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What is the Problem? 

Time-sensitive systems in uncertain environments have complex 
behaviors. How do we validate correct timing in such systems? 

• Exact probabilistic verification is infeasible due to model size 

• Black box testing haphazard and does not yield bounded predictions 

• Need formal approach for dealing with uncertainty 

• Need to achieve accurate, bounded, probabilistic results in a reasonable 
amount of time for rare outcomes. 

 

Use statistical model checking to do a “smart sampling of the world” 

• Simulation captures both random variables and timing (scheduling) 

• Importance sampling “tilts” input distributions for efficient probability 
estimation of “rare” events. 

Note: We use “probability estimation” based statistical model 
checking. There is also a “hypothesis testing” based version. 
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Statistical Model 

Checker 

Any system ℳ 

that takes random 

inputs 

Probabilistic 

Temporal Logic 

Formula 𝝓 

Estimated 

Probability that 

ℳ ⊨ 𝝓 with 

relative error 𝑹𝑬 

Statistical Model Checking 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑬𝒓𝒓𝒐𝒓 =  
𝑺𝒕𝒅.𝑫𝒆𝒗.

𝑴𝒆𝒂𝒏
 

• System properties described in formal language (UTSL, BLTL, etc.) 

• Property is tested on “sample trajectories” (sequence of states). 

• Each outcome can be treated as a Bernoulli random variable (i.e., coin flip). 

Based on Monte-Carlo 

Simulation 
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Statistical Model Checking 

Goal: Calculate the probability 𝑝 that some property holds: 

𝑝 = 𝐸[𝐼ℳ⊨Φ(𝑥 )] 

Where: 

• 𝑥  = vector of random variables 

– Represents all of the inputs or all random samples. 

• 𝐼ℳ⊨Φ(𝑥 ) = indicator function that returns 1 iff ℳ ⊨ Φ 

– Composition of system under test and property being tested. 

 

 total = 0; 

for (i = 1;i <= 10;i++) 

    total += rand(); 

assert(total <= 8); 

𝐼ℳ⊨Φ 𝑥 =  1 𝑖𝑓  𝑥𝑖 > 8
10

𝑖=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In this talk, we will consider the property Φ to be a “failure” condition. 
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Statistical Model Checking with Crude Monte-Carlo 

The probability that condition Φ holds in 
model ℳ when the input 𝑥  is distributed 
according to joint pdf 𝑓 𝑥  is the expected 
value of that indictor function and can be 
calculated as: 

𝑝 = 𝐸[𝐼ℳ⊨Φ(𝑥 )] =  𝐼ℳ⊨Φ(𝑥 )𝑓 𝑥 𝑑𝑥  

This can be estimated with Crude Monte-
Carlo simulation as: 

𝑝 =
1

𝑁
 𝐼ℳ⊨Φ(𝑥𝑖)

𝑁

𝑖=1

 

where each 𝑥𝑖 is a sample vector drawn 
from 𝑓 𝑥 .  As 𝑁 gets large, 𝑝  will 
converge to 𝑝. 

𝑝 =
1

10
= 0.1 

# of samples in 

fault region 

total # of 

samples 

Estimated Failure Probability 

fault 

region 
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Relative Error: How 
large should 𝑁 be? 

Measure of accuracy for a prediction. 

 

Defined as ratio of standard deviation to 
mean.  For a probability estimate, the 
estimated relative error is: 

𝑹𝑬 =
𝝈 

𝒑 
 

Number of samples to achieve a target 
relative error increases 

• as target relative error decreases, or 

• as estimated probability decreases 
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0.0005 0.00075 0.001 0.00125 0.0015

RE=0.01 

𝑵 ≈
𝟏

𝒑(𝑹𝑬)𝟐
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𝒑 = 𝟎. 𝟎𝟎𝟏 
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relative error 
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Distribution of actual 𝒑 given 

estimated 𝒑  and target relative error 

𝑵 ≈ 𝟏𝟎𝟓 

𝑵 ≈ 𝟏𝟎𝟕 
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Example: UAS Mine Search 

Problem: Real-time tasks with 
variable execution times 

• Execution time depends on sensor 
data, e.g., number of detected 
obstacles. 

• Each task has different deadline miss 
tolerance (e.g., would rather miss 
mine than collide with obstacle). 

 

 

 

 

 

Task Period Priority Criticality 
Execution Time Deadline 

Tolerance 
Base Per Object 

Flight control loop 100ms 4 4 10ms n/a 0 

Mine detection 250ms 3 1 50ms 5ms 0.2 

Obstacle avoidance 500ms 2 2 50ms 6ms 0.05 

Obstacle detection 1000ms 1 3 50ms 5ms 0.05 

ℳ ⊨ Φ iff all deadline 

tolerances are respected 
Large number of objects 

causes overrun 
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Example: UAS Mine Search 

Compare Two Scheduling Strategies 

• Rate Monotonic Scheduling (RM): Higher arrival rate ⇒ higher priority 

– Ignores task criticalities ⇒ Criticality inversion 

– Mine detection overruns cause UAS to crash into obstacle 

• Zero-slack rate monotonic scheduling (ZSRM): Protect high criticality 
tasks from overruns in lower criticality tasks 

– Skip lower criticality tasks when higher criticality task overruns 

– Guarantee: Each task gets full CPU budget if all other tasks with higher 
criticality do not overrun during its execution 

We expect… 

• RM to perform better (i.e., 𝑃 ℳ𝑍𝑆𝑅𝑀 ⊨ Φ > 𝑃(ℳ𝑅𝑀 ⊨ Φ)), when we do 
not want any deadline misses. 

• ZSRM to perform better (i.e., 𝑃 ℳ𝑍𝑆𝑅𝑀 ⊨ Φ < 𝑃(ℳ𝑅𝑀 ⊨ Φ)), when we 
can tolerate misses of low criticality tasks. 
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Hyper-Period-Based Simulation Approach 

Assume independent behavior between hyper-periods 

• Focus simulation effort on probability of failure in a hyper-period 

• Simulate hyper-period many times using a given object density distribution. 

• Apply analysis to extend predictions to system-level time scales. 

Flight 

Obs. Avoid 

Obs. Detect 

Mine Detect 

H
y
p

e
r-

p
e

ri
o

d
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execution 
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24 

Criticality Inversion in Mixed-Criticality Tasks 

Standard Rate Monotonic (RM) scheduling gives preferential treatment 
to high priority tasks. 

• RM priority determined by task period, not semantic importance 

• Overloads can lead to “criticality inversion” where 

• Zero-Slack Rate Monotonic (ZSRM) “fixes” this criticality inversion 

High Priority/ 

Low Criticality 

Low Priority/ 

High Criticality 

Deadline 

miss 

time 

8 

8 

12 

16 

16 20 24 
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Object Density (n)

mine      Binomial(0.5,16)

ocheck Binomial(0.5,16)

osense Binomial(0.5,16)

Comparison of RM and ZSRM (Any Failure) 

Tasks 

flight    T=100   C=10 

mine    T=250   C=50+x*n 

ocheck T=500   C=50+6*n 

osense T=1000 C=50+5*n 

Requirements 

Pmiss(flight)       = 0 

Pmiss(mine)       = 0 

Pmiss(ocheck)   = 0 

Pmiss(osense)   = 0 
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Comparison of RM and ZSRM (Flight Safety) 

Object Density (n) 

mine       Binomial(0.5,16) 

ocheck   Binomial(0.5,16) 

osense   Binomial(0.5,16) 

Requirements 

Pmiss(flight)       = 0 

Pmiss(ocheck)   = 0 

Pmiss(osense)   = 0 

Tasks 

flight    T=100   C=10 

mine    T=250   C=50+x*n 

ocheck T=500   C=50+6*n 

osense T=1000 C=50+5*n 
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Example 

Given a hyper-period with: 

Period:      1 second 

Failure Prob.:    2.36 × 10−15 

Mission failure probability (at least 

one deadline miss) is shown below. 

Mission Failure Probability 

Assuming independence between 
hyper-periods, the mission failure 
probability is: 

𝑝𝑀 = 1 − 1 − 𝑝 𝑁 

where N is the number of hyper-
periods and 𝑝 is failure probability for 
one hyper-period. 

 

For 𝑁𝑝 < 0.1, it can be shown that: 

𝑝𝑀 ≈ 𝑁𝑝 

and:  

𝑅𝐸𝑀 ≈ 𝑅𝐸 
0
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Importance Sampling: Same 𝑹𝑬 with smaller 𝑁 

Problem: 

Estimating probabilities of rare events 
with low 𝑅𝐸 requires many samples. 

• To estimate failure probability of 𝑝 = 10−5 
with relative error of 0.01 would require 
one billion simulation runs. 

 

Solution: 

Use Importance Sampling to sample 
“important” area of a distribution. 

• Sample with an “modified” distribution. 

• Map back to original distribution. 

• Can dramatically reduce number of 
experiments needed to verify “rare” 
events. 

 

Original Distribution 

p
d

f 

Modified 

Distribution 

Failure 

Threshold 

Fraction Failed 

𝑵 ≈
𝟏

𝒑(𝑹𝑬)𝟐
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Importance Sampling 

Recall probability of failure is: 

𝑝 =  𝐼ℳ⊨Φ(𝑥 )𝑓 𝑥 𝑑𝑥 

We can introduce an arbitrary 
density function 𝑔 𝑥   and rewrite as: 

𝑝 =  𝐼ℳ⊨Φ(𝑥 )
𝑓 𝑥

𝑔 𝑥
𝑔 𝑥 𝑑𝑥 

Now if we define 𝑊 𝑥 =
𝑓 𝑥

𝑔 𝑥
 we get: 

𝑝 =  𝐼ℳ⊨Φ(𝑥 )𝑊(𝑥)𝑔 𝑥 𝑑𝑥 

which is just the expected value of 
𝐼ℳ⊨Φ(𝑥 )𝑊(𝑥) sampled with 𝑔 𝑥 . 

𝑓 𝑥  

𝑔 𝑥  

𝑊 𝑥  

Fault 

region 

Increased 

visibility of 

fault region 

Weight 

function 

helps map 

back to 

original distr. 
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Estimating with Importance Sampling 

Basic SMC 

• Indicator function 𝐼 𝑥 = 1 iff property holds for input 𝑥 . 

• Relative Error 𝑅𝐸 𝑝 =
𝑣𝑎𝑟(𝑝 )

𝐸[𝑝 ]
 is measure of accuracy. 

• Draw random samples from input distribution 𝑓(𝑥 ) until target 

Relative Error is met. 

• Estimated probability that property holds is: 

𝑝 =
1

𝑁
 𝐼(𝑥 𝑖)

𝑁

𝑖=1

=
1

10
= 0.1 

𝑅𝐸(𝑝 ) =
0.32

0.1
= 3.2 

SMC with Importance Sampling 

• Modify input distribution to make rare properties more visible. 

• Goal is variance reduction. 

• Weighting function 𝑊(𝑥 ) maps solution to original problem. 

• Reduced relative error with same number of samples. 

𝑝 =
1

𝑁
 𝐼 𝑥 𝑖 𝑊(𝑥 𝑖)

𝑁

𝑖=1

=
0.2 + 0.5 + 0.3

10
= 0.1 

𝑅𝐸(𝑝 ) =
0.18

0.1
= 1.8 
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Calculation of Weighting Function 

Suppose we do 𝑁 test runs of a simulation where each test run involves 
generating 𝐾 random variables.  If all of the random variables are 
independent, the weighting function can be written as: 

𝑊 𝑥𝑖 = 
𝑓𝑗 𝑥𝑖𝑗

𝑔𝑗 𝑥𝑖𝑗

𝐾

𝑗=1

 

where 𝑥𝑖𝑗 is the 𝑗th random number generated in the 𝑖th simulation run. 

Issues: 

• We may have simulations where not all random variables are independent. 

• If the simulation involves many random variables (i.e. 𝐾 is large), there is a 
risk of numerical overflow/underflow in calculating 𝑊 𝑥𝑖  if 𝑔 𝑥  is chosen 
poorly. 
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Selection of Alternate Distribution 

Goal is to reduce variance of estimate 

• Not necessarily the same as simply increasing probability sample is in the 
fault region.  Variance of the weight values matter. 

An optimal distribution exists (but you must already know answer) 

   𝑔 𝑥 =
𝐼ℳ⊨Φ(𝑥 )𝑓(𝑥 )

𝑝
  

The selected 𝑔 𝑥  must have non-zero density wherever ℳ ⊨ Φ holds. 

• If not true, then 𝑊 𝑥 =
𝑓 𝑥

𝑔 𝑥
 will result in a hidden divide-by-zero and 

simulation result will be incorrect. 

Multiple heuristics exist for optimizing 𝑔 𝑥  using probe simulations 

• Most methods involve choosing a 𝑔 𝑥  in same family as 𝑓 𝑥  and optimizing 

on a distribution parameter (e.g., if 𝑓 𝑥 = 𝑒−𝑥 choose 𝑔 𝑥 =
1

𝑠
𝑒−𝑥/𝑠 where 𝑠 

is a “tilt” parameter). 

• Methods for choosing optimal tilt parameter include 

– Brute force “sweeping”, Cross-entropy method, Non-linear minimization 
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Simulation Time Reduction (by Event Rareness) 

Estimated 

(34 days) 

For non-rare events, 

CMC can perform 

better 

For rare events, IS 

can be many orders 

of magnitude faster 

than CMC 

Importance Sampling (IS) 

Crude Monte Carlo (CMC) 
IS simulation time 

can depend on 

details of model 
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Conclusion 

There is a need for approaches to verify complex time-critical systems in 
uncertain environments. 

• Traditional model checking unfeasible due to model size. 

• Black-box testing may not yield reliable results. 

• Statistical model checking is one an approach that can address these issues. 

– Formalized approach to expressing failure conditions. 

– Treat simulation runs as Bernoulli trials using Monte-Carlo simulation. 

– Estimates include error bounds (relative error). 

– Applicable to periodic real-time systems by focusing on hyper-period. 

Crude Monte-Carlo simulation can be too slow to estimate probability of 
rare events. 

• Importance sampling can dramatically reduce necessary simulation effort. 

• Reduction in effort increases as event rareness increases. 


