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Abstract. The problem of composing multiple, possibly conflicting,
runtime enforcers for a cyber-physical system (CPS) is considered. A for-
mal definition of utility-agnostic and utility-maximizing CPS enforcers
is presented, followed by an algorithm to combine multiple enforcers,
and resolve their conflicts based on a design-time prioritization. To im-
plement this combination in an efficient manner, enforcers are encoded
symbolically using SMT formulas, and the combination is reduced to
a set of SMT satisfiabilty and optimization operations. Further perfor-
mance gains are achieved by using the SMT solvers incrementally. The
approach is validated via experiments in an indoor area with Parrot
minidrones. The incremental enforcer combination is shown to achieve
an order of magnitude speedup, and no deadline misses.

1 Introduction

Cyber-Physical Systems (CPS) are “engineered systems that are built from, and
depend upon, the seamless integration of computational algorithms and physical
components”[1]. They play numerous safety-critical roles in our day-to-day lives,
e.g., in the form of cars, airplanes, nuclear power plants, and medical devices.
Verifying safe behavior of CPS is thus an important challenge. At the same
time, modern CPS are incorporating advanced AI techniques, such as machine
learning, to deliver more features and capabilities. Examples include driverless
cars, intelligent patient monitors, and smart home appliances. On the one hand,
the added intelligence allows the CPS to operate more effectively and with less
human supervision. On the other hand, it also makes “static verification” of the
CPS inadequate since the system evolves during operation, and the complete set
of its behaviors cannot be modeled precisely prior to deployment.

Some form of “runtime verification” is therefore indispensable for achieving
high assurance about the safe behavior of CPS. In this paper, we explore the
concept of runtime assurance [15] (RA). Broadly, RA involves adding a runtime
monitor (which we call the enforcer) that observes the behavior of the CPS,
and intervenes to prevent specific CPS behaviors that could lead to catastrophic
results. In particular, if we think of a CPS as a control system, then the enforcer
observes, and modifies as needed, actuation signals emitted by the CPS software
that determine the CPS’s interaction with its physical environment.

In this paper, we address the challenge of soundly composing multiple en-
forcers that operate on the same set of actuators of a CPS. This is important since



a complex CPS has multiple safety-critical requirements involving the same set
of actuators that are not guaranteed to be consistent under all situations. Con-
sider two quadcopters (QCs) flying in an open area. Each QC has two enforcers:
E1 attempts to keep the QC within a specific GPS boundary (geo-fencing) and
E2 attempts to keep the QCs at a minimum distance from each other (collision
avoidance). Then, in the situation where one QC is backed up against the geo-
fence boundary by the other, the two-enforcers produce conflicting actuations
– E1 wants to move the QC away from the boundary (thus closer to the other
QC), while E2 wants to do the opposite. To address this challenge, we make the
following contributions.

First, we formalize the logical behavior of enforcers. Intuitively, an enforcer
is an algorithm that executes periodically and computes an appropriate actu-
ation based on the observed system state and the command proposed by the
application software. Next, we present an algorithm, called select, that com-
bines multiple enforcers ordered by priority. Specifically, select computes an
actuation that satisfies a subset of enforcers — determined by the priorities of
enforcers. We also present a variant of select, called select∗ that is utility-
maximizing, i.e., computes a legal actuation with maximal utility.

Next, we show how enforcers can be encoded logically using Satisfiability
Modulo Theories (SMT) formulas, and how to implement select and select∗

using optimizing SMT solvers. Our symbolic encoding allows enforcers to be ex-
pressed succinctly, and enforcer compositions turn naturally into common logical
operations. Thus, we bring into RA the benefits of symbolic reasoning, which
have been leveraged in other verification domains over the past decades. CPS
enforcers have to be very efficient in order to run with short periods (dictated
by the application) and yet be guaranteed that each enforcer finishes execution
before the enforcer is requested to execute again. To this end, we present online
implementations of select and select∗, denoted by select† and select∗†,
that use the SMT solver incrementally, “pushing” and “popping” formulas into
dynamically created “contexts,” as needed. We present pseudo-code for all vari-
ants of select and argue about their correctness.

We used our approach to implement the geo-fencing (a.k.a. tether) and sepa-
ration enforcers targeting Parrot minidrones. We validated empirically that both
enforcers work as expected, individually and in composition, in an indoor area.
We also measured the performance of various threads under different variants of
the select algorithm. These measurements indicate that our symbolic enforcers
are quite efficient, with execution times in the range of tens of milliseconds.
Furthermore, our online implementation of enforcers yields an order of magni-
tude speedup in execution time; thanks to this speedup, in our experiments, we
observe zero deadline misses over tens of thousands of invocations.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 presents the formal definition of CPS enforcers and their composition.
Section 4 presents the symbolic encoding and implementation of enforcers using
SMT formulas and optimizing SMT solvers. Section 5 presents our experiments
and results, and Section 6 concludes.



2 Related Work

A brief overview of runtime enforcement techniques is available in [9, 12]. Seto et
al. [20] proposed the “Simplex” architecture for resilient control systems, where
a monitor switches a system from a complex and more capable, but untrusted,
controller Ccomp to a simple but trusted controller Csimp , whenever the system
is in danger of becoming unstable. The main focus of this work is on deciding
the switching boundary based on control theory. Bak et al. [2] have developed
a version of Simplex that combines offline analysis with hybrid reachability at
runtime to further push the envelope of recoverability. We focus on efficient
implementations of the switching logic, and combining multiple enforcers.

The idea of runtime monitoring has also been used in the context of formal
verification [11, 10]. The key idea is to check for violations of a target safety
property at runtime. This is more tractable than complete static verification
since we are only analyzing the states that are reached during execution. Our
approach is aimed at implementing runtime monitors using SMT solvers, and
resolving conflicting actuation decisions.

In the domain of security, Schneider proposed “security automata” [19] as
a formalism to express properties whose violations can be detected at run-
time. Originally, security automata were passive, i.e., they only monitored the
system for safety violations. Restricted versions of this has been considered:
Viswanathan [21, Section 4.3] studied the case that the enforcer must be de-
cidable and Fong [8] studied the case where memory is limited. More recently,
Ligatti at al. [13] have generalized this idea to “edit automata” that can not
only monitor system inputs and outputs, but also modify them as needed. Sim-
ilarly, Pinisetty et al. [17] monitor and allow changing input and outputs for
synchronous systems. This is similar in spirit to our enforcers. However, our en-
forcers also have real-time constraints (i.e., deadlines) since they are targeted
toward CPS. Moreover, we focus on combining multiple enforcers, and efficient
and incremental SMT-based implementations.

Falcone et al. [7] explore runtime verification of reactive systems where prop-
erties include finite and infinite sequences (i.e., Safety-Progress), and are ex-
pressed via (untimed) Streett automata. In contrast, we consider safety proper-
ties and consider enforcement in the context of the use of a real-time scheduler.
The literature has also considered monitoring of multiple properties. Pinissety
and Tripakis [18] use one monitor for each property, and enforce them either
sequentially or in parallel. Instead, we construct a single monitor for multiple
properties. Previous work [5, 22] has also considered synthesizing monitors from
a set of properties, assuming they are consistent. We focus on resolving such
inconsistencies based on prioritization.

The role of timing in run-time verification deserves mentioning. Timing mat-
ters in the sense that the evaluation of the property that is monitored may be
a function of the time of events. This is studied in [16, 3]. Another aspect of
timing, however, is that regardless of whether evaluation of the property that
is monitored depends on the timing of event, we would like to run the program



that performs the enforcer at the right time; this is the aspect of timing that we
have studied in this paper (using a real-time scheduler).

In the domain of real-time scheduling, enforcers have also been used widely,
particularly to enforce CPU usage budgets by threads. For example, the zsrm [6]
mixed-criticality scheduler allocates CPU cycles to threads in a way that respects
their priorities (during nominal execution) and criticalities (during overload ex-
ecution). To this end, it uses timers to intercept thread execution and take
appropriate preemptive and budget enforcement steps. While we use zsrm to
ensure schedulability of enforcers, our main focus is on symbolic implementation
and combination of logical enforcers.

Pike et al. [15] describe copilot, a runtime assurance approach for em-
bedded systems. They focus on a single enforcer, which transforms a stream of
application commands to commands that will ensure system safety. The enforcer
is specified in a high-level domain specific language, from which efficient (but
non-symbolic) implementations are automatically generated. A cyclic executive
is used for scheduling both the enforcer and applications. We are inspired by this
work, and take the same approach when defining the semantics of a single en-
forcers. However, our main contribution is on efficient symbolic implementations
of enforcers using SMT solvers, and combination of multiple enforcers.

3 Enforcers

Let VS be the set of state variables. Without loss of generality, we assume for
each variable, its domain is D. A state s : VS 7→ D is an assignment of values
to state variables. Let S be the set of all states. Let VΣ be the set of action
variables. An action α : VΣ 7→ D is an assignment of values to action variables.
Let Σ be the set of actuations, or actions. We consider a system comprising
(i) a target system, (ii) a set of enforcers, and (iii) a set of applications. The
enforcers and the applications are software. The target system is typically a
physical system (but our paper allows the target system to be another software
system as well) and the state s describes the state of the target system. Note
that an application may have state itself and this is not described by s. Similarly,
we envision the enforcer as a controller that executes periodically to sense the
system’s state, compute an appropriate action, and apply it. A user of an enforcer
is an application.

The evolution of the system is modeled by the transition relation R, pa-
rameterized by the amount of time that elapses during the transition, and the
actuation applied at the start of the transition. Formally RP (α) ⊆ S× S is the
relation such that if the action α is applied to the system at time t when it
is in state s and subsequently the system is in state s′ at time is t + P , then
(s, s′) ∈ RP (α). We write RP (α, s) to mean the set of states related to state s
by RP (α), i.e., RP (α, s) = {s′ | (s, s′) ∈ RP (α)}.

We are interested in enforcing safety properties. Intuitively, a safety property
φ states that something bad never happens. It is defined as a set of “safe” states.



In particular, we are interested in keeping the system within a set of states that
are both safe and enforceable.

Formally, given a safety property φ, the set of all φ-enforceable states is
denoted by Cφ and defined as the largest set of states satisfying the following
two conditions: Cφ ⊆ φ and ∀s ∈ Cφ � ∃α ∈ Σ �RP (α, s) ⊆ Cφ.

We denote by SafeAct : Cφ 7→ 2Σ the mapping from φ-enforceable states to
actuations that will ensure that the system remains enforceable, i.e.,

SafeAct(s) = {α | RP (α, s) ⊆ Cφ}
Note that by the definition of Cφ we know that: ∀s ∈ Cφ � SafeAct(s) 6= ∅.

Different actions in SafeAct(s) may have different utilities, i.e., even though all
of them would continue to keep the system in a φ-enforceable state, there may
be additional reasons to prefer some of them over others. Our enforcers, which
we define formally next, therefore support the notion of actuation utility.

Definition 1 (Enforcer). An enforcer for safety property φ is a 4-tuple
(P,Cφ, µ, U) where: (i) P is its period; (ii) Cφ is the set of all φ-enforceable
states; (iii) µ : Cφ 7→ 2Σ is a mapping from enforceable states to actuations
such that: ∀s ∈ Cφ � µ(s) ⊆ SafeAct(s); and (iv) U : Cφ × Σ ↪→ R maps each
φ-enforceable state and a corresponding actuation to its utility.

Note that U is a partial function, and specifically, Dom(U) =
{(s, α) | (s ∈ Cφ) ∧ (α ∈ µ(s))}. Also, the time period P is important since: (i)
it specifies how frequently the enforcer must be executed; and (ii) it affects the
precise value of Cφ. The smaller the value of P , the larger Cφ can be. In essence,
P is needed because the physical dynamics of the platform and timeliness of
enforcement action are crucially important for ensuring safety of a CPS.

Utility-Agnostic Enforcer Operation. Given a non-empty set X, let pick(X)
denote an arbitrary element of X. The enforcer E = (P,Cφ, µ, U) is executed
periodically every P units of time. In each execution, it takes as input the current
system state s and user actuation α, and produces an output actuation α̃ defined
as follows:

α̃ =

{
α if α ∈ µ(s)

pick(µ(s)) otherwise
(1)

Note that if α is an enforcing action at state s, then the enforcer outputs α.
Otherwise, it picks and outputs an arbitrary enforcing action α′ at state s.

The construction of µ is the crucial step in defining the enforcer. We assume
that it is done offline. It could be done via simulations, or analytically (if we
have good models), or via some combination of the two.

Utility-Maximizing Enforcer Operation. In general, the enforcer does not have
to output the user’s command α even if α is enforcing. This is because, in a
specific state, different enforcing actions have different utilities and the enforcer
may choose the command that maximizes utility. Then the output of the utility
maximizing enforcer is defined as follows:

α̃ =


α if α ∈ µ(s) ∧ U(s, α) = max

α′∈µ(s)
U(s, α′)

arg max
α′∈µ(s)

U(s, α′) otherwise (2)
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Fig. 1. An example with two enforcers.

Note that (1) is a special case of (2) when U is defined as follows:

U(s, α) =

{
1 if α ∈ µ(s)
0 otherwise

(3)

3.1 Example

Consider two quadcopters, Q1 and Q2, moving in a two-dimensional rectangular
zone Z, shown in Figure 1. The boundaries of Z are aligned to the X and
Y axes, and the points (x, y) within Z are defined by xmin ≤ x ≤ xmax and
ymin ≤ y ≤ ymax . Directions are measured in degrees, using the reference shown
on the right of Figure 1. Quadcopter Q1 has two enforcers, defined as follows:
(i) Virtual Tether : enforcer E1 keeps Q1 physically within the zone Z (safety
property φ1); (ii) Separation: enforcer E2 keeps Q1 at a minimum distance of
D from Q2 (safety property φ2). The state variables are VS = {x, y, θ, d} where
(x, y) is the location of Q1, and θ and d are the direction and distance from Q1

to Q2, respectively. An action α attempts to move Q1 in a specific direction θα.
Thus, VΣ = {θα}. The specific range of values of θα that can be applied by each
enforcer depends on the state of Q1.

Operations on Angles. In the following, all operations on angles are performed
modulo 360, and all angle values are in the range [0, 360). In particular, given
two angles θ and θ′, we define θ	θ′ to be the minimum of the two angles between
θ and θ′ (one measured clockwise, and the other anti-clockwise). For example,
we evaluate 350 	 5 as follows. The clockwise angle between 350 and 5 is 15;
the counter-clockwise angle between 350 and 5 is 345; thus 350 	 5 = 15. We
write θopp to denote the angle opposite to θ, i.e., θopp = (θ+ 180) mod 360. For
example, 90opp = 270 and 300opp = 120.

Tether Enforcer Operation. If Q1 is too close to the ymax boundary of Z, then
E1 applies an enforcement action with θα ∈ θ̃1, where θ̃1 = [285, 360)∪ [0, 75), as
shown at the top of Figure 1. Similarly, if Q1 is too close to the xmin boundary
of Z, then E1 applies an enforcement action with θα ∈ θ̃2 where θ̃2 = [195, 345],



as shown at the right of Figure 1. The other two possible enforcements by E1,
involving enforcement action ranges θ̃3 = [105, 255] and θ̃4 = [15, 165], are also
shown in Figure 1. Let δP1 be the maximum distance that Q1 can travel along
any one dimension in time P , and let δB1 (the braking distance) be the maximum
distance that Q1 can travel in a direction opposing an enforcement action (e.g.,
toward ymax when θα ∈ θ̃1 is applied). Furthermore, we assume that the period
P is sufficiently large that once the enforcement action is applied, the QC returns
to a state in Cφ1

within P time units. Let δPB1 ≡ δP1 +δB1. This means that an
appropriate enforcement action must be applied as soon as the distance between
Q1 and a boundary of Z falls below δPB1. Clearly, we are interested in situations
when Q1 is too close to the four boundaries of Z. For this reason, we define b1,
b2, b3, and b4 as

b1 ≡ ymax − y ≤ δPB1 b2 ≡ x− xmin ≤ δPB1

b3 ≡ y − ymin ≤ δPB1 b4 ≡ xmax − x ≤ δPB1

We specify µ1 as: ∀i ∈ [1, 4] � bi =⇒ µ1(x, y, θ, d) ∈ θ̃i. In addition, the φ1-
enforceable set of states are those corresponding to locations in Z such that
there is enough space to prevent a violation, i.e.,

Cφ1
= {(x, y, θ, d) | (x+ δB1, y + δB1) ∈ Z ∧ (x− δB1, y − δB1) ∈ Z}

The utility of an enforcement action is directly related to the degree to which it
opposes the movement toward nearby boundaries. It is the sum of four utilities,
one for each boundary. Formally,

U1(x, y, θ, d, θα) = U1 + U2 + U3 + U4 such that

U i = 75− (θimid 	 θα) if bi and 0 otherwise, where

θ1mid = 0 θ2mid = 270 θ3mid = 180 θ4mid = 90

Separation Enforcer Operation. When Q1 is too close to Q2, E2 applies an
enforcement action to move it away. Recall that θ denotes the direction from Q1

to Q2. The enforcement is to move Q1 in a direction θα that is opposite to θ.
Specifically, we want (θopp 	 θα) ≤ 75. In Figure 1, the range of possible values
of θα is denoted by θ̃5. Let δP2 be the largest possible reduction in the value of
d within time P , and δB2 be the largest possible reduction in the value of d once
the separation enforcement is applied. Let δPB2 ≡ δP2 + δB2. Define condition
bsep as bsep ≡ d ≤ δPB2 + D. We specify µ2 as: bsep =⇒ µ2(x, y, θ, d) ∈ θ̃5. In
addition, the φ2-enforceable set of states with correct separation, i.e.,

Cφ2
= {(x, y, θ, d) | d+ δB2 ≥ D}

The utility of an enforcement action is directly related to the degree to which it
is opposite to θ, specifically:

U2(x, y, θ, d, θα) = 75− (θopp 	 θα) if bsep and 0 otherwise



select(s, 〈E1〉, α) =

{
α if α ∈ µ1(s)

pick(µ1(s)) otherwise

select(s, 〈E1, . . . , En〉, α) =
α if s ∈

⋂
i=2,...,n

Cφi ∧ α ∈
⋂

i=1,...,n

µi(s)

pick(
⋂

i=1,...,n

µi(s)) if s ∈
⋂

i=2,...,n

Cφi ∧
⋂

i=1,...,n

µi(s) 6= ∅

select(s, 〈E1, . . . , En−1〉, α) otherwise

Fig. 2. Function select for utility-agnostic enforcer combination.

select
∗(s, 〈E1〉, α) =


α if α ∈ µ1(s) ∧ U1(s, α) = max

α′∈µ1(s)
U1(s, α′)

arg max
α′∈µ1(s)

U1(s, α′) otherwise

select
∗(s, 〈E1, . . . , En〉, α) =

α if s ∈
⋂

i=2,...,n

Cφi ∧ α ∈
⋂

i=1,...,n

µi(s)∧

∑
i=1,...,n

Ui(s, α) = max
α′∈

⋂
i=1,...,n

µi(s)

( ∑
i=1,...,n

Ui(s, α
′)

)

arg max
α′∈

⋂
i=1,...,n

µi(s)

( ∑
i=1,...,n

Ui(s, α
′)

)
if s ∈

⋂
i=2,...,n

Cφi ∧
⋂

i=1,...,n

µi(s) 6= ∅

select∗(s, 〈E1, . . . , En−1〉, α) otherwise

Fig. 3. Function select∗ for utility-maximizing enforcer combination.

3.2 Combining Multiple Enforcers

Consider n enforcers E1, . . . , En such that Ei = (P,Cφi , µi, Ui). Without loss of
generality, assume that the enforcers are ordered by decreasing priority. When
applied in state s, the combined utility-agnostic enforcer returns the action
select(s, 〈E1, . . . , En〉, α), which is defined recursively as shown in Figure 2.
Note that since select(s, 〈E1, . . . , En〉, α) is always in µ1(s), the system always
maintains property φ1. Also note that the second and third cases in the def-
inition of select(s, 〈E1, . . . , En〉, α) cannot be swapped without violating the
condition that property φn must be maintained if at all possible. We assume
that utilities are additive. Thus, when combining two enforcers, we assume that
the overall utility achieved is the “sum” of the utilities of all the enforcers that
are “activated”. The utility-maximizing enforcer combination returns the action
select∗(s, 〈E1, . . . , En〉, α), which is defined recursively as shown in Figure 3.

4 Enforcer Implementation

In this section, we focus on implementing enforcers in an efficient manner. Recall,
from Definition 1, that an enforcer is a 4-tuple (P,Cφ, µ, U). The most critical



Enforcer Operation Symbolic Implementation

s ∈
⋂

i=2,...,n

Cφi sat(VS = s ∧
∧

i=2,...,n

Cφi)

α ∈
⋂

i=1,...,n

µi(s) sat(VS = s ∧ VΣ = α ∧
∧

i=1,...,n

µi)⋂
i=1,...,n

µi(s) = ∅ ¬sat(VS = s ∧
∧

i=1,...,n

µi)

pick(
⋂

i=1,...,n

µi(s)) soln(VS = s ∧
∧

i=1,...,n

µi, VΣ)∑
i=1,...,n

Ui(s, α) =

max
α′∈

⋂
i=1,...,n

µi(s)

( ∑
i=1,...,n

Ui(s, α
′)

) ¬sat(Ω(s, α, n)) where Ω(s, α, n) =
VS = s ∧ VΣ = α ∧ k =

∑
i=1,...,n

Ui∧

V ′S = s ∧
∧

i=1,...,n

µ′i ∧ k′ =
∑

i=1,...,n

U ′i∧

k < k′


arg max

α′∈
⋂

i=1,...,n
µi(s)

( ∑
i=1,...,n

Ui(s, α
′)

)
opt(VS = s ∧

∧
i=1,...,n

µi,
∑

i=1,...,n

Ui, VΣ)

Table 1. Enforcer operations and their symbolic implementations.

parts to implement here are Cφ, µ and U . In particular, following Figure 3, such
an implementation must support the operations shown in the left column of
Table 1. In this paper, we propose to represent both Cφ and µ symbolically, as
logical formulas, and implement the above operations using an SMT solver. We
now present this in more detail.

Recall that a state is an assignment to state variables VS , and an action is an
assignment to action variables VΣ . Thus, a logical formula F over VS , denoted
F (VS), represents a set of states S in the sense that a state s belongs to S iff
the assignment to VS corresponding to s makes F (VS) true. In the same way, a
formula F (VΣ) represents a set of actions, and a formula F (VS , VΣ) represents a
relation over S and Σ. In addition, a state s is representable as a logical formula
over VS , and an action α is representable as a logical formula over VΣ .

We therefore represent CΦ as a logical formula over VS , µ as a logical formula
over VS ∪ VΣ , and U as a function over VS ∪ VΣ . Also, let VS = s denote the
formula that assigns state variables to the specific state s, and VΣ = α denote
the formula that assigns action variables to the specific action α. We introduce
fresh “primed” copies of variables in VS and VΣ , and denote them by V ′S and V ′Σ ,
respectively. We write µ′ and U ′i to mean µ(V ′S , V

′
Σ) and Ui(V

′
S , V

′
Σ), respectively.

Then, the right column of Table 1 shows the implementations of the necessary
enforcer operations using the following logical primitives:

– sat(F ) returns true iff F is satisfiable, and false otherwise;
– soln(F, V ) returns a satisfying solution of F but restricts the assignment to

variables in V , i.e., it returns a satisfying solution of ∃(VS ∪ VΣ \ V ) � F . If
F is not satisfiable, then soln(F, V ) returns a special value ⊥.

– opt(F, Ψ, V ) returns a satisfying solution of F that maximizes the objec-
tive function Ψ but restricts the assignment to variables in V . If F is not
satisfiable, then opt(F, Ψ, V ) returns a special value ⊥.



1 proc select(s, α, n) {
2 if(n = 1) {
3 if (sat(VS = s ∧ VΣ = α ∧ µ1))
4 return α;
5 return soln(VS = s ∧ µ1, VΣ);
6 }
7 b := sat(VS = s ∧ Cn);
8 if(¬b) return select(s, α, n− 1);
9 if(sat(VS = s ∧ VΣ = α ∧ µn))

10 return α;

11 α′ := soln(VS = s ∧ µn, VΣ);

12 if(α′ 6= ⊥) return α′;
13 return select(s, α, n− 1);
14 }

1 proc select∗(s, α, n) {
2 if(n = 1) {
3 if (sat(VS = s ∧ VΣ = α ∧ µ1)∧
4 ¬sat(Ω(s, α, 1))) return α;
5 return opt(VS = s ∧ µ1, U1, VΣ);
6 }
7 b := sat(VS = s ∧ Cn);
8 if(¬b) return select∗(s, α, n− 1);
9 if(sat(VS = s ∧ VΣ = α ∧ µn) ∧

10 ¬sat(Ω(s, α, n))) return α;

11 α′ := opt(VS = s ∧ µn,
∑

i=1,...,n
Ui, VΣ);

12 if(α′ 6= ⊥) return α′;
13 return select∗(s, α, n− 1);
14 }

(a) (b)

Fig. 4. (a) Pseudo-code for utility-agnostic enforcer composition; Cn ≡
∧

i=2,...,n

Cφi ;

µn ≡
∧

i=1,...,n

µi; (b) Pseudo-code for utility-maximizing enforcer composition; the for-

mula Ω(s, α, n) is defined in Table 1.

We assume that all logical formulas are over an underlying theory T for which
sat(F ) is decidable, and soln(F, V ) and opt(F, Ψ, V ) are effectively computable.
For our experiments, we use linear arithmetic over rationals, for which these two
conditions hold. Specifically, we use the z3 [14] SMT solver to implement sat(F )
and soln(F, V ), and νz [4] solver to implement opt(F, Ψ, V ).

Example. Recall our example with two enforcers from Section 3.1. Enforcer
E1 is specified symbolically as follows:

µ1 ≡ (b1 =⇒ (285 ≤ θα < 360) ∨ (0 ≤ θα ≤ 75)) ∧ (b2 =⇒ (195 ≤ θα ≤ 345))

∧ (b3 =⇒ (105 ≤ θα ≤ 255)) ∧ (b4 =⇒ (15 ≤ θα ≤ 165))

Cφ1 ≡ (xmin + δB1 ≤ x ≤ xmax − δB1) ∧ (ymin + δB1 ≤ y ≤ ymax − δB1)

U1 ≡ U1 + U2 + U3 + U4 (Sec. 3.1)

Similarly, enforcer E2 is specified symbolically as follows:

µ2 ≡ d ≤ δPB2 +D =⇒ (θopp 	 θα) ≤ 75

Cφ2 ≡ d+ δB2 ≥ D U2 ≡ 75− (θopp 	 θα)

Pseudo-Code. Figure 4(a) shows the pseudo-code for the utility-agnostic en-
forcer composition. The code follows from the definition of function select in
Figure 2 and the definition of symbolic operations in Table 1. However, we have
refactored various program statements to avoid calling sat(VS = s ∧ Cn) – an
expensive operation – multiple times. Also, we eliminated the call to sat(VS =
s∧µn) since the result can also be obtained via the call to soln(VS = s∧µn, VΣ),
which is needed in any case.

Similarly, Figure 4(b) shows the pseudo-code for the utility-maximizing en-
forcer composition. It follows from the definition of function select∗ in Figure 3
and the definition of symbolic operations in Table 1. Again, we have refactored



the program to avoid calling sat(VS = s ∧ Cn) multiple times. Also, we elimi-
nated the call to sat(VS = s ∧ µn) since the result can also be obtained via the
(necessary) call to opt(VS = s ∧ µn,

∑
i=1,...,n

Ui, VΣ).

4.1 Optimized and Online Versions

We propose three additional optimizations to the pseudo-code shown in Fig-
ure 4. opt1 replaces the recursion with iteration. This optimization is possible
since both select() and select∗ are tail-recursive functions. It eliminates stack
operations and limits the possibility of stack overflows. opt2 precomputes com-
monly used formulas Ci and µi for 1 ≤ i ≤ n, and uses them as needed, instead
of creating and destroying them repeatedly. Finally, opt3 uses the SMT solver
in an online manner. Specifically, the online SMT solver maintains a stack of as-
serted formulas (a.k.a. the context), and updates it via operations push(F ) and
pop(F ) as follows: (i) push(F ) pushed formula F to the context; and (ii) pop()
pops a formula from the context. Moreover, new operations sat†, soln†, and opt†

are defined as follows (here θ denotes the conjunctions of all the formulas in the
current context):

sat†() ≡ sat(θ) soln†(V ) ≡ soln(θ, V ) opt†(Ψ, V ) ≡ opt(θ, Ψ, V )

Both z3 and νz support such online operation. In opt3, the commonly used
Ci’s and µi’s are always kept in contexts. Other formulas are pushed prior to an
operation, and popped afterwards, as needed. We use the following shorthand:

b := sat†(Γ ) ≡ push(Γ ); b := sat†(); pop()

α := sat†(Γ, V ) ≡ push(Γ );α := soln†(V ); pop()

α := opt†(Γ, Ψ, V ) ≡ push(Γ );α := opt†(Ψ, V ); pop()

Optimizations opt2 and opt3 both trade-off memory in favor of time. Our ex-
periments indicate that this is a good trade-off, yielding significant performance
gain at the cost of a small memory footprint increase, due to the modest com-
plexity of SMT formulas involved. Indeed, we expect this to be the general case
since enforcer logics are expected to be much simpler than the target systems.

Figure 5 shows optimized versions of select() and select∗() – denoted
select†() and select∗† respectively – with all three optimizations applied. For
select†(), we use 2 × n contexts. Contexts (1, 1), . . . , (n, 1) are used for op-
erations involving µi’s, while contexts (1, 2), . . . , (n, 2) are used for operations
involving Cφi ’s. All contexts are initialized once via init() at startup. We use

subscripts for push(), pop(), sat†(), soln†(), and opt†() to indicate the context
involved. For example, pushi,j(F ) indicates a push of formula F to the (i, j)-th

context. For select∗†(), we use 3× n contexts, initialized via init∗().

4.2 Correctness of Optimizations

Correctness of select†. We argue about the correctness of procedure select†

by showing its correspondence to procedure select. Assume that the contexts



1 proc init() {
2 for i = 1 to n, for j = 1 to i:
3 pushi,1(µj); pushi,2(Cφj );

4 }

5 proc select†(s, α, n) {
6 for i = n to 1 {
7 if(i = 1) {

8 b := sat†i,1(VS = s ∧ VΣ = α);

9 if (b) return α;

10 α′ := soln†i,1(VS = s, VΣ);

11 return α′;
12 }
13 b := sati,2(VS = s);
14 if(¬b) continue;

15 b := sat†i,1(VS = s ∧ VΣ = α);

16 if(b) return α;

17 α′ := soln†i,1(VS = s, VΣ);

18 if(α′ 6= ⊥) return α′;
19 }
20 }

1 proc init∗() {
2 for i = 1 to n, for j = 1 to i:

3 pushi,1(µj); pushi,2(Cφj ); pushi,3(µ
′
j);

4 for i = 1 to n: pushi,3(K
i)

5 }

6 proc select∗†(s, α, n) {
7 for i = n to 1 {
8 if(i = 1) {

9 b := sat†i,1(VS = s ∧ VΣ = α);

10 b′ := sat†i,3(VS = s ∧ VΣ = α ∧ V ′S = s′);

11 if (b ∧ ¬b′) return α;

12 α′ := opt†i,1(VS = s, U1, VΣ);

13 return α′;
14 }
15 b := sati,2(VS = s);
16 if(¬b) continue;

17 b := sat†i,1(VS = s ∧ VΣ = α);

18 b′ := sat†i,3(VS = s ∧ VΣ = α ∧ V ′S = s′);

19 if (b ∧ ¬b′) return α;

20 α′ := opt†i,1(VS = s,
∑

i=1,...,n
Ui, VΣ);

21 if(α′ 6= ⊥) return α′;
22 }
23 }

(a) (b)

Fig. 5. (a) Pseudo-code for optimized utility-agnostic enforcer composition; (b)
Pseudo-code for fully optimized utility-maximizing enforcer composition; Ki ≡
(
∑

j=1,...,i

Uj) < (
∑

j=1,...,i

U ′j).

have been initialized via init. Then the lines of select† correspond to those of
select as follows: (i) lines 7–12 correspond to lines 2–6 of select; (ii) lines 13–
14 correspond to lines 7–8 of select; (iii) lines 15–16 correspond to lines 9–10 of
select; and (iv) lines 17–18 correspond to lines 11–12 of select. Note that the
loop invariant maintained by select† is that context (i, 1) contains the formulas
{µj | 1 ≤ j ≤ i}, and context (i, 2) contains the formulas {Cφj | 1 ≤ j ≤ i}. To
maintain this invariant, formulas pushed in each iteration are always popped
before the next iteration, or before select† returns.

Correctness of select∗†. We argue about the correctness of procedure
select∗† by showing its correspondence to procedure select∗. Assume that
the contexts have been initialized via init∗. The the lines of select∗† corre-
spond to those of select∗ as follows: (i) lines 8–14 correspond to lines 2–6 of
select∗; (ii) lines 15–16 correspond to lines 7–8 of select∗; (iii) lines 17–19
correspond to lines 9–10 of select∗; and (iv) lines 20–21 correspond to lines
11–12 of select∗. The loop invariant maintained by select∗† is that context
(i, 1) contains the formulas {µj | 1 ≤ j ≤ i}, context (i, 2) contains the formulas
{Cφj | 1 ≤ j ≤ i}, and context (i, 3) contains the formulas {µ′j | 1 ≤ j ≤ i}. To
maintain this invariant, formulas pushed in each iteration are always popped
before the next iteration, or before select∗† returns.



5 Experimental Evaluation

To evaluate the proposed techniques, we created an indoor arena consisting
of: (i) a laptop running Ubuntu 16.04; (ii) an Optitrack localization system
with 8 cameras; (iii) two Parrot Travis mini-QCs; and (iv) two XBox gamepads.
Optitrack sets up a coordinate system with six dimensions – X, Y, Z, roll, pitch
and yaw – and multicasts the locations of the QCs in real-time at 120Hz over a
wired LAN. The enforcer for each QC runs periodically on the laptop. It receives
the locations from Optitrack via the LAN, and the user’s command to the QC
via the gamepad. Next, it uses the select algorithm, or one of its presented
variants, to compute an appropriate actuation command and sends it to the
Parrot QC via Bluetooth. We used existing open-source software for Bluetooth
communication with the QCs, and with interface with the gamepads.

Thread Structure. Even though our running example is two-dimensional, for
our experiments we implemented a three-dimensional enforcer. Specifically, the
movement of a QC is specified via a pair of angles (α, α�), where α is the same as
in our example, and α� is an angle in the range [−90, 90] w.r.t. to the horizontal
plane. The enforcers are updated accordingly. The enforcement software running
on the laptop for each QC consisted of the following periodic threads with fixed
priorities: (i) TCL receives and responds to commands from Optitrack; (ii) TFL

receives and records localization data from Optitrack; (iii) TEL executes the
select algorithm and computes the actuation; (iv) TRS sends the command
to the QC over Bluetooth; and (v) TLog logs messages to a file. Table 2 shows
the periods and priorities of all threads. The bottom 16 rows correspond to the
TEL thread executing different variants of select. Priorities were assigned rate-
monotonically, i.e., shorter periods imply higher priorities. We made the periods
as large as possible without sacrificing experiment quality. For example, further
increasing the periods of TFL and TEL compromises unacceptably localization
accuracy and enforcer responsiveness, respectively. Similarly, a higher period of
TRS causes the QCs to become unstable due to controller limitations.

Thread Scheduling. During experiments, all threads were bound to core 0, as-
signed their respective priorities, and the SCHED FIFO scheduling policy. In this
way, we achieve a single-core processing environment, and a pre-emptive fixed
priority scheduler. Since we do not have precise worst-case execution time esti-
mates for the threads, we do not analyze the system for schedulability. Instead,
if a job misses its deadline (which always equals the task’s period) the next job
is delayed so that it starts at the next multiple of the task’s period. For example,
suppose a job of TRS starts at time 10, and finishes at time 60. Since it misses
its deadline (at time 50), the next job of TRS starts at time 90. Clearly, we want
to minimize deadline misses. While transient deadline misses are acceptable, a
long series of deadline misses can cause the CPS to behave in an unsafe manner.
In particular, a deadline miss by the enforcer thread reduces the effectiveness of
the RA mechanism. We now present results demonstrating the effectiveness of
the different enforcers presented earlier.

Enforcer Effectiveness. We implemented the tether and separation enforcers
(E1 and E2) and evaluated them individually and in composition. Visually, both



Thread Per Prio Flt-Time #Jobs DL-Miss RespTime ExecTime
TFL 5 9 2358.22 530841 0 1.099/0.151/0.039 1.099/0.150/0.039
TCL 50 2 2358.22 53059 26 250.994/0.146/4.281 0.101/0.014/0.008
TRS 40 7 2358.22 64996 19 238.114/0.118/2.842 0.776/0.030/0.015
TLog 1000 1 2358.22 2656 0 31.849/1.198/3.598 0.895/0.330/0.114

〈E1〉 20 8 145.98 7743 572 83.626/5.579/7.709 39.164/5.415/7.453

〈E1〉† 20 8 147.99 8397 0 7.196/0.323/0.439 3.553/0.322/0.434
〈E1〉∗ 20 8 197.11 8295 2564 33.910/9.798/10.237 32.722/9.558/9.984

〈E1〉∗† 20 8 353.03 19684 0 7.539/1.015/1.435 7.310/1.012/1.427

〈E2〉 20 8 219.07 11338 660 45.079/5.752/7.515 42.942/5.611/7.329

〈E2〉† 20 8 146.55 8368 0 2.732/0.361/0.480 2.732/0.361/0.480
〈E2〉∗ 20 8 188.14 8099 2327 36.035/9.940/10.264 34.776/9.705/10.018

〈E2〉∗† 20 8 234.75 13258 0 11.623/0.999/1.856 11.242/0.986/1.817

〈E1, E2〉 20 8 100.77 3479 2118 46.066/15.415/11.633 44.547/15.088/11.384

〈E1, E2〉† 20 8 101.23 5605 0 3.834/0.637/0.787 3.834/0.637/0.788
〈E1, E2〉∗ 20 8 130.74 4396 2657 48.932/16.053/12.269 47.564/15.731/12.017

〈E1, E2〉∗† 20 8 89.79 5009 0 13.640/1.815/2.579 13.157/1.796/2.537

〈E2, E1〉 20 8 55.61 2447 920 57.623/10.631/11.434 56.112/10.416/11.192

〈E2, E1〉† 20 8 81.71 4629 0 3.898/0.561/0.762 3.899/0.561/0.762
〈E2, E1〉∗ 20 8 69.50 2795 1152 45.360/13.066/13.464 44.214/12.801/13.176

〈E2, E1〉∗† 20 8 96.15 5315 0 16.940/2.656/3.770 16.371/2.586/3.647

Table 2. Response time and execution time measurements of various threads; Per=
period in ms; Prio = priority; Flt-Time = total flight time (sec); DL-Miss = # of
jobs that missed deadlines (i.e., response time > period); RespTime = response time
(max/avg/stdev) in ms; ExecTime = execution time (max/avg/stdev) in ms; the su-
perscript of 〈·〉 denotes the variant of select used, e.g., 〈E1, E2〉∗† means that select∗†

was used with the enforcer ordering 〈E1, E2〉. Note that Flt-Time < Per × #Jobs since
it does not include experiment times (at start and end) when the QCs are not airborne.

enforcers caused the QCs to behave as expected. When we flew a QC with only
E1, the enforcer prevented the QC from exiting the tether region even when the
operator attempted to make it do so. When we flew both QCs together with E2

running on each, the enforcers prevented the two QCs from crashing into each
other even when the operators tried to make them crash. Next we flew QC1 with
both E1 and E2, given E1 higher priority. We manually moved QC2 closer to
QC1. We observed that this caused QC1 to move further away till it reached the
tether boundary. At this point, since E1 has higher priority, QC1 did not move
away even if QC2 was brought even closer to it. We ran a similar experiment by
reversing the priorities of E1 and E2. This time, as expected, QC1 continued to
move away from QC2 even if this caused QC1 to violate the tether boundary.

Enforcer Efficiency. Each periodic execution of a thread is called a job. The
response time of a job is the difference between its arrival and completion times.
The execution time of a job is the amount of CPU time during which it ac-
tually executes (i.e., is not preempted by a higher priority thread). For each
thread, we measured the response time and execution time of each job, and
then computed their minimum, maximum, mean and standard deviation. Ta-
ble 2 shows the results for the various threads in our system. As can be seen,
our symbolic approach leads to quite efficient enforcers with execution times
in the order of tens of milliseconds. In general, utility-maximizing enforcers are



slightly less efficient (and have more deadline misses) than their utility-agnostic
counterparts. This is expected since maximizing utilities requires solving an op-
timization problem. Finally, select† and select∗† deliver around 10x speedups
in average execution times consistently, and sometimes almost 20x, e.g., 〈E2〉† vs.
〈E2〉. Consequently, select† and select∗† never miss deadlines while select

and select∗ have frequent deadline misses. Overall, select∗† is the best choice
since it delivers optimal actuations in a timely manner. Finally, note that the
execution times of enforcers have large standard deviations, indicating that over-
load conditions occur regularly. However, as can be seen by the modest number
of deadline misses, zsrm is able to handle overloads gracefully.

6 Conclusion

We addressed the problem of combining multiple runtime enforcers for a CPS
that may produce conflicting actuation commands. We proposed an algorithm
that resolves such conflicts at runtime by considering a design-time prioritiza-
tion of the enforcers. Specifically, our algorithm produces an action that satisfies
the maximum number of high-priority enforcers, ignoring the low-priority ones
as needed. Our approach also supports a notion of utility-maximization that
enables us to implement enforcers that yield the best possible actuation un-
der any given situation. To enable efficient implementations, needed to meet
tight schedulability and periodicity constraints, we encode the enforcers symbol-
ically as SMT formulas, and compute their combination via incremental SMT
solver operations. Experiments on a CPS testbed involving geo-fencing and col-
lision avoidance among flying minidrones demonstrates the effectiveness of our
approach. We see at least two important areas of future work: (i) supporting
“skipping” of enforcement actions necessary due to extreme overload conditions;
and (ii) supporting multiple enforcer threads operating in the same system.
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