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Picture

(optional)Motivation

Distributed Real-Time Systems of great relevance 
to aerospace community

• Single aircraft with multiple sub-systems

• Multiple UASs coordinating to achieve mission

Operate in uncertain and unknown environments

• External uncertainty – normal and denied 
environments

• Internal uncertainty – sophisticated 
components with unpredictable behavior, 
e.g., machine learning

Safety-critical & hard real-time requirements

• Failures can be catastrophic

• How do we verify & certify? 

Perception, 
Planning, etc.

Environment
Network
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(optional)Runtime Assurance

Suppose we want to assure that system 𝑆 satisfies property Φ

Key Idea:

• Add a runtime “enforcer” to observe the behavior of 𝑆

• Step in and take enforcement action to prevent violation of Φ

Developed by AFRL & Barron Associates:

• http://www.mys5.org/Proceedings/2016/Day_1/2016-S5-

Day1_1435_Schierman.pdf

• https://www.cs.indiana.edu/~lepike/pubs/RTA-CPS.pdf

• Enforcer referred to as the “reversionary system”

http://www.mys5.org/Proceedings/2016/Day_1/2016-S5-Day1_1435_Schierman.pdf
https://www.cs.indiana.edu/~lepike/pubs/RTA-CPS.pdf
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(optional)Prior Related Work (1)

Control theory – Simplex – CMU

• Seto, D., Krogh, B., Sha, L., and Chutinan, A., The simplex 

architecture for safe online control system upgrades, 

Proceedings of the American Control Conference, 1998.

Security Automata (Schneider) and Edit Automata (Ligatti et al.)

• Schneider, F. B., Enforceable security policies, ACM 

Transactions on Information and System Security (TISSEC), 

Vol. 3, No. 1, February 2000

• Ligatti, J., Bauer, L., and Walker, D., Edit automata: enforcement 

mechanisms for run-time security policies, International Journal 

of Information Security (IJIS), Vol. 4, No. 1-2, February 2005
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(optional)Prior Related Work (2)

Runtime Verification – specific safety properties

• Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, 
I., and Sokolsky, O., Formally specified monitoring of temporal 
properties, Proceedings of the 11th Euromicro Conference on 
Real-Time Systems (ECRTS '99), June 1999

• Havelund, K. and Rosu, G., Monitoring Programs Using 
Rewriting, Proceedings of the 16th International Conference on 
Automated Software Engineering (ASE '01), November 2001

Limitations:

• single properties over single components

• enforcers implementations not formally verified

• restricted enforcer scheduling model

• enforcer runs at the same level as 𝑆
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(optional)Our Project: Certifiable Distributed Runtime Assurance (CDRA)

Problem: Runtime assurance (RA) is critical for complex non-
deterministic systems.

Key idea: monitor the system and take preemptive action to avoid 
unsafe states; monitors are simpler more verifiable.

Challenges:

• specifying safety policies rigorously;

• verifying monitor (aka enforcer) implementations;

• preventing unsafe inter-monitor interactions (single-node and 
distributed systems);

• protecting monitors from being circumvented.

Solution: A combination formal policy specifications, software 
verification, compositional reasoning, and verified hardware-
supported isolation.
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(optional)
CDRA: Approach (1)

𝑵𝒐𝒅𝒆

𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓
𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 (𝑪𝟏)

𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓 𝑬𝒏𝒇𝒐𝒓𝒄𝒆𝒓
𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 (𝑬𝟏)

Prove 𝑬𝟏 ≼ 𝑷𝟏 and 𝑬𝟐 ≼ 𝑷𝟐

using software verification

{𝜶? , 𝜷!} {𝜸? , 𝜹!}

 𝜶?

𝜶!

< 𝟓𝒔 → 𝜷?

 𝜷!

𝟓𝒔 →  𝜸!

 𝜷!

 𝜶?

< 𝟐𝒔 →  𝜷!

 𝜹?

 𝜸?

𝜸!

< 𝟐𝒔 → 𝜹?

 𝜹!

𝟐𝒔 →  𝜹!

 𝜸?

< 𝟐𝒔 →  𝜹!

𝑳𝒐𝒈𝒈𝒆𝒓 𝑬𝒏𝒇𝒐𝒓𝒄𝒆𝒓
𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 (𝑬𝟐)

𝑷𝟏 𝑷𝟐

𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓 𝑷𝒐𝒍𝒊𝒄𝒚

𝑳𝒐𝒈𝒈𝒆𝒓 𝑷𝒐𝒍𝒊𝒄𝒚

≼ ≼

𝑳𝒐𝒈𝒈𝒆𝒓
𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 (𝑪𝟐)
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(optional)
CDRA: Approach (2)

 𝜶?

𝜶!

< 𝟓𝒔 → 𝜷?

 𝜷!

𝟓𝒔 →  𝜸!

 𝜷!

 𝜶?

< 𝟐𝒔 →  𝜷!

 𝜹?

 𝜸?

𝜸!

< 𝟐𝒔 → 𝜹?

 𝜹!

𝟐𝒔 →  𝜹!

 𝜸?

< 𝟐𝒔 →  𝜹!

𝑷𝑵

 𝜶?

< 𝟏𝟎 →  𝜷!

 𝜶?

< 𝟓𝒔 →  𝜷!

𝟓𝒔 →  𝜸!

 𝜹?
 𝜸?

< 𝟓𝒔 →  𝜹!

 𝜷!

𝑷𝟏 ≼ 𝑨𝟏 𝑷𝟐 ≼ 𝑨𝟐 𝑨𝟏 ∥ 𝑨𝟐 ≼ 𝑷𝑵

𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵

Verify 𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵 using 
assume-guarantee

Scale: (i) assumptions are 
simpler; (ii) abstract away 
unnecessary components; (iii) 
prove hierarchically.

𝑷𝟏 𝑷𝟐

𝑨𝟏

𝑨𝟐

Controller 
Assumption

≼ ≼

≼

∥



10
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)
CDRA: Approach (3)

 𝜶?

𝜶!

< 𝟓𝒔 → 𝜷?

 𝜷!

𝟓𝒔 →  𝜸!

 𝜷!

 𝜶?

< 𝟐𝒔 →  𝜷!

 𝜹?

 𝜸?

𝜸!

< 𝟑𝒔 → 𝜹?

 𝜹!

𝟑𝒔 →  𝜹!

 𝜸?

< 𝟐𝒔 →  𝜹!

 𝜶?

< 𝟓𝒔 →  𝜷!

𝟓𝒔 →  𝜸!

 𝜹?
 𝜸?

< 𝟓𝒔 →  𝜹!

 𝜷!

Verify 𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵 using 
assume-guarantee

Scale: minimal system re-
verification needed when 
a policy or enforcer is 
modified

𝑷𝟏 𝑷𝟐

𝑨𝟏

𝑨𝟐

Controller 
Assumption

Change

Re-verification

≼ ≼

≼

∥

𝑷𝟏 ≼ 𝑨𝟏 𝑷𝟐 ≼ 𝑨𝟐 𝑨𝟏 ∥ 𝑨𝟐 ≼ 𝑷𝑵

𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵 𝑷𝑵

 𝜶?

< 𝟏𝟎 →  𝜷!
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CDRA: Approach (4) Verify 𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵 using 

assume-guarantee

(i) Other (circular) rules 
exist; (ii) Challenges – (a) 
proving rule soundness; (b) 
finding right assumption.

 𝜶?

𝜶!

< 𝟓𝒔 → 𝜷?

 𝜷!

𝟓𝒔 →  𝜸!

 𝜷!

 𝜶?

< 𝟐𝒔 →  𝜷!

 𝜹?

 𝜸?

𝜸!

< 𝟐𝒔 → 𝜹?

 𝜹!

𝟐𝒔 →  𝜹!

 𝜸?

< 𝟐𝒔 →  𝜹!

𝑷𝑵

 𝜶?

< 𝟏𝟎 →  𝜷!

 𝜶?

< 𝟓𝒔 →  𝜷!

𝟓𝒔 →  𝜸!

 𝜹?
 𝜸?

< 𝟓𝒔 →  𝜹!

 𝜷!

𝑷𝟏 ≼ 𝑨𝟏 𝑷𝟐 ≼ 𝑨𝟐 𝑨𝟏 ∥ 𝑨𝟐 ≼ 𝑷𝑵

𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵

𝑷𝟏 𝑷𝟐

𝑨𝟏

𝑨𝟐

Controller 
Assumption

≼ ≼

≼

∥
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CDRA: Approach (5) 1: Verify 𝑬𝒊 ≼ 𝑷𝒊

2: Verify 𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵𝟏

3: Verify 𝑷𝟑 ∥ 𝑷𝟒 ≼ 𝑷𝑵𝟐

4: Verify 𝑷𝑵𝟏 ∥ 𝑷𝑵𝟐 ≼ 𝑷𝒔

𝑵𝒐𝒅𝒆𝟏

𝑪𝟏 𝑪𝟐

𝑷𝑵𝟏

𝑷𝑺

𝑵𝒐𝒅𝒆𝟐

𝑷𝑵𝟐

System-level 
Policy

𝑷𝟏 𝑷𝟐

𝑪𝟑 𝑪𝟒

𝑷𝟑 𝑷𝟒

Change

Re-verificationRe-verification
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(optional)CDRA Approach (6)

𝑵𝒐𝒅𝒆

𝑪𝟏

𝑬𝒏𝒇𝒐𝒓𝒄𝒆𝒓

𝑪𝟐

𝑬𝒏𝒇𝒐𝒓𝒄𝒆𝒓

Problem: Ensure that 𝐸𝑖 is not circumvented. Inlining
𝐸𝑖 in 𝐶𝑖 will not work.

Solution: Use a hypervisor to execute 𝐸𝑖 in an 
isolated environment. Prove correctness of isolation 
by verifying the hypervisor.

Build on XMHF: Amit Vasudevan, Sagar Chaki, Limin
Jia, Jonathan M. McCune, James Newsome, Anupam
Datta: Design, Implementation and Verification of an 
eXtensible and Modular Hypervisor Framework. IEEE 
Symposium on Security and Privacy 2013: 430-444. 
Many security- relevant applications already 
developed on top of XMHF. See references.

Challenges: Performance, Correctness 

𝑯𝒚𝒑𝒆𝒓𝒗𝒊𝒔𝒐𝒓 𝑪𝒐𝒓𝒆

𝑩𝒂𝒓𝒆𝑴𝒆𝒕𝒂𝒍
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(optional)CDRA Validity

Leader

Follower

Demonstrate verified runtime assurance on a realistic scenario.
Give red team full control over applications (e.g., root access to OS)
Initially in simulation, eventually on a hardware platform.

Follower
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CDRA Challenge Problems

Virtual 
Tether

Autonomous 
Intersection
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CDRA Testbed
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ETH QuadCopter
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