
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Certifiable Distributed
Runtime Assurance of
Distributed Real-Time Systems
Sagar Chaki and Dionisio de Niz

AIAA SciTech

January 10, 2017

2
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0004363

3
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)Motivation

Distributed Real-Time Systems of great relevance
to aerospace community

• Single aircraft with multiple sub-systems

• Multiple UASs coordinating to achieve mission

Operate in uncertain and unknown environments

• External uncertainty – normal and denied
environments

• Internal uncertainty – sophisticated
components with unpredictable behavior,
e.g., machine learning

Safety-critical & hard real-time requirements

• Failures can be catastrophic

• How do we verify & certify?

Perception,
Planning, etc.

Environment
Network

4
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)Runtime Assurance

Suppose we want to assure that system 𝑆 satisfies property Φ

Key Idea:

• Add a runtime “enforcer” to observe the behavior of 𝑆

• Step in and take enforcement action to prevent violation of Φ

Developed by AFRL & Barron Associates:

• http://www.mys5.org/Proceedings/2016/Day_1/2016-S5-

Day1_1435_Schierman.pdf

• https://www.cs.indiana.edu/~lepike/pubs/RTA-CPS.pdf

• Enforcer referred to as the “reversionary system”

http://www.mys5.org/Proceedings/2016/Day_1/2016-S5-Day1_1435_Schierman.pdf
https://www.cs.indiana.edu/~lepike/pubs/RTA-CPS.pdf

5
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)Prior Related Work (1)

Control theory – Simplex – CMU

• Seto, D., Krogh, B., Sha, L., and Chutinan, A., The simplex

architecture for safe online control system upgrades,

Proceedings of the American Control Conference, 1998.

Security Automata (Schneider) and Edit Automata (Ligatti et al.)

• Schneider, F. B., Enforceable security policies, ACM

Transactions on Information and System Security (TISSEC),

Vol. 3, No. 1, February 2000

• Ligatti, J., Bauer, L., and Walker, D., Edit automata: enforcement

mechanisms for run-time security policies, International Journal

of Information Security (IJIS), Vol. 4, No. 1-2, February 2005

6
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)Prior Related Work (2)

Runtime Verification – specific safety properties

• Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee,
I., and Sokolsky, O., Formally specified monitoring of temporal
properties, Proceedings of the 11th Euromicro Conference on
Real-Time Systems (ECRTS '99), June 1999

• Havelund, K. and Rosu, G., Monitoring Programs Using
Rewriting, Proceedings of the 16th International Conference on
Automated Software Engineering (ASE '01), November 2001

Limitations:

• single properties over single components

• enforcers implementations not formally verified

• restricted enforcer scheduling model

• enforcer runs at the same level as 𝑆

7
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)Our Project: Certifiable Distributed Runtime Assurance (CDRA)

Problem: Runtime assurance (RA) is critical for complex non-
deterministic systems.

Key idea: monitor the system and take preemptive action to avoid
unsafe states; monitors are simpler more verifiable.

Challenges:

• specifying safety policies rigorously;

• verifying monitor (aka enforcer) implementations;

• preventing unsafe inter-monitor interactions (single-node and
distributed systems);

• protecting monitors from being circumvented.

Solution: A combination formal policy specifications, software
verification, compositional reasoning, and verified hardware-
supported isolation.

8
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)
CDRA: Approach (1)

𝑵𝒐𝒅𝒆

𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓
𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 (𝑪𝟏)

𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓 𝑬𝒏𝒇𝒐𝒓𝒄𝒆𝒓
𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 (𝑬𝟏)

Prove 𝑬𝟏 ≼ 𝑷𝟏 and 𝑬𝟐 ≼ 𝑷𝟐

using software verification

{𝜶? , 𝜷!} {𝜸? , 𝜹!}

 𝜶?

𝜶!

< 𝟓𝒔 → 𝜷?

 𝜷!

𝟓𝒔 → 𝜸!

 𝜷!

 𝜶?

< 𝟐𝒔 → 𝜷!

 𝜹?

 𝜸?

𝜸!

< 𝟐𝒔 → 𝜹?

 𝜹!

𝟐𝒔 → 𝜹!

 𝜸?

< 𝟐𝒔 → 𝜹!

𝑳𝒐𝒈𝒈𝒆𝒓 𝑬𝒏𝒇𝒐𝒓𝒄𝒆𝒓
𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 (𝑬𝟐)

𝑷𝟏 𝑷𝟐

𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓 𝑷𝒐𝒍𝒊𝒄𝒚

𝑳𝒐𝒈𝒈𝒆𝒓 𝑷𝒐𝒍𝒊𝒄𝒚

≼ ≼

𝑳𝒐𝒈𝒈𝒆𝒓
𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 (𝑪𝟐)

9
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)
CDRA: Approach (2)

 𝜶?

𝜶!

< 𝟓𝒔 → 𝜷?

 𝜷!

𝟓𝒔 → 𝜸!

 𝜷!

 𝜶?

< 𝟐𝒔 → 𝜷!

 𝜹?

 𝜸?

𝜸!

< 𝟐𝒔 → 𝜹?

 𝜹!

𝟐𝒔 → 𝜹!

 𝜸?

< 𝟐𝒔 → 𝜹!

𝑷𝑵

 𝜶?

< 𝟏𝟎 → 𝜷!

 𝜶?

< 𝟓𝒔 → 𝜷!

𝟓𝒔 → 𝜸!

 𝜹?
 𝜸?

< 𝟓𝒔 → 𝜹!

 𝜷!

𝑷𝟏 ≼ 𝑨𝟏 𝑷𝟐 ≼ 𝑨𝟐 𝑨𝟏 ∥ 𝑨𝟐 ≼ 𝑷𝑵

𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵

Verify 𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵 using
assume-guarantee

Scale: (i) assumptions are
simpler; (ii) abstract away
unnecessary components; (iii)
prove hierarchically.

𝑷𝟏 𝑷𝟐

𝑨𝟏

𝑨𝟐

Controller
Assumption

≼ ≼

≼

∥

10
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)
CDRA: Approach (3)

 𝜶?

𝜶!

< 𝟓𝒔 → 𝜷?

 𝜷!

𝟓𝒔 → 𝜸!

 𝜷!

 𝜶?

< 𝟐𝒔 → 𝜷!

 𝜹?

 𝜸?

𝜸!

< 𝟑𝒔 → 𝜹?

 𝜹!

𝟑𝒔 → 𝜹!

 𝜸?

< 𝟐𝒔 → 𝜹!

 𝜶?

< 𝟓𝒔 → 𝜷!

𝟓𝒔 → 𝜸!

 𝜹?
 𝜸?

< 𝟓𝒔 → 𝜹!

 𝜷!

Verify 𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵 using
assume-guarantee

Scale: minimal system re-
verification needed when
a policy or enforcer is
modified

𝑷𝟏 𝑷𝟐

𝑨𝟏

𝑨𝟐

Controller
Assumption

Change

Re-verification

≼ ≼

≼

∥

𝑷𝟏 ≼ 𝑨𝟏 𝑷𝟐 ≼ 𝑨𝟐 𝑨𝟏 ∥ 𝑨𝟐 ≼ 𝑷𝑵

𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵 𝑷𝑵

 𝜶?

< 𝟏𝟎 → 𝜷!

11
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)
CDRA: Approach (4) Verify 𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵 using

assume-guarantee

(i) Other (circular) rules
exist; (ii) Challenges – (a)
proving rule soundness; (b)
finding right assumption.

 𝜶?

𝜶!

< 𝟓𝒔 → 𝜷?

 𝜷!

𝟓𝒔 → 𝜸!

 𝜷!

 𝜶?

< 𝟐𝒔 → 𝜷!

 𝜹?

 𝜸?

𝜸!

< 𝟐𝒔 → 𝜹?

 𝜹!

𝟐𝒔 → 𝜹!

 𝜸?

< 𝟐𝒔 → 𝜹!

𝑷𝑵

 𝜶?

< 𝟏𝟎 → 𝜷!

 𝜶?

< 𝟓𝒔 → 𝜷!

𝟓𝒔 → 𝜸!

 𝜹?
 𝜸?

< 𝟓𝒔 → 𝜹!

 𝜷!

𝑷𝟏 ≼ 𝑨𝟏 𝑷𝟐 ≼ 𝑨𝟐 𝑨𝟏 ∥ 𝑨𝟐 ≼ 𝑷𝑵

𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵

𝑷𝟏 𝑷𝟐

𝑨𝟏

𝑨𝟐

Controller
Assumption

≼ ≼

≼

∥

12
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

CDRA: Approach (5) 1: Verify 𝑬𝒊 ≼ 𝑷𝒊

2: Verify 𝑷𝟏 ∥ 𝑷𝟐 ≼ 𝑷𝑵𝟏

3: Verify 𝑷𝟑 ∥ 𝑷𝟒 ≼ 𝑷𝑵𝟐

4: Verify 𝑷𝑵𝟏 ∥ 𝑷𝑵𝟐 ≼ 𝑷𝒔

𝑵𝒐𝒅𝒆𝟏

𝑪𝟏 𝑪𝟐

𝑷𝑵𝟏

𝑷𝑺

𝑵𝒐𝒅𝒆𝟐

𝑷𝑵𝟐

System-level
Policy

𝑷𝟏 𝑷𝟐

𝑪𝟑 𝑪𝟒

𝑷𝟑 𝑷𝟒

Change

Re-verificationRe-verification

13
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)CDRA Approach (6)

𝑵𝒐𝒅𝒆

𝑪𝟏

𝑬𝒏𝒇𝒐𝒓𝒄𝒆𝒓

𝑪𝟐

𝑬𝒏𝒇𝒐𝒓𝒄𝒆𝒓

Problem: Ensure that 𝐸𝑖 is not circumvented. Inlining
𝐸𝑖 in 𝐶𝑖 will not work.

Solution: Use a hypervisor to execute 𝐸𝑖 in an
isolated environment. Prove correctness of isolation
by verifying the hypervisor.

Build on XMHF: Amit Vasudevan, Sagar Chaki, Limin
Jia, Jonathan M. McCune, James Newsome, Anupam
Datta: Design, Implementation and Verification of an
eXtensible and Modular Hypervisor Framework. IEEE
Symposium on Security and Privacy 2013: 430-444.
Many security- relevant applications already
developed on top of XMHF. See references.

Challenges: Performance, Correctness

𝑯𝒚𝒑𝒆𝒓𝒗𝒊𝒔𝒐𝒓 𝑪𝒐𝒓𝒆

𝑩𝒂𝒓𝒆𝑴𝒆𝒕𝒂𝒍

14
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Section (optional)
Picture

(optional)CDRA Validity

Leader

Follower

Demonstrate verified runtime assurance on a realistic scenario.
Give red team full control over applications (e.g., root access to OS)
Initially in simulation, eventually on a hardware platform.

Follower

15
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

CDRA Challenge Problems

Virtual
Tether

Autonomous
Intersection

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

CDRA Testbed

17
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Parrot Minidrones

18
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Optitrack Localization

19
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Optitrack Localization

20
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

ETH QuadCopter

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release

and unlimited distribution.

Questions?

