
Decision-Making with Cross-Entropy for
Self-Adaptation

Gabriel A. Moreno∗, Ofer Strichman∗†, Sagar Chaki∗ and Radislav Vaisman‡
∗Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA

†Information Systems Engineering, IE, Technion, Haifa, Israel
‡School of Mathematics and Physics, University of Queensland, Australia

gmoreno@sei.cmu.edu, ofers@ie.technion.ac.il, chaki@sei.cmu.edu, slvaisman@gmail.com

Abstract—Approaches to decision-making in self-adaptive sys-
tems are increasingly becoming more effective at managing the
target system by taking into account more elements of the
decision problem that were previously ignored. These approaches
have to solve complex optimization problems at run time, and
even though they have been shown to be suitable for different
kinds of systems, their time complexity can make them excessively
slow for systems that have a large adaptation-relevant state space,
or that require a tight control loop driven by fast decisions. In
this paper we present an approach to speed up complex proactive
latency-aware self-adaptation decisions, using the cross-entropy
(CE) method for combinatorial optimization. The CE method
is an any-time algorithm based on random sampling from the
solution space, and is not guaranteed to find an optimal solution.
Nevertheless, our experiments using two very different systems
show that in practice it finds solutions that are close to optimum
even when its running time is restricted to a fraction of a second,
attaining speedups of up to 40 times over the previous fastest
solution approach.

Keywords-cross-entropy method; decision-making; optimiza-
tion, self-adaptive systems

I. INTRODUCTION

Self-adaptive systems are able to change their structure
and/or behavior to deal with changes in their environment
so that they continue to satisfy their requirements or perform
as best as they can [1], [2]. An important aspect of these
systems is deciding if they have to adapt and how to do it.
Approaches to decision-making in self-adaptive systems are
increasingly becoming more effective at managing the target
system by taking into account more elements of the decision
problem that were previously ignored, such as environment
uncertainty [3], [4], multiple sources of uncertainty [5], prob-
abilistic outcomes of adaptation actions [6], [7], [8], and
adaptation timing [9]. These approaches have to solve complex
optimization problems at run time, and many of them rely on
the use of probabilistic model checking to do so. Even though
they have been shown to be suitable for different kinds of
systems, their time complexity can make them excessively
slow for systems that have a large adaptation-relevant state
space, or that require a tight control loop driven by fast
decisions. For that reason, there has been work to make the
use of some of these techniques more practical, for example,
by using caching, precomputation, and near-optimality [10],
or by performing as much of the computation as possible off-
line [11].

In this paper we present another approach to speed up com-
plex self-adaptation decisions, using the cross-entropy (CE)
method for combinatorial optimization [12]. The CE method
attempts to solve an optimization problem by randomly sam-
pling from the solution space, and iteratively updating the
sampling distribution so that the probability of finding an
optimal solution increases in each iteration. In particular, we
use the CE method to speed up proactive latency-aware (PLA)
adaptation decisions. A PLA decision solves an optimization
problem of finding the sequence of adaptation actions that
should be executed over a finite horizon in order to maximize
the expected utility that the system could obtain, given a
probabilistic model of the near-future environment behavior.
Specifically, we make three contributions.

First, we show how the PLA optimization problem can
be solved via the CE method. The main technical challenge
here is that the solution set of the PLA optimization problem
is sparse, i.e., not all sequences of adaptation actions are
legal candidate solutions. This is because the set of legal
candidate adaptation actions valid at a given time depends
on the state of the target system, which is also affected by
previous adaptations. However, the classical CE method was
designed to solve problems with dense solution spaces, such as
MAX-SAT, where the goal is to find a variable assignment that
satisfies the maximum number of clauses of a propositional
formula expressed in conjunctive normal form. In this case, all
variable assignments are legal candidate solutions. We address
this challenge by developing a variant of the CE method that
efficiently samples the sparse solution space of PLA adaptation
decisions.

Second, we implement our approach, PLA-CE, in an adapta-
tion manager and validate it on two examples of self-adaptive
systems from two distinct domains: (i) DART consists of a
group of communicating and collaborating quadcopters that
are trying to achieve a mission under uncertain operational
conditions; this example comes from the distributed cyber-
physical domain; and (ii) SWIM simulates a web-application
with a dynamically adjustable number of servers that process
requests aiming to achieve acceptable quality of service re-
quirements; this example comes from a more traditional IT
domain. In this way, we expect our validation to span a broader
class of systems.

Finally, we empirically show the advantage of PLA-CE over

competing techniques in solving the PLA adaptation decision
problem. Specifically, using the CE method, we obtain a
substantive speedup—of up to 40 times—with respect to PLA-
SDP [11], which is currently the best PLA solution. Indeed,
PLA-SDP has been already been shown [11] to be an order of
magnitude faster than PLA-PMC, the PLA approach based on
probabilistic model checking [9]. In addition, we evaluate the
effectiveness of adaptation decisions with PLA-CE, since the
CE method is an any-time algorithm based on sampling, and
is not guaranteed to find an optimal solution. In spite of this,
our experiments show that in practice it finds solutions that
are close to optimum even when restricted to short timeouts.

Even though the CE method for optimization is more than
a decade old, it has not been previously used for decision-
making in self-adaptive systems. In this paper we focus on the
application of the CE method to PLA. However, we conjecture
it would be possible to use it to speed up other complex
decision approaches for self-adaptive systems where finding
the optimal solution is not an option because of the time
constraints required for run-time decision-making.

The rest of the paper is organized as follows. In Section II
we provide some background on proactive latency-aware
adaptation and the cross-entropy method for optimization.
The PLA-CE adaptation decision approach is presented in
Section III. In Section IV, we present the evaluation of the
approach. Related work is in Section V, and our conclusions
are in Section VI.

II. BACKGROUND

In this section, we introduce the two main areas relevant to
our work—proactive latency-aware adaptation and the cross-
entropy method for optimization.

A. Proactive Latency-Aware Adaptation

Typically, self-adaptation approaches rely on a set of adapta-
tion tactics that they can use to deal with different conditions.
For example, adding a server is a tactic that can be used to deal
with increased load in the system, and revoking permissions
from a user is a suitable tactic for protecting the system from
an insider attack. There are tactics that can take some non-
trivial time to execute, and this is a fact that is not considered
by most self-adaptation approaches. For example, provisioning
a new virtual machine in the cloud can take a few minutes [13].
We refer to the period of time between when a tactic is started
and when its effect is produced as tactic latency.

Proactive latency-aware adaptation improves self-adaptation
effectiveness over reactive approaches by considering both
the current and anticipated adaptation needs of the system,
and taking into account the latency of adaptation tactics [9],
[11]. With latency awareness, it explicitly considers how long
adaptation tactics take to execute, both to account for the
delay in producing their effect, and to avoid solutions that
are infeasible when the time dimension is considered (e.g,
one that assumes having one more server immediately). To
be proactive, PLA leverages knowledge or predictions about
the future states of the environment to start adaptation tactics

with the necessary lead time so that they can complete on
time, and to avoid unnecessary adaptations. In addition, it
supports concurrent tactic execution, exploiting nonconflicting
tactics to speed up adaptations that involve multiple tactics,
and to complement long-latency tactics with faster ones that
can produce intermediate results sooner.

We assume that the adaptation goal is maximizing aggregate
utility over the execution of the system. Utility, for example,
can be defined by a service level agreement (SLA) that
specifies rewards and penalties for meeting response time and
quality requirements in a system, or it can be the number
of targets detected in a surveillance mission. Given that
adaptation goal, the adaptation decision answers the question
of what adaptation tactic(s) should be started now, if any, to
maximize the aggregate utility that the system will provide in
the rest of its execution. However, the adaptation actions the
system takes now can constrain its available actions in the near
future. For example, starting a tactic with latency may prevent
other conflicting tactics from being used in the meantime. This
means that the adaptation decision has to consider not only
the current state of the system and the environment, but also
how both will evolve. This requires predictions of the near
future state of the environment, and since the further they are
into the future, the more uncertainty they have, the decision
is limited to a finite lookahead horizon. Making adaptation
decisions is then a problem of selecting adaptation actions in
the context of the probabilistic behavior of the environment,
such that the utility accumulated over the decision horizon is
maximized. Therefore, PLA uses a Markov Decision Process
(MDP), which is a model for sequential decision making
when the outcome of taking an action in a given state is
uncertain [14], with the uncertainty in this case arising from
the uncertain environment.

PLA makes these adaptation decisions periodically, with a
fixed decision interval. Before each decision, the underlying
MDP is updated with the latest environment predictions over
the decision horizon, which is discretized with the same
interval. A policy for an MDP dictates what actions to take
in each state. The optimal policy, in particular, maximizes the
expected aggregate utility over the decision horizon. After the
optimal policy is computed, PLA commits only to the first
action, which it starts executing, and ignores the rest of the
policy, since it will recompute a new policy in the following
decision period.

B. The Cross-Entropy Method for Optimization

The CE method is a powerful technique for solving difficult
estimation and optimization problems, based on Kullback-
Leibler (or cross-entropy) minimization [15]. It was introduced
by Rubinstein in 1999 [16] as an adaptive sampling procedure
for the estimation of rare-event probabilities (the point being
that the probability of rare events cannot be efficiently esti-
mated by simple Crude Monte Carlo sampling [17]). Subse-
quent work in [18], [19] has shown that many optimization
queries can be translated into rare-event estimation problems.
The reason is that the optimal solution is a rare-event in itself,

and hence finding it with naive random search is not likely to
succeed.

The CE method gradually changes the sampling distribution
of the random search, so that the rare-event is more likely
to occur. It develops a sequence of parametric sampling
distributions that converges (asymptotically [20]), to a desired
distribution with probability mass concentrated in a region of
near-optimal solution. In order to develop such a sequence,
it uses the Kullback-Leibler divergence [21] as a measure of
closeness between two distributions.

To date, the CE method has been successfully applied to
many different optimization and estimation problems. The
former includes mixed integer non-linear programming [22];
continuous optimal control problems [23], [24]; continuous
multi-extremal optimization [25]; multidimensional indepen-
dent component analysis [26]; optimal policy search [27]; clus-
tering [28], [29], [30]; signal detection [31]; DNA sequence
alignment [32], [33]; fiber design [34]; noisy optimization
problems such as optimal buffer allocation [35]; resource
allocation in stochastic systems [36]; network reliability op-
timization [37]; vehicle routing optimization with stochastic
demands [38]; power system combinatorial optimization prob-
lems [39]; and neural and reinforcement learning [40], [41],
[42], [43]. CE has even been used as a main engine for playing
games such as Tetris, Go and backgammon [44]. See [45]
and [15] for further details.

To understand how CE is used in the context of our
problem, we describe it as solving a general discrete con-
strained optimization problem, which can be formally stated
as follows. We are given a set of variables v1, . . . , vn with
domains D1, . . . , Dn, respectively, a set of constraints over
the variables, and an objective function. The goal is to find an
assignment to the variables from their respective domains that
respects the constraints and maximizes the objective. When
there is not enough time to solve this problem, CE gives us
an effective approximation, since it is an any-time algorithm
that typically finds good solutions in a short amount of time.

CE is an adaptive sampling method. We denote by Fi

the Probability Distribution Function (PDF) of vi, which is
initially set to be uniform over Di. That is, initially the value
of vi is chosen at random with equal probability to each of
Di’s elements. In each sampling round (lines 2–8 in Alg. 1)
N samples are generated, and in each of those, all variables
are assigned a value from their respective domain, according
to the Fi distributions. The overall solution is then evaluated
assigning it a score such that the better the solution is, the
higher its score is (line 6). In addition, if a sample is better
than all those seen so far, then its corresponding assignment
is saved in a variable BestSolution, in line 7.

After completing N samples, in line 9, the best dρ ∗ Ne
samples are selected, for some ρ ∈ [0, 1]. In other words,
ρ is the ratio of the best results that is used for adapting
the sampling distributions. The selected set of best samples
is called the “elite set”. Based on this set, the distributions Fi

are adjusted. For example, if D1 has ten values d1, . . . , d10,
and in the elite set, d2, d5, and d8 were selected 40%, 20%,

and 40% of the time, respectively, then a new distribution F ′1
is defined with these numbers, i.e.,

F ′1(d2) = 0.4, F ′1(d5) = 0.2, F ′1(d8) = 0.4

and for 1 ≤ i ≤ 10, i 6∈ {2, 5, 8} we have F ′1(di) = 0. Next,
this new distribution is “blended” with previous one via expo-
nential smoothing, in line 10. The parameter α ∈ [0, 1] denotes
the exponential smoothing factor. The two extreme values of
α, namely 0 and 1, imply ignoring the new distribution F ′i and
ignoring the history, respectively. Hence in practice it makes
sense to choose some number in between, where the larger α
is, the more weight we give to the new sample.

The algorithm stops and returns the best solution seen,
when either it converges or it exhausts the time, or number
of iterations, that we allocate to it.1 Convergence means that
for each variable vi,

∃d ∈ Di � 1− ε ≤ Fi(d) ≤ 1

where ε is a parameter of the algorithm called the convergence
threshold. Typically it is set to a positive number close to 0. In
other words, convergence means that only with a very small
probability the next sample will be different than the previous
ones.

Algorithm 1 The cross-entropy method.
1: while (!converged and !timeout) do
2: for j = 1..N do
3: for i = 1..n do
4: choose value for vi randomly according to Fi;
5: end for
6: Evaluate solution;
7: Update BestSolution if applicable;
8: end for
9: Choose dρ∗Ne best solutions to form distribution F ′i ;

10: Fi = αF ′i + (1− α)Fi;
11: end while
12: return BestSolution;

Finally, let us go back to line 4, where a value is selected
according to a given PDF Fi. The technique for making this
selection can be described in several steps. First, we calculate
the Cumulative Distribution Function (CDF) for Fi. That is,
if Di = {d1, . . . , dn} then for 1 ≤ j ≤ n

CDFi(j) = Σl=1..jFi(dl) . (1)

As a special case, CDFi(0) = 0. Then, we sample uniformly
a number u in the range [0..1], and search for the smallest j
such that:

(1 ≤ j ≤ n) ∧ (CDFi(j − 1) ≤ u < CDFi(j))

This is done with binary search, and is hence highly efficient.

1In Alg. 1, a timeout is used as a stopping condition. However, in our
setting we do not specify the timeout explicitly, rather we limit the number
of iterations.

III. ADAPTATION DECISIONS WITH CROSS-ENTROPY

In this section, we present PLA-CE, an approach to making
self-adaptation decisions using the cross-entropy method. The
adaptation decision is done periodically, with an interval
between decisions of duration τ . The goal of the decision is
to find the adaptation tactic(s) that should be started in order
to maximize the expected utility over the decision horizon.
Doing that with the CE method requires being able to generate
random solutions according to the sampling distributions, and
being able to evaluate them.

A. Solution Generation

The decision horizon has H periods of duration τ , and at
the beginning of each period, the system can execute an adap-
tation action, which is a (possibly empty) set of adaptation
tactics that can be started concurrently. Even though the result
of the adaptation decision is only the adaptation action to be
taken at the beginning of the first period, evaluating a solution
requires computing the utility that it would achieve over the
whole decision horizon. Since the system can keep adapting in
subsequent decision periods, the evaluation must also take into
account the adaptation actions that the system would take after
the first one. Therefore, a solution is a sequence of adaptation
actions 〈a1, . . . , aH〉, referred to as an adaptation path.

A random solution can be generated by drawing action ai
according to Fi, for i = 1, . . . ,H . However, it is possible
to end up with an infeasible solution, given the applicability
conditions of the adaptation actions. The system configuration2

at the time the decision is being made is c0. Therefore, an
adaptation path is feasible only if a1 is applicable in system
state c0. Furthermore, even if a1 is valid, when applied it will
take the system from configuration c0 to c1, which in turns
limits the feasible actions for a2 to those applicable in c1, and
so on. One way to deal with infeasible solutions is to assign
them an extremely low value. However, in Section III-C,
we introduce an optimization that generates only feasible
solutions.

B. Solution Evaluation

The evaluation of a solution has to consider the joint
evolution of the system and the environment over the decision
horizon to determine how much utility it would attain. The
utility function U(c, e) denotes the utility that the system
would attain during the period between decisions if it has
configuration c and the environment is in state e.

Given a solution, the sequence of configurations that the
system will go through over the decision horizon can be
computed by applying the adaptation actions in the path,
starting with the current configuration c0. To do that, we
need a model of the transitions of the system. PLA-SDP,
one of the PLA solution approaches, computes off-line the
feasible transitions in the system MDP using formal models
and analysis [11]. The result of this off-line computation

2We use system configuration and system state interchangeably.

comprises two kinds of reachability predicates that model the
adaptation process:
• RI(c, c′) indicates that configuration c′ can be reached

immediately from c through the use of an adaptation
action. The action that realizes this configuration change
can be obtained using a partial mapping ActI : C×C 7→
A, where C is the set of all possible configurations and A
is the set of all adaptation actions. The mapping ActI is
also computed offline. Even for tactics with latency, the
start of the tactic is an immediate configuration change,
from one in which the tactic is not running to one in
which it is, since tactic progress is part of the system
state.

• In addition, there is delayed reachability, where RD(c, c′)
indicates that if the system is in configuration c, with the
passage of one decision interval it will reach configura-
tion c′. That is, RD models the transitions that happen due
to the execution of tactics with latency. Note that in this
case, c and c′ do not necessarily represent configurations
at the beginning and end of the execution of an adaptation
tactic, since the transition delay modeled by RD is a
single period of duration τ , whereas the latency of the
tactic could be longer. When that is the case, there
are intermediate delayed transitions that represent the
progress of the execution of the tactic.

Since configuration changes are deterministic under the
execution of an adaptation action, or the passage of time,
using the predicates RI and RD and the mapping ActI that
PLA-SDP computes, we can define the following functions
that give us the configuration that is reached starting from a
given configuration and either applying an adaptation action
or letting one period of time pass, respectively.

P I : C ×A 7→ C (2)

PD : C → C (3)

where P I is a partial function because some actions are not
applicable in some system states. More specifically, we have:

P I(c, a) = c′ ⇐⇒ RI(c, c′) ∧ActI(c, c′) = a

PD(c) = c′ ⇐⇒ RD(c, c′)

The system adaptation over the decision horizon can be
modeled as an initial immediate action taken at the time the
decision is made followed by a sequence of alternating delayed
and immediate transitions. The delayed transition happens over
one period, and is followed by an immediate transition that
happens as soon as the delayed one completes. This models the
adaptation over the decision horizon, in which an adaptation
decision is made at the beginning of each time period. Given
this model, the sequence of configurations c1, . . . , cH that
results from applying a candidate solution 〈a1, . . . , aH〉 to the
current configuration c0 can be computed as

c1 = P I(c0, a1) (4)

ct = P I
(
PD(ct−1), at

)
, t > 1 (5)

If the future evolution of the environment was known, it
would be possible to compute the value of a solution as3

v =

H∑
t=1

Û(ct, et) .

where et denotes the environment state at time interval t.
However, in general, we only have predictions of future envi-
ronment states over the decision horizon, and these are subject
to uncertainty. The uncertain environment can be modeled as
a stochastic process in which the random variable representing
the state of the environment has one realization at each time
step, with a time step being equal to the decision period τ . In
particular, PLA uses discrete-time Markov chains (DTMCs) to
model the probabilistic behavior of the environment, with the
probability of transitioning from state e to state e′ in one time
period given by p(e′ | e). Additionally, Et denotes the set of
environment states feasible in time interval t.

As long as the environment model is encoded in this
way, there is no particular requirement for how the model
is constructed, or what particular topology the DTMC has
to encode. For example, for one of the systems used for
evaluation, we use a time series predictor, and based on past
environment states, we construct, at the time the decision is
made, a probability tree for the behavior of the environment
over the decision horizon following the procedure described
by Moreno et al. [9].

Having the sequence of system configurations that would
result from the candidate solution, and the environment model,
we can compute the value v of the solution required for line 6
of the algorithm with backward induction as follows

vH(cH , e) = Û(cH , e), ∀e ∈ EH (6)

vt(ct, e) = Û(ct, e) +
∑

e′∈Et+1

p(e′ | e)vt+1(ct+1, e
′),

∀e ∈ Et, t = H − 1, . . . , 1

(7)

v =
∑

e′∈E1

p(e′ | e0)v1(c1, e
′) (8)

where e0 is the current state of the environment. First, the
value of having configuration cH for each of the possible
realizations of the environment at the end of the horizon
is computed with (6). The rest of the intermediate valua-
tions vt are computed with (7), considering both the utility
obtained in the period t, and expected utility that can be
obtained afterwards given how the environment can evolve
in subsequent periods if the environment state is e. The
valuation v of the complete solution is given by (8), which
computes the expected value over the probability distribution
of the environment evolution given the current state of the
environment e0.

3Û is the decision utility function, which may have provisions beyond those
of the normal utility function. For example, it could penalize configurations
that remove resources from an overloaded system to avoid making the system
more unstable, even if the normal utility function does not give any value for
keeping those resources.

C. Optimizations

We optimized the basic cross-entropy algorithm described
in Sec. II-B for our problem domain. Specifically, we added
two optimizations to this process:
• Redistribution to legal actions. Recall that we use

the cross-entropy algorithm (Alg. 1) for each adaptation
decision, and each time we ask it to find a full adaptation
path. We then only execute the first action of this path,
and in the subsequent period use Alg. 1 to get another
path, because now the initial state is different, given
our action in the previous period, and also because the
environment realization may have been different than
what was predicted. At each state of the system, only
a subset of the overall set of actions is feasible. For
example, if a system is in a state in which it has the
maximum number of servers it supports, then the action
“add server” is not valid. Yet since the distributions are
calculated based on the history of the sampled solutions
(see line 10 in Alg. 1), nothing prevents Alg. 1 from
choosing this action.

As a remedy, as a candidate solution is being generated
incrementally, we redistribute the current distribution
among the actions that are legal after the partial candidate
solution generated thus far. Given the current configura-
tion c0 of the system when the decision is being made,
and a partial solution σ = 〈a1, . . . , ak〉, the set of next
feasible adaptation actions can be computed as follows.
First, we compute the configuration ck that the system
would reach after applying that adaptation path using (4)
and (5), taking into account that σ = 〈〉 =⇒ ck = c0.
Let us denote ck by Reach(c0, σ). Next, we define the
set of valid actions from any configuration c, denoted
V alidAct(c), as follows:

V alidAct(c) =
{
a : A | ∃c′ ∈ C �ActI(c, c′) = a

}
Finally, the set of valid actions after the partial solution
σ from configuration c0 is V alidAct(Reach(c0, σ)).
Practically, the redistribution of the probability is done
as follows.

1) When the cross-entropy algorithm needs to select
randomly action ai to generate a candidate so-
lution, it gets the set of legal actions after the
partial candidate solution σ = 〈a1, . . . , ai−1〉 as
V alidAct(Reach(c0, σ)). Note that the result of
V alidAct can be cached, and our implementation
does that, to avoid recomputing it multiple times for
the same input.

2) We select a random number u ∈ [0, 1] and accord-
ingly an action ai from the CDF (which currently
includes illegal actions) that was built based on Fi,
as explained before.

3) If ai happens to be a legal action, we take it.
4) Otherwise, we rebuild the CDF as in (1), but based

only on the legal actions (i.e., j ranges over the
subset of indices in 1..n that correspond to legal

actions). This means that CDFi(j) for the largest j,
which we denote by |CDFi|, can be smaller than 1.
We thus multiply the random number u ∈ [0, 1] by
|CDFi| to force it into the legal range, and continue
as before.

• Using hints. On the one hand, the choice of the next step
has to be based on lookahead up to the given horizon
H . On the other hand, after each decision we have new
information about the environment and hence want to
make a new adaptation decision. Since each time the CE
algorithm finds a full adaptation path of length H , but we
only use the first step of this path, a lot of work seems
to be wasted. Our way to (partially) reuse the previous
path is as follows. Let σ be the previous path, i.e., the
solution produced by the previous invocation of the CE
algorithm. The suffix of σ, of length H − 1 (all but the
first action), serves as a hint in the next step.

However, note that this suffix will be a hint for the
prefix of length H − 1 of the solution to the current
decision. This means that, when computing the current
solution, for i = 1 . . . H − 1, rather than starting with Fi

being a uniform distribution, a certain predefined weight
is given to the action σ(ai+1), and the rest is distributed
uniformly among the legal actions as determined by the
previous optimization.We call this predefined weight the
“hint weight” and denote it by ω.

IV. EVALUATION

To evaluate the CE-based decision-making approach, we
wanted to answer three questions: (i) what speedup PLA-CE
attains over PLA-SDP; (ii) how sub-optimal is the solution
it computes; and (iii) how effective its decision-making is in
practice with respect to PLA-SDP. In addition, we analyze the
effect of using the hint optimization on the speedup and the
effectiveness of the adaptation decision.

A. Target Example: DART

For the evaluation we used a system that simulates a team of
unmanned aerial vehicles (UAVs) developed in the context of
the DART (Distributed Adaptive Real-Time) Systems project
at the Carnegie Mellon R© Software Engineering Institute [46].
The team of drones has a designated leader. They fly with the
leader at the center, surrounded by followers in a formation.
Two formations are allowed – tight and loose. In the former,
the followers stay closer to the leader, while in the latter, they
are farther away. High level decisions, such as what formation
to adopt, where to fly, or whether to go up or down, are taken
autonomously by the leader, and communicated to the rest of
the team to be executed.

In particular, we use a scenario of DART where the team has
the following mission: to follow a planned route at constant
forward speed, detecting as many targets on the ground as
possible along the route. Since there are threats along the
route that can destroy the team, there is a trade-off between
avoiding threats and detecting targets. The environment (i.e.,
the location of targets and threats) is only discovered during

the execution of the mission, and even then, with some
uncertainty (due to sensor limitations). Thus, it is not possible
to pre-plan the complete execution of the mission. Self-
adaptation is required for the team to best deal with the
uncertain environment. The team has to adapt by changing
altitude and/or formation to maximize the number of targets
detected, taking into account that if the formation is lost to a
threat, the mission fails. The lower the team flies, the more
likely it is to detect targets, but also, the more likely it is to
be hit by a threat. Changing formation also involves a similar
trade-off, since flying in tight formation reduces the probability
of being hit by a threat, but at the same time reduces the
chances of detecting targets.

The route is divided into D segments of equal length, and
since the team flies at constant speed, there is a direct mapping
between time and route segment. The environment state for
segment i, referred to as ei, has two components: the proba-
bility that the segment contains a target, and the probability
that it contains a threat. These probabilities are obtained by
getting multiple observations from forward-looking sensors in
the drones. The adaptation goal is to maximize the expected
number of targets detected, given by:

q =

D∑
t=1

(
t∏

i=1

s(ci, ei)

)
g(ct, et) (9)

where s(ci, ei) is the probability of survival at time i when the
configuration of the team is ci and the environment is ei; and
g(ct, et) is the probability of detecting a target at time t when
the team is in configuration ct and in environment et. The first
factor in the summation represents the probability of the team
being operational at time t, which requires having survived
since the start of the mission. In practice, it is not possible for
the self-adaptive system to directly maximize (9), given the
limited range of the forward-looking sensors. Therefore, the
adaptation goal is approximated by making periodic adapta-
tion decisions—one before entering each route segment—and
limiting the sum in (9) to the decision horizon of length H .

B. Speedup

There are two main factors that determine the size of the
adaptation-relevant state space in PLA: the configuration state
space, and the tactics with latency. The former depends on
the number of properties that define the system configuration
and how many values each can take. For example, in DART,
the more possible altitude levels, the larger the state space.
Tactics with latency contribute to the size of the state space
because of the need to track their progress. More specifically,
for each tactic with latency, there is a state variable that
indicates how many periods are left until the tactic completes.
To assess the speedup that PLA-CE attains over PLA-SDP, we
ran experiments with 22 different combinations of features and
tactics that resulted in different state space sizes. For each of
these combinations, we ran 30 simulations of missions with
a route length of 75 segments, for a total of 2250 adaptation
decisions. Each simulation was executed with PLA-SDP as

max.iterations: 50 max.iterations: 100

●●●
●

●●
●● ●

●

● ●

●

●

●

●

●

●

●●●●● ●
●

● ●
●

●

●

●

●

●

●●●●● ●
●

● ●
●

●

●

●

●

●

●● ● ● ● ● ●
●

●
●

●
●

0

10

20

30

40

0

10

20

30

40

sam
ples: 80

sam
ples: 160

0 1000 2000 3000 0 1000 2000 3000
state space size

sp
ee

du
p

●PLA−CE slower than PLA−SDP PLA−CE faster than PLA−SDP

Fig. 1. PLA-CE speedup over PLA-SDP for DART.

the baseline for comparison, and with PLA-CE using different
combinations of sample sizes and maximum iterations. In all
cases, the other parameters of PLA-CE were set as follows:
ρ = 0.1, ε = 0.01, α = 0.2, and ω = 0.3.4

Fig. 1 shows the speedup (i.e., how many times faster) PLA-
CE was compared to PLA-SDP. The results show that for small
state spaces, PLA-CE is slower. However, the speedup grows
exponentially with the state space size, and becomes faster
even for state spaces of modest size. As expected, the smaller
the maximum number of iterations and the number of samples,
the higher the speedup, going from 10 times up to more than
40 times for the case with the largest state space.

C. Effectiveness Relative to Optimal

PLA-CE makes adaptation decisions much faster than PLA-
SDP, but it finds a solution that approximates the optimal.
Thus, it is interesting to quantify how much worse than the
optimal solution the CE-based solution is. The solution that
PLA-SDP computes is optimal in expectation, meaning that
it maximizes the expected utility over the decision horizon
given the probabilistic behavior of the environment and the
sensors. This solution, however, is not necessarily optimal a
posteriori, once the realization of the environment and the
sensors is known. Furthermore, since the decision is optimal

4We did not fine-tune these parameters in order to avoid over-fitting for a
particular system. In early experiments, we noticed that α = 0.2 performed
in general slightly better than values 0.1, 0.3, 0.4, but did not dominate them.
We also tried ε = 0.001 but decided to use ε = 0.01 to achieve faster
convergence. The value for ω was chosen from the results shown in Figure 4.
Note that we used the same parameter values for the two very different systems
used in the evaluation.

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.6

sam
ples: 80

sam
ples: 160

50 100
max.iterations

re
la

tiv
e

ta
rg

et
s

de
te

ct
ed

Fig. 2. PLA-CE solution effectiveness relative to optimal solution for DART.

in expectation only over the decision horizon, it may not be
optimal when the behavior of the environment beyond the
horizon is factored in, something that is not possible to do
in practice given the range of the sensors.

In order to compare against a solution that is optimal a
posteriori, we removed all the random behaviors that happen
during the simulation, such as the behavior of sensors and
threats, and configured the forward-looking sensors to have no
error and infinite range. The initial placement of threats and
targets was still random, but determined by a seed, so that each
case could be replicated with the different solution approaches.
In addition, instead of computing the adaptation decision
periodically, the system was modified to compute the complete
adaptation path at the beginning of the mission, something that
was possible because the sensors had unlimited range and
no error. With these modifications, PLA-SDP computes the
a posteriori optimal solution. Note that for these experiments
PLA-CE was run with the same modifications, thus computing
an approximation to the a posteriori optimal solution.

Each box plot in Fig. 2 summarizes the statistics of the
number of targets detected by PLA-CE relative to the optimal
solution in 600 simulated missions. The bottom and top of the
box represent the 1st and 3rd quartiles respectively, the line in
between is the median, and the whiskers represent the range.
The results show that in the vast majority of cases, PLA-CE
finds less than 50% of the targets the optimal solution finds,
even with a large sample size and a large number of iterations.

D. Effectiveness in Practice

Given the limitations of the sensors used to estimate the
environment ahead, and the stochastic behavior of the envi-
ronment, it is not possible to make optimal a posteriori adap-
tation decisions. With these limitations, in practice, adaptation

0.90

0.95

1.00

1.05

1.10

1.15

0.90

0.95

1.00

1.05

1.10

1.15

sam
ples: 80

sam
ples: 160

50 100
max.iterations

re
la

tiv
e

ta
rg

et
s

de
te

ct
ed

Fig. 3. PLA-CE solution effectiveness relative to PLA-SDP for DART.

decisions can at best be optimal in expectation, and over a
limited decision horizon, as is the case with PLA-SDP.

To evaluate the effectiveness of PLA-CE in practice, we
repeated the previous experiments, but this time using the
full simulation with all its random effects. Fig. 3 shows
that in practice the effectiveness of PLA-CE is very close
to that of PLA-SDP, even for low iterations and sample
size, which can be up to 40 times faster as was previously
shown. Furthermore, in some cases PLA-CE performed better
than PLA-SDP, as shown by the outliers, and sometimes the
3rd quartile, that lay above 1. The reason for this is that
with all the stochastic behavior, a decision that is optimal in
expectation may perform suboptimally under some realizations
of the environment (e.g., in an environment state that had
low probability, and consequently, low weight in the selection
of the solution). Conversely, a decision that is suboptimal in
expectation may yield better results than the optimal decision
in expectation for some realizations of the environment (e.g.,
a solution that happened to be better for a realization that had
low probability).

E. Hint Effect

Intuitively, the hint optimization bootstraps the adaptation
decision by giving more weight in the initial sampling distri-
bution to a likely prefix of the best adaptation path. This can
potentially result in faster convergence to the solution, which,
in turn can speed up the decision, and in cases in which it
does not converge because it reaches the iteration limit, the
resulting solution is likely to be better if the hint biased the
sampling towards the optimal solution. To evaluate whether
this is actually the case, we repeated the experiments with
different hint weights, and with no hint (i.e., ω = 0).

0.9

1.0

1.1

0.9

1.0

1.1

sam
ples: 80

sam
ples: 160

50 100
max.iterations

re
la

tiv
e

ta
rg

et
s

de
te

ct
ed

hint weight 0 0.3 0.5

Fig. 4. Effect of hint weight value on solution effectiveness relative to PLA-
SDP for DART.

Figure 4 shows the results, comparing the effectiveness of
PLA-CE with different hint weights relative to PLA-SDP.
We can observe that ω = 0.3 is better than ω = 0, if
we consider that the median of the former is higher. If we
also consider the minimum (lower whisker end) and the 1st

quartile, we observe that the hint is more beneficial when we
have a lower limit on the number of iterations. This matches
our conjecture that the hint allows reaching a better solution
within the iterations allowed. If a larger number of iterations is
allowed, the CE algorithm is more likely to converge even if no
hint is provided, which is reflected in the lesser improvement
observed when the maximum number of iterations is 100. We
can also observe in Figure 4 that giving the hint too much
weight is detrimental, since it is worse than not using a hint
at all.

Figure 5 shows how the hint affects the decision time. When
the number of iterations is limited to 50, the decision time
improvement is negligible. This is because CE is still using
all the iterations it is allowed to in most cases, with the hint
allowing it to reach a better solution as shown in Figure 4.
However, when the limit of iterations is 100, the improvement
in speed is noticeable. In this case, the hint is allowing CE
to converge faster. However, when looking at these results
combined with the effect of the hint on quality, we observe that
when the hint weight is too high, CE appears to be converging
faster to a non-optimal solution. In conclusion, the use of the
hint appears to be more useful when the running time of CE
is limited the most.

max.iterations: 50 max.iterations: 100

●●●●●●●
●●●●● ● ● ● ● ● ● ● ● ● ●

●●●●
●●●

●●●●● ● ● ● ●
●

● ● ● ● ●

●●●
●●●●●●●●● ● ● ● ● ● ●

● ●
● ●

●●●
●●●●

●●●●● ●
●

● ● ●
●

●
●

● ●

0

500

1000

1500

0

500

1000

1500

sam
ples: 80

sam
ples: 160

0 1000 2000 3000 0 1000 2000 3000
state space size

de
ci

si
on

 ti
m

e
(m

s)

hint weight ● 0 0.3 0.5

Fig. 5. Effect of hint on the decision time of PLA-CE for DART.

F. Experiments with a Web Application

In addition to measuring the effectiveness with DART, we
ran a smaller experiment using a completely different system
that comes from a different domain, and differs also in its
adaptation goal and the repertoire of tactics used. In this
case, we used SWIM, a simulation of web applications with
a 3-tier architecture similar to other systems used in self-
adaptive systems research such as RUBiS [47] and Znn [48].
SWIM simulates a web application with a load balancer that
distributes requests sent by users among a number of servers
that can process these request. SWIM does not simulate the
functionality of the web application. Instead, the processing of
requests is simulated simply as a computation that takes time,
which is simulated by computing the time it would take to
service the request sharing the server’s processor, as is done in
a web server. SWIM supports the brownout paradigm, which
allows controlling the load induced by the traffic to the website
by controlling the proportion of responses that include optional
content, such as related items [49]. The traffic to the website
is simulated by replaying access traces recorded from real
websites. For these experiments, a trace from the WorldCup
’98 trace archive [50] was used.

The simulation provides effectors to add and remove servers
at run time, and to increase and decrease the dimmer value,
the setting that controls the proportion of responses for which
the optional content is computed and included. The adaptation
manager uses adaptation tactics that map directly to these four
effectors. In addition, SWIM provides monitoring probes that
the adaptation manager can use to monitor the state of the

TABLE I
PLA-CE SPEEDUP AND EFFECTIVENESS RELATIVE TO PLA-SDP IN

SIMULATION OF WEB SYSTEM.

state space servers dimmer levels speedup relative effectiveness

small 3 5 0.1 0.99
medium 30 10 7.9 1.08
large 30 20 29.3 0.94

system and the environment. The state space size is determined
by the maximum number of servers supported by the system,
and by the number of levels in which the continuous range for
the dimmer setting is discretized. The tactic to add a server
has latency, and its state also contributes to the state space
size.

The goal of self-adaptation in this system is to maximize
the utility accrued while minimizing cost. The utility consists
of positive rewards accrued minus penalties, which are defined
by a service level agreement (SLA). The rewards are gained
by meeting the average response time requirement, whereas
penalties are incurred when the requirement is not satisfied.
The cost is the number of servers used.

The experiments were run configuring the system with three
different combinations of number of servers and dimmer levels
to obtain three different state spaces sizes, as shown in the
first three columns on Table I. For each, the simulation was
run with both PLA-SDP and PLA-CE. The parameters for
the latter were N = 50, ρ = 0.1, ε = 0.01, α = 0.2, and
ω = 0.3, with the number of iterations limited to 75. Since
all the random behavior in the simulation is controlled by a
seeded random number generator, the exact same conditions
were replicated for both approaches. Table I shows results
similar to those obtained in the experiments with DART. When
the state space is small, PLA-CE is slower than PLA-SDP,
but for lager state spaces, PLA-CE is faster, close to 30 times
for the largest in these runs. Also, the effectiveness of PLA-
CE is very close to that of PLA-SDP, regardless of the state
space size. We conjecture that for large state spaces due to
finer grained discretization of system properties, such as the
dimmer setting, if the approximate solution is off by one or
two levels from the optimal, it probably does not affect the
outcome in a significant way. On the other hand, for coarse
grained discretization, as in the small state space, being off
by one level could have a substantial impact. However, in this
case, it is likely that CE will converge to the optimal solution
within the allotted number of samples and iterations, given
that the state space is small.

V. RELATED WORK

Runtime quantitative verification (RQV) is an approach to
self-adaptation that uses probabilistic model checking at run
time to predict violations of requirements, and in that case,
select, for instance, the configuration less likely to result in an
unsatisfied requirement at the lowest cost, which is also done
using model checking [3]. One issue with this approach is that
the use of a model checker at run time can impose an unaccept-

able overhead for adaptation decisions in some systems. For
these reason, researchers have worked on speeding up RQV.
Gerasimou et al. propose a suite of techniques that speedup
RQV making it practical for self-adaptation [10]. In particular,
they show how the overhead and execution time of RQV can
be reduced by combining caching of previously computed
solutions, lookahead to compute in advance solutions that
may be needed, and near-optimal reconfiguration to stop the
search for the best solution when one good enough has been
found. The latter technique is the one that most resembles our
approach given that both may settle on an approximation to the
optimal solution. However, their approach does not use cross-
entropy to narrow the solution space progressively towards the
optimal. Our use of a hint to bootstrap decisions is somewhat
similar to their caching and look-ahead, in that the hint is
a suffix of a solution previously computed, and represents
an adaptation path computed over the decision look-ahead
horizon. However, in their look-ahead, solutions are computed
outside of the periodic decision using spare CPU cycles,
whereas our hint is a byproduct of the previous adaptation
decision. Therefore, the hint is available with our approach
even if there are no idle CPU cycles between adaptation
decisions.

Filieri et al. also propose work to speed up the use of
probabilistic model checking at run time [51]. Their work
focuses on the verification of probabilistic properties in R-
DTMCs (i.e., DTMCs extended with rewards) where some
transitions have probabilities and rewards that are updated
at run time. Their approach pre-computes, at design time,
expressions that can be quickly evaluated at run time to
determine the satisfaction of the system’s requirements. Our
work also performs part of the computation off-line, something
which is inherited from PLA-SDP. In addition, we allow the
run-time update of transition probabilities (for the environment
part of the model), and values associated with environment
states (e.g., the request arrival rate at a website) and rewards
given by the utility function driving adaptation decisions.
Other than these similarities, the approaches are different in
that theirs supports the verification of general probabilistic
properties extended with rewards, whereas ours, based on
MDPs, makes decisions selecting actions that maximize the
expected reward.

The CE method has been used to find policies for MDPs
in other approaches [52], [53], [54]. The closest to ours is
the approach for planning in large-scale stochastic domains
presented by Wienstein and Littman [53]. Their approach also
applies the CE method to find policies for MDPs using a
finite receding horizon and committing to the first action in the
policy. In their approach, all sequences of actions are feasible.
However, in self-adaptation, not all sequences of adaptation
actions are feasible, and our approach handles that. In addition,
their approach does not consider the latency of the different
actions as ours does. A third difference is that their approach
does not leverage previously computed policies as we do with
our hint.

VI. CONCLUSION

We have presented PLA-CE, an approach to make proactive
latency-aware adaptation decisions using the cross-entropy
method for optimization. PLA-CE finds the solution to the
adaptation decision problem by randomly sampling from the
solution space, adjusting the sampling distribution in each
iteration so that the probability of finding the optimal solution
increases. Even though the CE method does not guarantee
convergence to the optimal solution, we found that in most
cases, it achieves an effectiveness close to 99% of that of PLA-
SDP, but does it up to 40 times faster. Furthermore, similar
outcomes were obtained with two very different self-adaptive
systems that have different tactic repertoires and adaptation
goals.

Although in this paper we have used the CE method to
make PLA adaptation decisions faster, we conjecture that the
same approach could be used to speed up other complex self-
adaptation decisions whose running time would be excessive
for some systems. In future work, we plan on developing
a distributed version of PLA-CE, parallelizing the sampling
and evaluation of solutions in the CE algorithm to leverage
computing capacity in other processors, such as the on-board
computers of the drones in the same team.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. [Distribution Statement A] This material
has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use
and distribution. Carnegie Mellon R© is registered in the U.S.
Patent and Trademark Office by Carnegie Mellon University.
(DM-0004347)

REFERENCES

[1] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Anders-
son, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Kar-
sai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns,
and J. Whittle, “Software Engineering for Self-Adaptive Systems: A
Research Roadmap,” in Software Engineering for Self-Adaptive Systems,
ser. Lecture Notes in Computer Science, B. H. C. Cheng, R. Lemos,
H. Giese, P. Inverardi, and J. Magee, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, jun 2009, vol. 5525, pp. 1–26.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
Research Challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1–42, may 2009.

[3] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Communi-
cations of the ACM, vol. 55, no. 9, p. 69, sep 2012.

[4] A. Naskos, E. Stachtiari, P. Katsaros, and A. Gounaris, “Probabilistic
Model Checking at Runtime for the Provisioning of Cloud Resources,”
Runtime Verification, 2015.

[5] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming uncertainty in
self-adaptive software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA: ACM,
2011, pp. 234–244.

[6] J. Cámara, A. Lopes, D. Garlan, and B. Schmerl, “Impact Models for
Architecture-Based Self-Adaptive Systems,” in Proceedings of the 11th
International Symposium on Formal Aspects of Component Software
(FACS2014), Bertinoro, Italy, 2014.

[7] J. Cámara, D. Garlan, B. Schmerl, and A. Pandey, “Optimal planning
for architecture-based self-adaptation via model checking of stochastic
games,” in Proceedings of the 30th Annual ACM Symposium on Applied
Computing, ser. SAC ’15. New York, NY, USA: ACM, 2015, pp. 428–
435.

[8] S. Iannucci and S. Abdelwahed, “A probabilistic approach to autonomic
security management,” in 2016 IEEE International Conference on Au-
tonomic Computing (ICAC), July 2016, pp. 157–166.

[9] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive self-
adaptation under uncertainty: a probabilistic model checking approach,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2015. New York, New York, USA:
ACM Press, aug 2015, pp. 1–12.

[10] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient runtime quantita-
tive verification using caching, lookahead, and nearly-optimal reconfigu-
ration,” in Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems - SEAMS 2014.
New York, New York, USA: ACM, jun 2014, pp. 115–124.

[11] G. A. Moreno, J. Camara, D. Garlan, and B. Schmerl, “Efficient
Decision-Making under Uncertainty for Proactive Self-Adaptation,” in
2016 IEEE International Conference on Autonomic Computing (ICAC).
IEEE, jul 2016, pp. 147–156.

[12] R. Rubinstein, “The cross-entropy method for combinatorial and contin-
uous optimization,” Methodology and computing in applied probability,
vol. 1, no. 2, pp. 127–190, 1999.

[13] M. Mao and M. Humphrey, “A Performance Study on the {VM} Startup
Time in the Cloud,” in 2012 IEEE Fifth International Conference on
Cloud Computing. IEEE, jun 2012, pp. 423–430.

[14] M. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, Ltd, 2014.

[15] Z. Botev, D. Kroese, R. Rubinstein, and P. L’Ecuyer, “The cross-
entropy method for optimization,” in Machine Learning, ser. Handbook
of Statistics, V. Govindaraju and C. Rao, Eds. Elsevier, 2011, vol. 31.

[16] R. Y. Rubinstein, “Optimization of computer simulation models with
rare events,” European Journal of Operational Research, vol. 99, no. 1,
pp. 89–112, 1997.

[17] G. Rubino and B. Tuffin, Rare Event Simulation using Monte Carlo
Methods. Wiley, 2009.

[18] R. Y. Rubinstein, “The cross-entropy method for combinatorial and
continuous optimization,” Methodology and Computing in Applied Prob-
ability, vol. 1, no. 2, pp. 127–190, 1999.

[19] ——, “Combinatorial optimization, cross-entropy, ants and rare events,”
in Stochastic Optimization: Algorithms and Applications, S. Uryasev and
P. M. Pardalos, Eds. Dordrecht: Kluwer, 2001, pp. 304–358.

[20] L. Margolin, “On the convergence of the cross-entropy method,” Annals
of Operations Research, vol. 134, no. 1, pp. 201–214, 2005.

[21] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 03 1951.

[22] R. P. Kothari and D. P. Kroese, “Optimal generation expansion planning
via the cross-entropy method,” in Proceedings of the 41st conference
on Winter simulation, ser. WSC ’09. Winter Simulation Conference,
2009, pp. 1482–1491.

[23] A. Sani, “Stochastic modelling and intervention of the spread of
HIV/AIDS,” Ph.D. dissertation, The University of Queensland, Brisbane,
2009.

[24] A. Sani and D. P. Kroese, “Controlling the number of HIV infectives
in a mobile population,” Mathematical Biosciences, vol. 213, no. 2, pp.
103–112, 2008.

[25] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein, “The cross-entropy
method for continuous multi-extremal optimization,” Methodology and
Computing in Applied Probability, vol. 8, no. 3, pp. 383–407, 2006.

[26] Z. Szabó, B. Póczos, and A. Lörinc, “Cross-entropy optimization for
independent process analysis,” In Independent Component Analysis
and Blind Signal Separation, vol. 3889, pp. 909–916, Springer-Verlag,
Heidelberg, 2006.

[27] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming using Function Approximators.
New York: Taylor & Francis Group, 2010.

[28] Z. I. Botev and D. P. Kroese, “Global likelihood optimization via
the cross-entropy method with an application to mixture models,” in

Proceedings of the 36th conference on Winter simulation, ser. WSC
’04. Winter Simulation Conference, 2004, pp. 529–535.

[29] A. Boubezoula, S. Paris, and M. Ouladsinea, “Application of the cross
entropy method to the GLVQ algorithm,” Pattern Recognition, vol. 41,
no. 10, pp. 3173–3178, 2008.

[30] D. P. Kroese, R. Y. Rubinstein, and T. Taimre, “Application of the cross-
entropy method to clustering and vector quantization,” Journal of Global
Optimization, vol. 37, pp. 137–157, 2007.

[31] Z. Liu, A. Doucet, and S. S. Singh, “The cross-entropy method for
blind multiuser detection,” in Proceedings International Symposium on
Information Theory, Piscataway, Chicago, 2004.

[32] J. Keith and D. P. Kroese, “Rare event simulation and combinatorial
optimization using cross entropy: sequence alignment by rare event
simulation,” in Proceedings of the 34th conference on Winter simulation,
ser. WSC ’02. Winter Simulation Conference, 2002, pp. 320–327.

[33] V. Pihur, S. Datta, and S. Datta, “Weighted rank aggregation of cluster
validation measures: a Monte Carlo cross-entropy approach,” Bioinfor-
matics, vol. 23, no. 13, pp. 1607–1615, 2007.

[34] J.-C. Chen, C.-K. Wen, C.-P. Li, and P. Ting, “Cross-entropy optimiza-
tion for the design of fiber Bragg gratings,” Photonics Journal, IEEE,
vol. 4, no. 5, pp. 1495 –1503, oct. 2012.

[35] G. Alon, D. Kroese, T. Raviv, and R. Rubinstein, “Application of the
cross-entropy method to the buffer allocation problem in a simulation-
based environment,” Annals of Operations Research, vol. 134, no. 1, pp.
137–151, 2005.

[36] I. Cohen, B. Golany, and A. Shtub, “Resource allocation in stochastic,
finite-capacity, multi-project systems through the cross entropy method-
ology,” Journal of Scheduling, vol. 10, no. 1, pp. 181–193, 2007.

[37] D. P. Kroese, K.-P. Hui, and S. Nariai, “Network reliability optimization
via the cross-entropy method,” IEEE Transactions on Reliability, vol. 56,
no. 2, pp. 275–287, 2007.

[38] K. Chepuri and T. Homem-de-Mello, “Solving the vehicle routing
problem with stochastic demands using the cross entropy method,”
Annals of Operations Research, vol. 134, no. 1, pp. 153–181, 2005.

[39] D. Ernst, M. Glavic, G.-B. Stan, S. Mannor, and L. Wehenkel, “The
cross-entropy method for power system combinatorial optimization
problems,” in Proceedings of the 7th IEEE Power Engineering Society
(IEEE-PowerTech 2007), 2007, pp. 1290–1295.

[40] A. Lörincza, Z. Palotaia, and G. Szirtesb, “Spike-based cross-entropy
method for reconstruction,” Neurocomputing, vol. 71, no. 16-18, pp.
3635–3639, 2008.

[41] I. Menache and S. Mannor, “Basis function adaptation in temporal
difference reinforcement learning,” Annals of Operations Research, vol.
134, no. 1, pp. 215–238, 2005.

[42] A. Ünveren and A. Acan, “Multi-objective optimization with cross
entropy method: Stochastic learning with clustered pareto fronts,” in
Proceedings of the IEEE Congress on Evolutionary Computation, 2007,
pp. 3065–3071.

[43] Y. Wu and C. Fyfe, “Topology perserving mappings using cross entropy
adaptation,” in Proceedings of the 7th WSEAS International Conference
on Artificial intelligence, knowledge engineering and data bases, ser.
AIKED’08. Stevens Point, Wisconsin, USA: World Scientific and
Engineering Academy and Society (WSEAS), 2008, pp. 176–181.

[44] G.-B. Chaslot, M. Winands, I. Szita, and H. van den Herik, “Cross-
entropy for Monte-Carlo tree search,” ICGA Journal, vol. 31, no. 3, pp.
145–156, 2008.

[45] R. Y. Rubinstein, A. Ridder, and R. Vaisman, Fast Sequential Monte
Carlo Methods for Counting and Optimization. New York: John Wiley
& Sons, 2013.

[46] S. A. Hissam, S. Chaki, and G. A. Moreno, “High Assurance for Dis-
tributed Cyber Physical Systems,” in Proceedings of the 2015 European
Conference on Software Architecture Workshops. New York, New York,
USA: ACM Press, sep 2015, pp. 1–4.

[47] “RUBiS: Rice University Bidding System,” http://rubis.ow2.org/.
[48] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the effectiveness

of the Rainbow self-adaptive system,” in 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. IEEE,
may 2009, pp. 132–141.

[49] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: building more robust cloud applications,” in Proceedings
of the 36th International Conference on Software Engineering - ICSE
2014. New York, New York, USA: ACM, may 2014, pp. 700–711.

[50] M. Arlitt and T. Jin, “A workload characterization study of the 1998
World Cup web site,” IEEE Network, vol. 14, no. 3, pp. 30–37, 2000.

[51] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-adaptation
via quantitative verification and sensitivity analysis at run time,” IEEE
Transactions on Software Engineering, vol. 42, no. 1, pp. 75–99, Jan
2016.

[52] P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals of Operations Research, vol. 134,
no. 1, pp. 19–67, 2005.

[53] A. Weinstein and M. L. Littman, “Open-loop planning in large-scale
stochastic domains,” in Proceedings of the Twenty-Seventh AAAI Con-
ference on Artificial Intelligence, ser. AAAI’13. AAAI Press, 2013,
pp. 1436–1442.

[54] F. Celeste, F. Dambreville, and J. p. Le Cadre, “Optimal path planning
using cross-entropy method,” in 2006 9th International Conference on
Information Fusion, July 2006, pp. 1–8.

