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Abstract. Numeric abstract domains are widely used in program anal-
yses. The simplest numeric domains over-approximate disjunction by an
imprecise join, typically yielding path-insensitive analyses. This prob-
lem is addressed by domain refinements, such as finite powersets, which
provide exact disjunction. However, developing correct and efficient dis-
junctive refinement is challenging. First, there must be an efficient way
to represent and manipulate abstract values. The simple approach of us-
ing “sets of base abstract values” is often not scalable. Second, while a
widening must strike the right balance between precision and the rate
of convergence, it is notoriously hard to get correct. In this paper, we
present an implementation of the Boxes abstract domain – a refinement
of the well-known Box (or Intervals) domain with finite disjunctions. An
element of Boxes is a finite union of boxes, i.e., expressible as a proposi-
tional formula over upper- and lower-bounds constraints. Our implemen-
tation is symbolic, and weds the strengths of Binary Decision Diagrams
(BDDs) and Box. The complexity of the operations (meet, join, transfer
functions, and widening) is polynomial in the size of the operands. Em-
pirical evaluation indicates that the performance of Boxes is superior to
other existing refinements of Box with comparable expressiveness.

1 Introduction

Numeric abstract domains are widely used in Abstract Interpretation and Soft-
ware Model-Checking to infer numeric relationships between program variables.
To a large extent, the scalability of the most common domains, intervals, oc-
tagons, and polyhedra, comes from the fact that they represent convex sets –
i.e., conjunctions of linear constraints. This inability to precisely represent dis-
junction (and disjunctive invariants) is also their main limitation. It means that
analyses dependent on such domains are path-insensitive and produce a high-
rate of false positives when applied to verification tasks. In practice, an analyzer
based on such a domain uses a disjunctive refinement to extend the base do-
main with disjunctions (or a disjunctive completion [8] when all disjunctions are
added), and thereby increase its precision.

There are several standard ways to build a disjunctive refinement. The sim-
plest one is to allow a bounded number of disjuncts (e.g., [15, 17, 4, 11, 2, 12]).
This is typically implemented via finite sets as abstract values (e.g., using {a, b}
for a ∨ b), splitting locations in the control flow graph (e.g., unrolling loops,
duplicating join points, etc.), or a combination of the two. It has an easy imple-
mentation based entirely on the abstract operations (i.e., image, widen, etc.) of
the base domain. However, it does not scale to a large number of disjuncts.



The finite powerset construction [1, 2] represents disjunctions with finite sets
and does not bound the number of disjuncts. Most abstract operations easily
extend from the base domain. However, it does not scale to a large number of
disjuncts, and widening is notoriously hard to get right (see [2] for examples).

If the base domain is finite, like in predicate abstraction [10], Binary Decision
Diagrams (BDDs) [5] over the basis (i.e., predicates) of the base domain is the
natural choice for the completion. This approach easily scales to a large number
of disjuncts, which is particularly important for a “coarse” base domain. Addi-
tionally, the canonicity properties of BDDs eliminate redundant abstract values
with the same concretization (which are common with the other approaches).

In this paper, we present a new abstract domain, Boxes, that is a disjunc-
tive refinement of the well-known Box [7] (or Intervals) domain. That is, each
value of Boxes is a propositional formula over interval constraints. We make
several contributions. First, Boxes values are represented by Linear Decision Di-
agrams [6] (LDDs), a data structure developed by us in prior work. LDDs are
an extension of BDDs to formulas over Linear Arithmetic (LA), and are imple-
mented on top of the state-of-the-art BDD package [18]. Thus, Boxes enjoys all
of the advantages of a BDD-based disjunctive refinement, including canonicity
of representation and scalability to many disjuncts. This is especially important
since Box is very coarse. Boxes is not only more expressive than Box or a
BDD-based domain, but, in practice, can effectively replace either.

Second, we implement algorithms for image computation of transfer functions
for Boxes. Third, we develop a novel widening algorithm for Boxes, prove
its correctness, and implement it via LDDs. Our widening does not fit any of
the known widening schemes for disjunctive refinements, and is of independent
interest. Finally, we evaluate Boxes on an extensive benchmark against state-
of-the-art implementations [3] of Box and its finite powerset.

There has been a significant amount of research on extending BDDs to formu-
las over LA, especially in the area of timed- and hybrid-verification (e.g., [19, 16,
13, 20]). In contrast, we concentrate on transfer functions common in program
analysis applications; to our knowledge, we are the first to consider widening in
this context; and, the first to conduct extensive evaluation of such an approach
to a program analysis task.

The rest of the paper is structured as follows. Section 2 gives a brief overview
of LDDs. Section 3 presents our abstract domain Boxes. Section 4 describes
widening. Section 5 compares Boxes with the finite powerset of Box. Section 6
presents our experimental results, and Section 7 concludes.

2 Linear Decision Diagrams

In this section, we briefly review Linear Decision Diagrams (LDDs) that are the
basis for our abstract domain. For more details see [6].

A decision diagram (DD) is a directed acyclic graph (DAG) in which non-
terminal nodes are labeled with decisions and terminal nodes are labeled with
values. LDD is a DD with non-terminal nodes labeled by LA constraints and two
terminal nodes representing true and false, respectively. LDDs are a natural
representation for propositional formulas over LA.
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Fig. 1. (a) An LDD and (b) its geometric interpretation; (c), (d) two LDDs.

Example 1. An example of an LDD (x ≤ 1 ∨ x ≥ 2) ∧ (1 ≤ y ≤ 3) and its
geometric interpretation are shown in Fig. 1(a) and Fig. 1(b). Oval and boxed
nodes represent non-terminal and terminal nodes, respectively. Solid and dashed
edges represent high (true) and low (false) branches, respectively. ⊓⊔

Formally, an LDD over a fragment T of LA is a DAG with

– Two terminal nodes labeled by 0 and 1, respectively.
– Non-terminal nodes. Each non-terminal node u has two children, denoted

by H(u) and L(u), and is labeled with a T -atom (i.e., an atomic predicate),
denoted by C(u).

– Edges, high (u,H(u)) and low (u,L(u)), for every non-terminal node u.

We write attr(u) for (C(u),H(u), L(u)).
An LDD with a root node u represents the formula exp(u) over T defined by:

exp(u) ,











false if u = 0

true if u = 1

ite(C(u), exp(H(u)), exp(L(u))) otherwise ,

(1)

where ite(a, b, c) , (a ∧ b) ∨ (¬a ∧ c).
For simplicity, we do not distinguish between a node u and exp(u).
Let V be a set of variables. We write UBQ for the set

{x . k | x ∈ V, k ∈ Q,.∈ {<,≤}} of rational1 upper bound constraints,
and IVQ for the set {x ∼ k | x ∈ V, k ∈ Q,∼∈ {<,≤,=,≥, >}} of rational
interval constraints. In this paper, we restrict LDDs to UBQ. This is sufficient
to represent any propositional formula over IVQ. For example, x ≤ 5 and x > 5
correspond to LDDs ite(x ≤ 5,1,0), and ite(x ≤ 5,0,1), respectively. For
(x ∼ k) ∈ IVQ, we write Var(x ∼ k) for x.

Let �⊆ V ×V be a total order on V . We extend it to UBQ in a natural way:

(x1 .1 k1) � (x2 .2 k2) iff (x1 � x2) ∨ ((x1 .1 k1)⇒ (x2 .2 k2)) , (2)

and to LDD nodes:

u � v iff (v ∈ {0,1}) ∨ (u 6∈ {0,1} ∧ C(u) � C(v)) . (3)

An LDD u is ordered w.r.t. � iff for every node v reachable from u, v �
H(v) and v � L(v). An LDD over UBQ is locally reduced iff the following five

1 While we use rationals for ease of presentation, our results extend to integers.



Operation Semantics Complexity Operation Semantics Complexity

and(f, g) f ∧ g O(|f | · |g|) or(f, g) f ∨ g O(|f | · |g|)
ite(h, f, g) (h ∧ f) ∨ (¬h ∧ g) O(|h| · |f | · |g|) leq(f, g) f ⇒ g |f | · |g|

not(f) ¬f O(|f |) exist(U, f) ∃U · f O(|f | · 2|U|)
Table 1. Basic LDD operations. U is a set of variables.

1: function leq (LDD f , LDD g)
2: if (f = g) ∨ (f = 0) ∨ (g = 1) then

3: return true

4: if (f = 1) ∨ (g = 0) then

5: return false

6: if C(f) � C(g) then v ← C(f)
7: else v ← C(g)

8: return leq(f |v, g|v) ∧ leq(f |¬v, g|¬v)

Require: fnPos and fnNeg map constraints into LDDs
1: function RC(var x, LDD f , fun fnPos, fun fnNeg)
2: if (f = 0) ∨ (f = 1) then return f

3: v ← C(f)
4: t← RC(x, f |v, fnPos, fnNeg)
5: e← RC(x, f |¬v, fnPos, fnNeg)

6: if x 6= Var(v) then return ite(v, t, e)

7: t← and(fnPos(v), t)
8: e← and(fnNeg(v), e)
9: return or(t, e)

Fig. 2. LDD algorithms: leq – decides implication, and RC replaces constraints.

conditions hold on every internal node u and v: (1) No duplicate nodes. attr(u) =
attr(v) ⇒ u = v; (2) No redundant nodes. L(v) 6= H(v); (3) Normalized labels.
C(v) ∈ UBQ; (4) Imply high. ¬(C(v) ⇒ C(H(v))); (5) Imply low. If C(v) ⇒
C(L(v)) then H(v) 6= H(L(v)).

For a fixed variable order, ROLDDs are canonical for propositional formulas
over IVQ. Specifically, if u and v represent semantically equivalent expressions
(exp(u) ⇔ exp(v)), then u = v. From here on, we fix a total order � on V and
say LDD to mean Reduced Ordered LDDs (ROLDD).

Like BDDs, LDDs provide polynomial time algorithms for the basic proposi-
tional operations: disjunction (union), conjunction (intersection), negation (com-
plement), and existential quantification (projection). These are summarized in
Table 1. Like BDDs, in the worst case, the size of an LDD is exponential in the
number of variables. In some implementations (e.g., in [6]) negation (¬f) is a
constant time operation. For completeness, the pseudo code for leq is shown in
Fig. 2. This, and all other DD algorithms in this paper, are implicitly memoized
– results of all intermediate operations are cached and reused as needed. For
an LDD f (or its corresponding ite-expression) and a constraint v ∈ UBQ, we
write f |v and f |¬v for, respectively, the positive and the negative cofactor of
f w.r.t. v. Let f [u/w] denote the result of the substitution of constraint w for
every occurrence of constraint u in f . Then, the cofactors are defined as follows:

f |v , f [u/true | v ⇒ u] f |¬v , f [u/false | u⇒ v] . (4)

In this paper, we do not distinguish between propositional formulas over IVQ

the corresponding LDDs. For example, we write f ∧ (1 ≤ x ≤ 10) to mean an
LDD obtained by conjunction of an LDD for f and an LDD for 1 ≤ x ≤ 10.

3 The Boxes Abstract Domain

Let Rn be an n-dimensional real vector space. A set B ⊆ Rn is a rational box iff
it is expressible by a finite system of rational interval constraints. The set of all
rational boxes of Rn is denoted by Bn. The Box abstract domain [7] is a tuple
(Bn,⊆, ∅, Rn,⊎,∩), where ⊆ is the subset ordering, ∅ is the empty set, ⊎ is the



box hull (i.e., for any two boxes B1 and B2, B1⊎B2 = B3 is the smallest rational
box s.t. B1∪B2 ⊆ B3), and ∩ is set intersection. Note that since Bn is not closed
under union, union is over-approximated by the box hull.

A set BS ⊆ Rn is a set of rational boxes iff there exist rational boxes
B1, . . . ,Bk such that BS =

⋃k

i=1
Bi. The set of all sets of rational boxes of Rn

is denoted by BS
n. The Boxes abstract domain is a tuple (BS

n,⊆, ∅, Rn,∪,∩),
where ⊆ is the subset ordering, ∅ is the empty set, and ∪ and ∩ are set union and
intersection, respectively. Boxes abstract domain is a disjunctive refinement of
Box domain. Since BS

n is closed under union, intersection, (and complement)
all basic operations are exact. In the rest of this section, we describe our imple-
mentation of Boxes using LDDs.

Representation and basic operations. Let V = {x1, . . . , xn} be n variables, and
� be some total order on V . We assume that each variable is bound to a unique
dimension. We use x to denote an element of Rn. Implicitly, x is also a valuation
of V , where x(i) is the value of the variable bound to the ith dimension. Then,
there is a one-to-one correspondence between Reduced �-Ordered LDDs over V
and rational boxes over Rn – each BS ∈ BS

n corresponds to the unique LDD f
such that x ∈ BS ⇔ x |= exp(f). Thus, the domain Boxes is implemented by a
tuple (LDD(V ), leq,0,1,or,and), where LDD(V ) is the set of all LDDs over
V . All of the operations are linear in the size of their operands (see Table 1).
Note, however, that the size of an LDD over V is in the worst case exponential
in |V |. In the rest of this paper, we do not distinguish between a set of boxes
BS ⊆ Rn, a corresponding LDD, and a corresponding propositional formula.

In addition to the base operations described above, static analysis applica-
tions typically require operations to check for equality and satisfiability (non-
emptiness), to compute set-theoretic difference, projection (or unconstraining),
images of assignments and guards, and widening (e.g., see [9]). Except for the
last two, the operations follow easily from the existing LDD operations. Image
computation requires new (but simple) operations, and widening is the most
complex one. In the rest of the section, we summarize implementations of the
basic and image operations. Widening is deferred to Section 4.

Basic operations. LDDs are canonical for BSn, hence equality is a constant time
operation – two LDD nodes are equivalent iff they have the same attributes.
Similarly, satisfiability (and universality) are checked by comparing an LDD to
0 (and 1). Sometimes (e.g., [2]) it is useful to compute an over-approximation of
a set-theoretic difference of two abstract values. Boxes domain is closed under
complement and intersection, hence set-theoretic difference is computed exactly
using the equivalence: BS1 \ BS2 , BS1 ∩ ¬BS2, where BS1,BS2 ∈ BS

n. Note
that set-complement is also computed exactly via LDD negation. Projection of
a variable x is done via existential quantification exist (see last row of Table 1).

Guards and Assignments. Let c be an assignment or a guard. We write ||c|| for
the concrete semantics of c as a function from Rn to Rn. For example,

||xi ≤ 4||(BS) = {x | x ∈ BS ∧ x(i) ≤ 4} .



We write || · ||BS : LDD → LDD for an abstract transformer that over-
approximates ||·|| in BS

n. That is, given an LDD f for a set of boxes BS, ||c||BS(f)
is an LDD representing the smallest set of boxes over-approximating ||c||(BS).

The simplest guard is k1 .1 xi .2 k2. The corresponding abstract trans-
former just adds the appropriate constraint:

||k1 .1 xi .2 k2||BS(f) , f ∧ k1 .1 xi .2 k2 , (5)

where k1, k2 ∈ Q and .1,.2∈ {<,≤}. Either the lower bound (k1) or the upper
bound (k2) can be omitted. The simplest assignment is xi ← v where v is
a symbolic constant such that k1 .1 v .2 k2. The abstract transformer is
constructed by projecting away the current value of xi and assuming that xi is
in the same interval as v:

||xi ← v||BS(f) , ||k1 .1 xi .2 k2||BS(∃xi · f) , (6)

where k1, k2, .1, and .2 are as above.
For the next class of transformers, we introduce the function RC shown in

Fig. 2. RC takes a variable x, an LDD f , and two functions fnPos and fnNeg

that map constraints to LDDs, and returns an LDD obtained by replacing every
constraint u on x in f by fnPos(u) on the high-branch of u and by fnNeg(u)
on the low branch of u.

For example, let ID , λu · u and COMP , λu · ¬u be the identity and the
complement functions, respectively. Then, RC(x, f, ID,COMP) is an identity
function – every constraint on x is replaced by itself.

Transfer functions implemented with RC are shown in Table 2, where the
columns are: 1st – the command, 2nd – assumptions made, 3rd – the implemen-
tation as a call to RC, and 4th and 5th – fnPos and fnNeg functions used by
RC, respectively. Throughout, we assume that a, a1, a2, k1, k2 ∈ Q, and x and y
are two distinct variables. Furthermore, for the guard (the last row), we require
that constraints on x precede those on y in the diagram ordering. This is not a
limitation – any guard can be rewritten to satisfy this restriction.

The transfer function for x← x+ a · y is implemented with xpy (see Fig. 3):

||x← x + a · y||BS(f) , xpy(f, x, a, y) . (7)

The intuition behind xpy is to traverse the DD and reduce the transfer
function to a simpler one as soon as a bound for either x or y is found. There
are two cases based on whether x � y or y � x.

Example 2. As a simple example, consider applying the transfer function to LDD
f shown in Fig. 1(c). Here, we assume that x � y, and A, B, and C are sub-
diagrams that do not contain x. Note that f is equivalent to:

(x ≤ 1 ∧A) ∨ (1 < x ≤ 5 ∧B) ∨ (5 < x ∧ C) (8)

The transformer distributes over disjunction. First, compute x ← a · y on the
sub-diagrams A, B, and C, to get:

A′ = ||x← a · y||(A) B′ = ||x← a · y||(B) C ′ = ||x← a · y||(C) . (9)

Second, update the results to reflect the bounds on x in A, B, and C:

||x← x + va||(A
′) ∨ ||x← x + vb||(B

′) ∨ ||x← x + vc||(C
′) , (10)



Action Assume Implementation fnPos(z . b) fnNeg(z . b)

x← x + v RC(x, f, fnPos, fnNeg) x . b + k2 ¬(x . b + k1)
x← a · x a > 0 RC(x, f, fnPos, fnNeg) x . a · b ¬(x . a · b)
x← a · x a < 0 RC(x, f, fnPos, fnNeg) a · b . x ¬(a · b . x)

x← a · y a > 0 RC(y, ∃x · f, fnPos, fnNeg) (z . b) ∧ ¬(z . b) ∧
(x . a · b) ¬(x . a · b)

x← a · y a < 0 RC(y, ∃x · f, fnPos, fnNeg) (z . b) ∧ ¬(z . b) ∧
(a · b . x) ¬(a · b . x)

a1 · x + a1 > 0 let g = RC(x, f, fnPos, fnNeg)in (z . b) ¬(z . b) ∧
a2 · y . k (a2 · y . k − a1 · b)

a2 < 0 RC(y, g, fnPos, fnNeg) (z . b) ∧ ¬(z . b)
(a1 · x . k − a2 · b)

Table 2. Abstract transformers; v is a symbolic constant bounded by k1 . v . k2, t1
is a1 · x + k1, and t2 is a2 · x + k2.
where va ≤ 1, 1 < vb ≤ 5, and 5 < vc.

Alternatively, lets apply the same transformer to LDD g shown in Fig. 1(d).
Here, we assume y � x, and A, B, and C are sub-diagrams that do not contain
y. g is equivalent to:

(y ≤ 2 ∧A) ∨ (2 < y ≤ 6 ∧B) ∨ (6 < y ∧ C) (11)

In each disjunct the value of y is known:

A′ = ||x← x + va||(A) B′ = ||x← x + vb||(B) C ′ = ||x← x + vc||(C) ,

where va ≤ 2 · a, 2 · a < vb ≤ 6 · a, and 6 · a < v6. The final result is: ite(y ≤
2, A′, ite(y ≤ 6, B′, C ′)). ⊓⊔

Finally, an abstract transformer for a linear assignment x ← a1 · x1 + · · · +
an · xn + v is computed as a sequence of simpler transformers. For example
||x← a · y + b · z + k||BS is reduced to

||x← k||BS ◦ ||x← x + a · y||BS ◦ ||x← x + b · z||BS . (12)

Theorem 1. Let c be an action of the form above, and f be the LDD corre-
sponding to BS = {B1, . . . ,Bk}. Then, ||c||BS(f) is equivalent to ∪k

i=1||c||B(Bi),
where || · ||B : Bn → Bn is the abstract transformer of Box.

Proof. (Sketch) For simplest transformers, the result follows trivially. The rest
are equivalent to applying || · ||B to each 1-path of f . ⊓⊔

Join and Box Hull of Boxes. Figure 4 presents algorithms for two other opera-
tions on LDDs. BoxJoin(f, g) returns f ⊎ g, while BoxHull(f, g) returns the
box hull of f and g. BoxHull invokes BoxJoin as a subroutine. The complexity
of both algorithms is in O(|f | · |g|).

4 Widening

In static analysis, widening is used to ensure that the analysis always termi-
nates, even in the presence of infinite ascending chains in the underlying ab-
stract domain [9]. Let D̂ = (D,⊑,⊥,⊤,⊔,⊓) be an abstract domain. An oper-
ation ∇d : D × D → D is a widening for D̂ iff it satisfies two conditions: (1)



Require: x 6= y
1: function xpy(LDD f , var x, Q a, var y)
2: if x � y then return xpy1(f, x, a, y,true)
3: else return xpy2(f, x, a, y,true)

4: function xpy1(LDD f , var x, Q a, var y, cons c)
5: if f = 0 ∨ f = 1 then return f

6: u← C(f)
7: if x � Var(u) then

8: if c = true then return f

9: return ||x← a · y + v||BS(f), where v |= c

10: if x 6= Var(u) then

11: t← xpy1(f, x, a, y, c)
12: e← xpy1(f, x, a, y, c)
13: return ite(u, t, e)

14: Assert u is x . b
15: t← ||x← a · y||BS(f |u)
16: t← ||x← x + v||BS(t), where v |= (c ∧ v . b)
17: e← xpy1(f |¬u, x, a, y,¬(u[x/v]))
18: return or(t, e)

19: function xpy2(LDD f , var x, Q a, var y, cons c)
20: if f = 0 ∨ f = 1 then return f

21: u← C(f)
22: if y � Var(u) then

23: if c = true then return exist(x, f)

24: return ||x← x + v||BS(f), where v |= c

25: if y 6= Var(u) then

26: t← xpy2(f, x, a, y, c)
27: e← xpy2(f, x, a, y, c)
28: return ite(u, t, e)

29: Assert u is y . b
30: t← ||x← x + v||BS(f |u), where v |= (c ∧ v . a · b)
31: e← xpy2(f |¬u, x, a, y,¬(v . a · b))
32: return ite(u, t, e)

Fig. 3. Algorithm to compute abstract transfer function for x← x + a · y.

1: function BoxHull (LDD f)
2: if (f = 0) ∨ (f = 1) then

3: return f

4: fh← BoxHull(H(f))
5: fl← BoxHull(L(f))
6: if L(f) = 0 then

7: return ite(C(f), fh,0)

8: if H(f) = 0 then

9: return ite(C(f),0, f l))

10: return BoxJoin(C(f) ∧ fh, fl)

Require: f and g are singletons.
1: function BoxJoin (LDD f , LDD g)
2: if (f = g) ∨ (f ∈ {0,1}) ∨ (g ∈ {0,1}) then

3: return or(f, g)

4: if C(g) � C(f) then return BoxJoin(g, f)

5: u← C(f)
6: if (f |u = 0) ∧ (g|u = 0) then

7: return ite(u,0,BoxJoin(L(f), L(g)))

8: if (f |¬u = 0) ∧ (g|¬u = 0) then

9: return ite(C(g),BoxJoin(H(f), H(g)),0)

10: return BoxJoin(f |u = 0 ? L(f) : H(f), g)

Fig. 4. Algorithms to compute a box hull and a box join (⊎) of LDDs.

over-approximation: x ⊑ y ⇒ (x ⊔ y) ⊑ (x∇d y), and (2) stabilization: for every
increasing sequence x1 ⊑ x2 · · · , the (widening) sequence

y1 = x1 , yi = yi−1∇d(yi−1 ⊔ xi) , for i > 1 (13)

stabilizes, i.e., ∃k · yk = yk+1.
In this section, we describe a widening for Boxes. We proceed in stages.

First, we introduce a new domain construction STEP(D̂), called step (function)
construction, that lifts a domain D̂ to (step) functions from R to D. Second,
we give a procedure to lift a widening ∇d of D̂ to a widening ∇s of STEP(D̂).
Finally, we show that n-dimensional Boxes are step constructions of (n − 1)-
dimensional Boxes and implement ∇s on top of LDDs.

Step function construction. A function f : R→ D is a step function if it can be
written as a finite combination of intervals. That is,

f(x) = (v1 ⊓ f1(x)) ⊔ · · · ⊔ (vn ⊓ fn(x)) , (14)

where vi ∈ D, and there exists a partitioning F1, . . . , Fn of R by intervals such
that fi(x) = ⊤ if x ∈ Fi and fi(x) = ⊥ otherwise. A step function f induces an
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Fig. 5. Example of a widening.

equivalence relation ≡f on R:

x ≡f y ⇔ ∀z · ((x ≤ z ≤ y) ∨ (y ≤ z ≤ x))⇒ f(x) = f(z) . (15)

We write [x]f for the equivalence class of x w.r.t. ≡f . Note that the index of ≡f

is finite and the equivalence classes are naturally ordered: [x] ≤ [y]⇔ x ≤ y. We
assume the classes are enumerated, so the ≤-least equivalence class is first, the
next one is second, etc. For step functions f , g, we write ≡f,g for the relation:

x ≡f,g y ⇔ (x ≡f y) ∧ (x ≡g y) , (16)

and [x]f,g for the corresponding equivalence class of x.

The set of all step functions from R to a domain D̂, denoted R→s D, forms
an abstract domain STEP(D̂) , (R→s D, ⊑̇, ⊥̇, ⊤̇, ⊔̇, ⊓̇). The dot above an
operator denotes pointwise extension, e.g., f ⊑̇ g , ∀x ∈ R · f(x) ⊑ g(x).

One-dimensional Boxes is STEP({true, false}) – the step construction
applied to the Boolean domain. Similarly, n-dimensional Boxes is a step con-
struction of (n−1)-dimensional Boxes. Since the Boolean domain is finite – it’s
join and widening coincide. Thus, to get a widening for Boxes, we only need to
show how to lift a widening from a base domain to its step construction. We use
1- and 2-dimensional Boxes for examples in the rest of this section.

Lifting widening to STEP(D̂). Clearly, the pointwise extension ∇̇d, of the widen-
ing ∇d of D̂, is not a widening of STEP(D̂). As a counterexample, the divergent
sequence {(0 ≤ x ≤ i)}∞i=1 of Boxes values is it’s own pointwise widening se-
quence. Let us examine this in more detail.

Example 3. Let f and g be step functions as illustrated in Fig. 5(a). Each func-
tion is shown as a partitioning of the number line with the value above and the
name below the line, respectively. Thus, f has two partitions F1 and F2 with
values a, and b, respectively. We assume that lower case letters represent distinct
elements of some domain D̂, ordered alphabetically. Note that G1 = F1 and F2

is refined by G2, G3, and G4. Consider p = f ∇̇d g as shown in Fig. 5(a) and
compare to f . Clearly, p is on a divergent path. In it, partition F2 is split into
three parts, but both P2 and P4 have the same value as F2. Thus, they can be
refined again. A way to ensure convergence is to assign to P2 and P4 the value
of P3, as shown by h in Fig. 5(a). This is the intuition for our approach. ⊓⊔



In summary, pointwise widening f ∇̇d g diverges whenever it refines a parti-
tion in f without updating its value. Thus, to guarantee convergence, we assign
to the offending partition a value of its neighbor that refines the same partition
of f . The formal definition is given below:

Definition 1. Let D̂ = (D,⊑,⊥,⊤,⊔,⊓) be an abstract domain with a widening
∇d. Let f, g ∈ R→s D be two step functions s.t. f ⊑̇ g, and [y1], . . . , [yn] be the
equivalence classes of ≡f,g enumerated by their natural order ≤. Then, the step

widening, ∇s, for STEP(D̂) is defined as follows:

(f ∇s g)(x) ,
n
⊔

i=1

(vi ⊓ hi(x)) , (17)

where n is the index of ≡f,g, hi(x) = ⊤ if x ∈ [yi] and hi(x) = ⊥ otherwise, and

vi ,











f(yi) ∇d g(yi) if f(yi) 6= g(yi) or [yi]f,g = [yi]f

f(yi) ∇d g(yi+1) else if i < n and [yi+1]f,g ⊆ [yi]f

f(yi) ∇d g(yi−1) otherwise

(18)

Example 4. Consider two sets of boxes BS1 = {P1,P2} and BS2 = {Q1,P2}
shown in Fig 5(b), where

P1 = (0 ≤ x ≤ 1) ∧ (2 ≤ y ≤ 3) P2 = (2 ≤ x ≤ 3) ∧ (1 ≤ y ≤ 2)

Q1 = (0 ≤ x ≤ 1.5) ∧ (1.5 ≤ y ≤ 3) .

The result of BS1∇s BS2 is shown in Fig. 5(c). Note that even though BS1 and
BS2 have the same box hull (shown by a doted frame), their widening is larger.
This shows that widening makes it very hard to analytically compare difference
in precision between Boxes and Box. ⊓⊔

Theorem 2. The operator ∇s defined in Def. 1 is a widening on STEP(D̂).

Proof. Over-approximation. Let h = f ∇s g. We show that for any i ∈ [1, n],
h(yi) ⊒ g(yi). Based on (18) there are 3 cases. In case 1, h(yi) = f(yi)∇d g(yi) ⊒
g(yi). In case 2, [yi+1]f,g ⊆ [yi]f ⇒ f(yi) = f(yi+1). Also, f ⊑̇ g ⇒ f(yi) =
f(yi+1) ⊑ g(yi+1). Finally, h(yi) = f(yi)∇d g(yi+1) ⊒ f(yi) = g(yi). In case 3,
we have [yi−1]f,g ⊆ [yi]f , from which the results follows as in case 2..

Stabilization. Let f : R→s D be a step function, and {fi}
∞
i=1 be an infinite

sequence defined as follows:

f1 , f , fi , fi−1∇s gi , for i > 1 , (19)

where {gi}
∞
i=1 is any sequence of step function such that fi−1 ⊑̇ gi. We show that

the sequence stabilizes, i.e., for some k, fk =̇ fk+1.
We write ≡i for ≡fi

and [x]i for [x]fi
. For i ≥ 1, let ≡≤i be the equivalence

relation: x ≡≤i y ⇔ ∀1 ≤ j ≤ i · x ≡j y, and [·]≤i be its equivalence classes.

Let T = (V,E) be a tree with V , (0, R) ∪ {(i, [x]≤i) | i ≥ 1, x ∈ R} and

E , {((0, R), (1, [x]≤1)) | x ∈ R} ∪

{((i, [x]≤i), (j, [x]≤j)) | j > i ∧ fj(x) 6= fi(x) ∧ ∀i < k < j · fi(x) = fk(x)} .



That is, T is a tree of refined equivalence classes with edges corresponding to
differences in fi’s. Let Ti be the subtree of T restricted to the nodes (j,X)
where j ≤ i. Then the leaves of Ti correspond to fi, i.e., (i, [x]≤i) is a leaf iff
fi(x) 6= fi−1(x). T is finitely-branching because all edges from an equivalence
class at level i only go to equivalence classes at some other level j, and there are
finitely many classes at each level. Formally,

((i, [x]≤i), (j, [x]≤j)) ∈ E ∧ ((i, [y]≤i), (k, [y]≤k)) ∈ E ∧ ([x]≤i = [y]≤i)⇒ j = k

which follows from cases 2 and 3 of (18).
Suppose {fi}

∞
i=1 is not stable. Then, T is infinite. By König’s lemma, there

is an infinite path π = (0, R), (1, [x]≤1), (i2, [x]≤i2), . . . in T . By Def. 1, for any
consecutive nodes (ik, [x]≤ik

) and (ik+1, [x]≤ik+1
) on π, there is a d ∈ D, s.t.

fik+1
(x) = fik

(x)∇d d. This contradicts that ∇d is a widening. ⊓⊔

Widening for Boxes. Recall that 1-dimensional Boxes are step functions into
{true, false}. Thus, ∇s where ∇d = ∨ is a widening for them. Widening,∇n

bs for
n-dimensional Boxes is defined recursively by letting ∇n

bs be ∇s parameterized
by ∇d = ∇n−1

bs . We write ∇bs when the dimension is clear or irrelevant.

Theorem 3. The operation ∇bs is a widening for Boxes.

We now describe our implementation of ∇bs with LDDs. It is not hard to
show that the last two cases of (18) are equivalent to vi+1 and vi−1, respectively.
That is, the value of the partition i is either a widening of the corresponding
partitions of the arguments, or the value of an adjacent partition. Thus, if we
assume that the step functions are given as a linked list of partitions, ∇s is
computable by a recursive traversal of this list. Conveniently, this is how Boxes

are represented by LDDs. For example, in Fig. 1(c) the low edges form the linked
list of partitions of dimension x. However, there are no back-edges, and it is hard
to access the value of the “previous” partition. We overcome this problem by
sending the value of the “current” partition down the recursion chain.

Our algorithm WR implementing f ∇n
bs g is shown in Fig. 6. The inputs are

LDDs f and g, a variable x bound to dimension n, and an LDD h representing
the value of “previous” partition or nil. When the dimension of f and g is not
known apriori, f ∇bs g is implemented by WR(f, g, x,nil), where x is the �-least
variable of f and g, and h is nil since the algorithm starts at the first partition.
This is done by Widen shown in Fig. 6. The WR proceeds exactly as the simple
recursive algorithm described above. Comments indicate which lines correspond
to the three cases of (18).

Theorem 4. Algorithm Widen implements ∇bs in time O(|f | · |g|).

5 Boxes and Finite Powerset of Box.

The finite powerset of Box [1, 2], which we call PowerBox, is the main al-
ternative to Boxes as a refinement of Box. An advantage of a finite powerset
construction is its applicability to any base domain. However, this makes it hard



Require: leq(f, g)
1: function Widen (LDD f , LDD g)
2: if (f = 0) ∨ (f = g) ∨ (g = 1) then

3: else return g

4: if C(f) � C(g) then return WR(f, g,Var(C(f)),nil)
5: else return WR(f, g,Var(C(g)),nil)

6: function WR (LDD f , LDD g, Var x, LDD h)
7: if f = g then

8: if (Var(C(f)) 6= x) ∧ (h 6= nil) then return h ⊲ (case 3)

9: return g ⊲ (case 1)

10: if (Var(C(f)) 6= x) ∧ (Var(C(g)) 6= x) then return Widen(f, g) ⊲ (case 1)

11: if C(f) � C(g) then v ← C(f)
12: else v ← C(g)

13: t←WR(f |v, g|v, x,nil)
14: e←WR(f |¬v, g|¬v, x,nil)
15: if v = C(f) then

16: if (g|v = f |v) ∧ (h 6= nil) then

17: return ite(v, h, e) ⊲ (case 3)
18: else

19: return ite(v, t, e) ⊲ (case 1)

20: if g|v = f |v then return e ⊲ (case 2)

21: return ite(v, t,WR(f |¬v, g|¬v, x, t)) ⊲ (case 1)

Fig. 6. Widening for Boxes.

(if not impossible) to leverage the power of domain-specific data structures.
In contrast, our Boxes implementation is based on a specific data-structure –
LDDs – but does not extend to other base domains. In the rest of the section, we
compare the two domains analytically. Results of extensive empirical evaluation
are presented in Section 6.

Finite powerset construction. Let D̂ = (D,⊑,⊥,⊤,⊔,⊓) be an abstract domain.
For any S ⊆ D, let Ω(S) be the set of the ⊑-maximal elements of S, and S ⊆fn D

mean that S is a finite subset of D. The finite powerset domain over D̂ is:

D̂P = (PΩ
fn(D̂),⊑P , ∅, Ω(D),⊔P ,⊓P ) , (20)

where PΩ
fn(D̂) , {S ⊆fn D | Ω(S) = S}, S1⊑P S2 iff ∀d1 ∈ S1 ·∃d2 ∈ S2 ·d1 ⊑ d2,

S1 ⊔P S2 , Ω(S1 ∪ S2), and S1 ⊓P S2 , Ω({s1 ⊓ s2 | s1 ∈ S1 ∧ s2 ∈ S2}).

Comparing Representation. Boxes and PowerBox differ in their element rep-
resentation. Let ϕ be a Boolean formula over IVQ. PowerBox represents ϕ by
its (unshared) DNF, while Boxes represents ϕ by its BDD. Thus, there exists
a ϕ whose PowerBox representation is exponentially bigger than its Boxes

representation, and vice versa. Of course, deciding between a DNF or a BDD
representation of a Boolean formula is a long-standing open problem.

Comparing Basic Operations. The ⊆ operation of Boxes is exact, while the
corresponding ⊑P operation of PowerBox is not. For example, let S1 =
{0 ≤ x < 2} and S2 = {0 ≤ x < 1, 1 ≤ x < 2} be elements of Power-

Box. Then, (S1 6⊑P S2), but S1 ⊆ S2. The complexity of the operations in both
domains is polynomial in the sizes of the representations of their arguments.
Complexities of the LDD operations used by Boxes are shown in Table 1. For



PowerBox, most expensive operations are Ω and meet (⊓P ). Ω is quadratic
and has no analogue in Boxes. ⊓P has the same complexity, relative to the size
of its arguments, as and. The complexity of join (⊔P ) is similar to or, but is
more efficient if irreducibility of the result is not required.

Comparing Widening. Bagnara et al. [2] suggest three schemes to extend a widen-
ing from the base domain (in this case, Box) to the finite powerset (i.e., Boxes):
k-bounded, connector, and certificate-based. Our widening does not fit any of
these categories. It does not bound the number of disjuncts apriori, and hence is
not k-bounded. It does not compute certificates, or a box hull of its arguments,
and hence is not certificate-based. It is close in spirit to connector-widening, but
is not itself based on widening of a base-domain. Thus, our widening is not easily
comparable to any of the suggestions of [2]. Note that extending a PowerBox

widening to Boxes is difficult. One possibility is to convert between a Boxes

and a PowerBox value, apply PowerBox widening, and convert the value
back. But, this involves an exponential blowup – number of paths in an LDD is
exponential in its size. The alternative is to adapt PowerBox widening algo-
rithm to work directly on an LDD. This is non-trivial.

In summary, it is not obvious which of Boxes and PowerBox is superior.
In Section 6, we present empirical evidence that suggests that in practice the
Boxes domain does scale better.

6 Experiments

To evaluate Boxes, we implemented a simple abstract interpreter, IRA, on top
of the LLVM compiler infrastructure [14]. For every function of a given program,
IRA computes invariants over all SSA variables at all loop heads using a given
abstract domain. We compared four abstract domains: LDD Boxes – the domain
described here; LDD Box – Box implemented with LDDs using BoxJoin and
the standard widening instead of or and Widen, respectively; PPL Box – Box

implemented by Rational Box class of PPL [3]; and, PPL Boxes – PowerBox

implemented by Pointset Powerset<Rational Box> of PPL. For LDD-based
domains, we used dynamic variable ordering.

The benchmark. We applied IRA to 25 open source programs, including mplayer,
CUDD, and make, with over 16K functions in total. All experiments were ran
on a 2.8GHz quad-core Pentium machine. Running time and memory for each
function was limited to 1 minute and 512MB, respectively. Here, we report on
the 5,727 functions which at least one domain required 2 or more seconds to
analyse. The first two columns of Table 3(a) summarize key characteristics of the
benchmark: on average there are 238 variables and 7 loop heads per function.
The last 3 columns summarize the size of the invariants computed as either
LDDs, number of paths in a LDD, or number of elements in a PowerBox

value. Note that the large standard deviations indicate that the benchmark was
quite heterogeneous. Overall, Table 3(a) shows that our analysis was non-trivial.

The results. Our experimental results are summarized in Table 3(b). The first two
columns show the percentage of (the 5,727) functions analyzed successfully, and



Vars Loop DD Path Box

MIN 9 0 1 0 1
MAX 9,052 241 87,692 2.15E09 7,296
AVG 238 7 1,011 2.46E08 802
STDEV 492 12 3,754 5.75E08 761
MEDIAN 97 3 149 5,810 589

Domain %S T(m) %B %I %∇

LDD Box 99.8 4 77 23 0

PPL Box 96.1 117 86 14 0

LDD Boxes 87.9 118 61 38 1

PPL Boxes 14.2 201 95 1 3

(a) (b)
Table 3. (a) Benchmark summary: Vars – # of variables; Loop – # of loop heads;
Invariant Sizes: DD – # of nodes in a DD, Path – # of paths, Box – # of elements
in a PPL Boxes value. (b) Summary of the experimental results: %S – % Solved, T –
total time, %B – % time in basic ops, %I – % time in image, %∇ – time in widen.

the time taken, respectively. The time includes only the cost of abstract domain
operations, and only counts the successful cases for the corresponding domain.
Each Box domain solved over 90% of the cases. Surprisingly, LDD Box was
significantly faster. We conjecture that this is due to the large number of tracked
variables in our benchmark. The size of an LDD Box value is proportional to
the number of bounded variables (dimensions), whereas that size of PPL Box

value is proportional to the, much larger, number of tracked variables.

Our LDD Boxes domain did quite well, solving close to 90% of the cases.
PPL Boxes domain did not scale at all: solved under 20% and took almost
double the time of LDD Boxes.

The last three columns of Table 3(b) break down the time between the basic
(⊑,⊓,⊔) domain operations (Basic), image computation (Image), and widening
(Widen). Again, both Box domains perform similarly, with Basic being the most
expensive, while Widen is negligible. For LDD Boxes, the time is divided more
evenly between Basic and Image, with a non-negligible Widen. For PPL Boxes,
the time is dominated by Basic, and Widen is also significant.

Fig. 7(a) compares LDD Box (the fastest and least precise analysis) and
LDD Boxes. Clearly, additional expressivity of LDD Boxes costs additional
(often, several orders of magnitude) complexity. Fig. 7(b) compares PPL Boxes

and LDD Boxes (only successful cases for PPL are shown). Here, LDD Boxes

is several orders of magnitude faster.

In order to understand whether the increased expressivity of LDD Boxes

yields more precise results, and to evaluate the effectiveness of our widening, we
measured the number of times widening points are visited during the analysis.
We conjecture that a very aggressive (and, thus, imprecise) widening results
in a very quick convergence and, hence, few repeated applications of widening.
Fig. 7(c) compares LDD Box and LDD Boxes. In all but 23 cases, analysis
with LDD Boxes visits widening points as many (and often significantly more)
times than LDD Box. In the remaining 23 cases, LDD Boxes converges faster
– often, before the widening is ever applied2 – but to a more precise invariant.

Fig. 7(d) compares LDD Boxes and PPL Boxes (on the cases where PPL
Boxes was successful). In most cases, both domains converge after similar num-
ber of iterations. In general, the convergence rate is within a factor of 2. We

2 in IRA, we delay widening until the 3rd iteration of a loop.
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Fig. 7. Running time: (a) LDD Box vs. LDD Boxes; (b) PPL Boxes vs. LDD Boxes.
Number of widenings: (c) LDD Box vs. LDD Boxes; (d) PPL Boxes vs. LDD Boxes.

conjecture that this indicates that our widening is similar in its precision to the
finite powerset widening used by PPL Boxes.

Overall, our evaluation indicates that LDDs provide a solid backbone for
implementing Box and its disjunctive refinements. LDD Box is competitive
with PPL Box, and scales much better as the number of variables increases. The
performance degradation when moving from Box to its disjunctive refinement
is milder for LDDs than for PPL. Finally, LDD Boxes performs better than
PPL Boxes, while maintaining a similar precision level.

7 Conclusion

In this paper, we presented Boxes, a symbolic abstract domain that weds dis-
junctive refinement of Box with BDDs. Boxes is implemented on top of LDDs,
an extension of BDDs to linear arithmetic. We present a novel widening algo-
rithm for Boxes that is different from known schemes for implementing widening
for disjunctive refinements. Empirical evaluation indicates that Boxes is more
scalable than existing implementations of the finite powerset of Box.

An area of future work is to study applicability and scalability of Boxes in
a practical software verification setting. In particular, Boxes offers a promising
platform for combining model-checking and abstract interpretation as in [12].
Another direction is to extend the approach to weakly-relational domains. The
main challenge is developing an effective and efficient widening.
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