is greater than 0.05, it is
not statistically significant and so we only look for single variable polynomial



8 Hansen et al.

Fig. 2. The Master-Runner architecture of demeter.

expressions. Completing the squares for the x1 and x2 gives us the input attribu-
tion: −18.1(x1 − 0.44)2 − 19.2(x2 − 0.46)2. We see from the form of this expres-
sion that the analysis synthesizes an expression for distance between (x1, x2)
and (0.44, 0.46) which is close to the expected distance from the center point
at (0.5, 0.5). We also see this expression is negative meaning that the further
(x1, x2) is from the center point, the lower the probability that y is satisfied.

5 SMC Infrastructure: DEMETER

We have implemented our approach in a distributed SMC infrastructure called
demeter (Distributed Execution of Multiple Experiments and Transfer of Em-
pirical Results). demeter uses a dispatch and join pattern for parallel processing
across a set of machines. Dispatch is managed by an SMC Master (see Figure
2) which queues SMC jobs. A job is described via a .smc file, which includes
the systemM, the input variables xi and their probability distribution f , target
predicate(s) Φ, and the target relative error for each predicate RE(p̂)Φ.

A job is conducted by the Master as a series of Bernoulli trials. Each trial in
the series is allocated to an SMC Runner which simulates the system M with
the trial inputs, and reports the outcome. The system M can be any arbitrary
piece of software that can be invoked from a shell script dispatched by the
Runner, potentially with multiple communicating processes. The trial input to
the Runner is an instance of a random input vector, xi ∼ f , generated by the
Master for that trial. The outcome, produced byM, is either 1 if Φ holds on σi,
and 0 otherwise for each Φ described by the job. The Master records the input
and outcome for each trial in the Results database and the Master will continue
to perform trials until the target relative error computed for each p̂Φ is reached.

A job may require thousands of trials to reach the target RE(p̂Φ). The Master
dispatches trials in parallel as a sequence of batches allowing all trials in a batch
to complete before starting the next batch to avoid bias [17]. The default batch
size equals the number of available Runners, but this can be controlled via
the “weight” specification for the job (discussed later in Load Management).



Input Attribution for SMC 9

Once a batch is dispatched, the Master waits for all trials in that batch to
complete before dispatching the next batch. A batch is complete if every trial in
it completes with either 0 or 1 for all predicates defined for the job. Any other
result (e.g., an infrastructure error) is considered an error for the trial, and the
entire batch is discarded to avoid bias. Trials from a complete batch are used to
compute RE(p̂Φ) for each predicate.

For our experiments, we deployed demeter over six Dell PowerEdge blades
with each blade having 128Gb of RAM and 2 Intel Xeon E5-2687W 3.1Ghz
processors with each processor having 10 processing cores and 2 cpu threads per
core. A pool of 216 Runners (36 Runners ∗ 6 blades2) were used. We now
discuss how demeter achieves isolation between trials.

Logical Isolation is achieved by running each trial within a separate Docker [?]
instance. Docker has the following twofold advantage over other virtual machine
approaches: (i) startup, shutdown and failover for each Runner can be be man-
aged by open source tools like Rancher [?] with low learning curve; and (ii)
Docker’s overhead is low compared to other full operating system virtualization
technologies [?].

Network Isolation. Processes in Docker containers can communicate at the
network level with each other. By default, multicast messages (used in our sim-
ulations) cross container boundaries. This can result in processes from one sim-
ulation receiving messages from another simulation. Using Docker’s icc=false

configuration directive disables such inter-container communication, but also
disables Rancher’s ability to manage the Runners. As such, iptables was used
in conjunction with icc=true to drop all multicast traffic emanating from the
docker0 interface. This minimalistically isolates Runners from each other, avoid-
ing network interference within the simulation, while allowing Rancher manage-
ment.

Load Management. demeter allows a numeric “weight” to be specified for
the job. Intuitively, the weight w is the number of CPU cores required to execute
each trial. Note that w can be greater than 1 if, for example, the application
is distributed and consists of several nodes executing in parallel. The Master
executes at most b 216w c trials in parallel at a time. Thus, CPU overload can be
avoided by specifying a suitably large value of w.

6 Results

We validated our approach on three scenarios with increasing complexity. In
each experiment, one or more agents are realized by a quadcopter model in the
physics simulator V-REP [?]. An additional Linux process is used as a controller
for each agent, communicating over a socket with V-REP. For each scenario we
show that demeter constructs effective input attributions.

2 this leaves a few CPU threads for host processing independent of simulation activities



10 Hansen et al.

(a) Linear Analysis
Name β se(β) p-value

xe -0.0178 0.0055 0.0013
ye 0.0106 0.0055 0.0554
xp 0.0026 0.0056 0.6458
yy -0.0009 0.0055 0.8689

(b) Polynomial Analysis
Name β se(β) p-value

xexp -0.124 0.0027 < 10−4

yeyp -0.122 0.0027 < 10−4

x2e 0.060 0.0031 < 10−4

y2e 0.056 0.0031 < 10−4

x2p 0.056 0.0031 < 10−4

y2p 0.056 0.0031 < 10−4

Table 1. Logistic Analysis Results of Pursuer/Evader Experiment.

6.1 Pursuer/Evader Scenario

Scenario Overview. The goal of this example was to validate the effectiveness
of non-linear input attribution via logistic regression. It consists of two agents—
a pursuer P and an evader E—moving on a 2-dimensional 20× 20 grid of cells.
Each cell is identified by its coordinate, with the cell at the lower-left corner of
the grid being (0, 0) and the cell at the upper-right corner being (19, 19). Each
trial runs as follows: (i) the pursuer starts in a random initial cell (xp, yp) and
the evader starts in a random initial cell (xe, ye) such that xp, yp, xe and ye are
all uniformly selected from U{6, 13}; note that this means that initially P and
E are located in the sub-grid whose lower-left cell is (6, 6) and upper-right cell
is (13, 13); (ii) the evader moves toward the grid corner away from the pursuer
with velocity v, and the pursuer moves toward the evader with velocity kv where
k > 1 is the factor by which P is faster than E; (iii) if P is able to reach within
distance d of E by time tmax then P wins and the trial results in 0; otherwise,
E wins and the trial results in 1. The constants v and tmax are such that E can
never reach a grid corner by time tmax, and hence always has space to move.
Intuitively, the result of a trial depends on the initial distance between E and P ,
i.e., on (xe−xp)2 +(ye−yp)2. Moreover, this is a polynomial and hence requires
non-linear input attribution. Purely linear logistic regression will not be able to
detect this dependency. Our results, discussed next, confirm these intuitions.

Analysis of Results. Using demeter, we estimated the probability p̂ that
the evader escapes the pursuer with a result of p̂ = 0.214. This was estimated to
a target relative error of 0.01 and required 36,960 trials, of which 7,900 satisfied
the predicate. Total run time was 5 hours and 20 min with 120 trials per batch.
When we perform the Logistic Regression for the linear analysis, we get the
results shown in Table 1(a). Only xe results in a p-value less than 0.05. However,
an ROC analysis with 5-fold cross validation results in an average AUC of 0.51,
indicating that the predictive value of the model is no better than chance. For
this reason, we do not accept the results of the linear analysis.

When we include the polynomial terms, we get the results shown in Ta-
ble 1(b) (only terms for which the p-value was below 0.05 are shown). The AUC
for the 5-fold cross validation including the polynomial terms was 0.77, consider-
ably better than that including only linear terms. When we apply the factoring
heuristics from Section 4.2, we get the following polynomial input attribution
expressions: 0.0602(xe − 1.03xp)

2 and 0.0561(ye − 1.09yp)
2. These expressions,

generated automatically from just the simulation data, are very close to our ex-



Input Attribution for SMC 11

Name Dist. Description

NE U{10, 40} Total number of existing targets
NT U{5, 20} Total number of existing threats
dLA U{1, 5} Number of cells in front of the agent scanned by the forward-looking

sensor, and decision horizon for proactive adaptation
pEFP U(0, 0.5) False positive rate for target detection with the forward-looking sensor
pEFN U(0, 0.5) False negative rate for target detection with the forward-looking sensor
pTFP U(0, 0.5) False positive rate for threat detection with the forward-looking sensor
pTFN U(0, 0.5) False negative rate for threat detection with the forward-looking sensor
rE U{1, 5} Downward-looking sensor range (i.e., maximum height from which a

target can possibly be detected)
rT U{1, 3} Threat range (i.e., maximum height at which agent can be destroyed)

Table 2. Inputs for Target/Threat Scenario.

pectation that the probability of escape for the evader depends on the initial
distance between the pursuer and evader. The positive leading coefficient on
both of the expressions tell us that the probability of escape increases as the
initial distance increases, which is also what we expect.

6.2 Target/Threat Scenario

Scenario Overview. This scenario involves self-adaptive behavior by an agent
that must fly a pre-planned route over a 2D grid at constant forward speed,
detecting as many targets on the ground as possible. Target detection is done
using a downward-looking sensor whose performance is inversely proportional to
the distance from the ground. There are also threats along the route, but the
probability of being destroyed by a threat is inversely proportional to the height
of the agent. Clearly, when deciding at what height the agent should fly there is
a tradeoff between detecting targets and avoiding threats.

The number and location of targets and threats is random and unknown.
However, the agent has a forward-looking sensor that observes the environment
ahead with some finite horizon to detect threats and targets, albeit with false
positive and false negative rates. The agent self-adapts proactively [12] to this
uncertainty by changing its altitude as it flies. It aims to maximize the number
of targets detected, taking into account that if it is destroyed, no more targets
are detected and the mission fails. Specifically, using the forward-looking sensor
information, the agent periodically constructs at run time a probabilistic model
of the environment, which is then used to make the adaptation decision—either
stay at the current altitude, or increase/decrease altitude by one level.

In this scenario, mission success is defined as detecting at least 50% of the ex-
isting targets without being destroyed. We break this down into three predicates
with the predicate Φt being “at least 50% of the existing targets are detected”,
Φs being the “the agent survives to end of run”, and Φm = Φt ∧ Φs being the
predicate for mission success. The random variables upon which these results
depend are shown in Table 2.



12 Hansen et al.

Φs Φt Φm

Name β se(β) p-value β se(β) p-value β se(β) p-value

rE 1.46 0.0195 < 10−4 1.33 0.0194 < 10−4

rT -2.37 0.0308 < 10−4 -1.189 0.0195 < 10−4 -1.57 0.0288 < 10−4

dLA 0.377 0.0137 < 10−4 0.194 0.0137 < 10−4 0.233 0.0140 < 10−4

NT -0.0792 0.0041 < 10−4 -0.0943 0.0043 < 10−4 -0.0892 0.0043 < 10−4

NE -0.0296 0.0021 < 10−4

pEFP -17.8130 1.3026 < 10−4

pTFP 32.7410 1.3363 < 10−4 -10.0390 1.3358 < 10−4 -3.2583 1.3569 0.0163

Table 3. Results for Target/Threat Scenario

Analysis of Results. The estimated probabilities produced by demeter
for the predicates tested are P̂ [Φt] = 0.361, P̂ [Φs] = 0.618 and P̂ [Φm] = 0.308.
Thus, while the agent survived most trials, the mission success rate is low because
of failure to detect the required number of targets. The target relative error was
0.01, and 22,560 trials were completed in 10 hours and 6 minutes, with 120 trials
per batch. The 5-fold cross validated mean AUCs for the linear and polynomial
versions of the logistic regression analysis for each of the three predicates were
approximately equal, ranging between 0.891 and 0.926. Since the polynomial
model provides no additional predictive quality, we focus our analysis on the
linear results shown in Table 3 (coefficients that were not statistically significant
for a predicate are not shown). Notable conclusions from these results are:

(a) The most important variables affecting Φm are rE , rT , NT , dLA and
pTFP . Mission success P̂ [Φm] increases as rE and dLA increase, but decreases as
the other input variables increase.

(b) As the target false-positive rate pTFP increases, P [Φs] increases but P [Φt]
decreases. The increase in P [Φs] is explained by the fact that falsely detecting a
threat causes the agent to fly at a higher altitude on average. This results in it
being at a higher than necessary altitude when it actually encounters a threat,
thus increasing its probability of survival. On the other hand, being higher than
necessary causes it to miss targets, thus lowering P [Φt].

(c) Increasing the number of targets NT results in decreases to all three pred-
icates. While it is not surprising that increasing the number of targets makes it
more difficult to meet the 50% requirement, the effect on the survival probabil-
ity P [Φs] is less obvious. A possible explanation for this is that detections of a
potential target cause the agent to take more risk flying at lower altitude and
thus increasing its chances for being destroyed.

(d) Increasing dLA increases all three predicates. This happens for two rea-
sons. First, the agent accumulates observations done with the forward-looking
sensor as it flies. Thus, the larger the look-ahead, the more time a target/threat
will be within the sensor range and the more times it will be sensed. Second,
using a longer horizon for the adaptation decision allows the agent to consider
not only immediate, but also upcoming needs (e.g., to start increasing altitude
to avoid a threat likely present three cells ahead).

(e) The target and threat sensor false-negative rates – pEFN and pTFN – have
no predictive value on the outcome. This is surprising since the corresponding



Input Attribution for SMC 13

false-positive rates are predictive, and we expect the input-attribution to be sym-
metric. However, we validated these results by repeating our experiments with
different combinations of (high and low) values of these rates. Our results showed
that while changing pEFP and pTFP changed the p̂ significantly, changing pEFN
and pTFN had no effect. This demonstrates the effectiveness of our approach in
producing counter-intuitive input-attributions, and its predictive value.

6.3 Paparazzi Scenario

Scenario Overview. This scenario involves multiple collaborating autonomous
agents attempting to protect another agent from being clearly photographed.
There is one paparazzi photographer (P ) agent, one famous celebrity (C) agent,
and one or more unmanned autonomous quadcopter guardian (G) agents. All
agents start at random initial locations on a 3D map. Guardians must position
themselves between P and C, while P moves around C to get a clear shot.

The guardians G execute an “onion-defense” formation between C and P . An
onion-defense is a layered formation with the number of layers being a function
of the number of guardians, and each layer forming an arc around C, resembling
the layers of an onion as it is peeled. The goal is to provide redundant line-of-
sight blocking for any direction P might move to to attempt to get a picture
of C. The more guardians G in the formation, the more protected C is from a
nimble P that tries to flank members of G. Once in stable formation, members
of G try to maintain a spacing buffer SG = 1 between each other.

Each guardian G has a block radius BG which is the range around its center-
of-mass that it blocks effectively. Each trial has a random number of guardians
NG∼U{1, 14}, each having a random BG∼U(1, 4) (note that BG ≥ SG). P has
a minimal distance DP that he must be from C to take a useful photograph, and
an initial distance IP that he starts north from C. Once P reaches DP from C,
he moves counter-clockwise around C until he either has line of sight (success) or
a 300s timeout occurs (failure). We keep DP a constant, but IP ∼U(DP , 1.5DP ).
To prevent guardians from blocking all possible photograph angles on initializa-
tion, each member of G has an initial distance IG∼U(0.4DP , 1.2DP ) from C in
a random direction θG ∼U(0, 360). The farther any G is from C and other G,
the longer it takes to get into formation and the better chance P should have
to get a good photograph of C once the actual distance AP between P and C
equals the useful photograph distance DP .

Our experiments are built atop the Group Autonomy for Mobile Systems [?]
toolkit (which provides the onion defense algorithm), the Multi-Agent Dis-
tributed Adaptive Resource Allocation [?] middleware, and V-REP.

Analysis of Results. demeter estimated the probability that P pho-
tographs C as p̂=0.0023, with a target relative error of 0.05, using 170,424 trials
of which 400 satisfied the predicate (i.e., the photographer succeeded 0.23% of
the time). Total run time was 1 day 17 hours and 37 min with 120 trials per
batch. The Logistic Regression for linear and polynomial analysis is shown in
Table 4. The ROC analysis for linear analysis had a good predictive value with



14 Hansen et al.

(a) Linear Analysis
Name β se(β) p-value

NG 0.1166 0.0133 0.0000
θ1 0.1792 0.0284 0.0000
θ2 -0.1452 0.281 0.0000
IP -1.6228 0.3524 0.0000

(b) Polynomial Analysis
Name β se(β) p-value

θ22 0.0939 0.0170 0.0000
θ21 0.0939 0.0173 0.0000
N2

G -0.0208 0.0044 0.0000

Table 4. Logistic Analysis Results for Paparazzi Experiment.

an AUC of 0.73. However, the ROC for polynomial analysis was a more distinc-
tive curve with average AUC of 0.87. Consequently, we will focus on the results
of the polynomial analysis over the linear analysis.

Table 4(b) shows results for polynomial terms with p-values below 0.0002.
Applying the factoring heuristics from Section 4.2 results in the input attribution
expressions: 0.0208(NG−1.53θ1)(NG+2.96θ1) and 0.0939(θ1−7.82)2. This result
illuminates the peculiarities of the onion-defense, which gets more protective with
more defenders (NG). The first defender (G1) is especially important because
it is located directly between P and C. G2 is then placed to its left in an arc
around C and G3 to the immediate right of G1. Each subsequent member builds
outward from G1 and new layers are added behind it as NG gets larger. θ1 is
important because P always starts due north of C, and if θ1 is more northward,
then G1 gets to its assigned position quickly to block P . θ2 is also important
because G2 is to the left of G1, and if it can get into position quickly, it can
block the counter-clockwise movement of P .

We were surprised by θ1 being more important than I1 (the initial distance
from C). Through this analysis, we were able to give guidance to the onion-
defense designer on potential fixes to deal with P being detected very close to
C. For instance, instead of the current algorithm using fixed formations based
on indices of agents, the algorithm could use intercept times to assign agent
positions in formations to protect C from P . This highlights the usefulness of
our approach to diagnose and fix issues in stochastic systems.

7 Conclusion

We have presented an approach for input-attribution in SMC and have imple-
mented it in demeter, a distributed SMC infrastructure. We have shown that
our approach synthesizes input attributions that satisfy the four conditions we
stated are necessary for a good input attribution in Section 1 as follows: (i) by
showing that the generated models have predictive power, we demonstrated that
synthesized expressions correspond to actual relationships in the system; (ii) syn-
thesized attributions are numeric in nature and backed up with confidence scores
on individual coefficients and on the overall predictive power of the model; (iii)
results from our experiments were able to validate our hypotheses and in some
cases such as in the paparazzi scenario resulted in new and unexpected insights;
and (iv) all of these results were obtained despite substantial noise from other
hidden and explicit random variables in the system.



Input Attribution for SMC 15

Note that while in this paper we focused on inputs, we believe that it is also
possible to “watch” internal variables in the system and include them in the
attribution. We also expect that other relationships, besides polynomial, could
also be found by adding predictors to the logistic regression analysis, and believe
this to be an important area for future work.

References

1. Clarke, E.M., Zuliani, P.: Statistical Model Checking for Cyber-Physical Systems.
In: Proc. of ATVA (2011)

2. Cousot, P., Cousot, R.: Abstract Interpretation: A unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
POPL (1977)

3. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic Inference of Nec-
essary Preconditions. In: Proc. of VMCAI (2013)

4. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M.: Optimizing Control
Strategy Using Statistical Model Checking. In: Proc. of NFM (2013)

5. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Proc. of CAV (2011)

6. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically Discovering
Likely Program Invariants to Support Program Evolution. In: Proc. of ICSE (1999)

7. Gareth James, Daniela Witten, T.H., Tibshirani, R.: An Introduction to Statistical
Learning, 6th Edition. Springer (2015)

8. Hanley, J., McNeil, B.: The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology 143(1), 29–36 (1982)

9. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing (FACJ) 6(5) (1994)

10. Hosmer, D., Lemeshow, S.: Applied Logistic Regression, 3rd Edition. John Wiley
and Sons (2013)

11. Kyle, D., Hansen, J.P., Chaki, S.: Statistical Model Checking of Distributed Adap-
tive Real-Time Software. In: Proc. of RV (2015)

12. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Efficient decision-making under
uncertainty for proactive self-adaptation. In: Proc. of ICAC (2016), to appear

13. Musliner, D.J., Engstrom, E.: PRISMATIC: Unified Hierarchical Probabilistic Ver-
ification Tool. Technical report AFRL-RZ-WP-TR-2011-2097 (2011)

14. R Development Core Team: R: A Language and Environment for Statistical Com-
puting (2008), http://www.R-project.org

15. Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric
systems. Ph.D. thesis, University of Nijmegen (2002)

16. V-REP website: http://www.coppeliarobotics.com
17. Younes, H.L.S.: Ymer: A statistical model checker. In: Proc. of CAV 2005, LNCS.

vol. 3576, pp. 429–433 (2005)
18. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-

chronous Events. Ph.D. thesis, CMU (2005), technical report no. CMU-CS-05-105
19. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-

tical probabilistic model checking. STTT 8(3) (2006)


