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Motivation 

Distributed algorithms have always been important 

• File Systems, Resource Allocation, Internet, … 

 

 

Increasingly becoming safety-critical 

• Robotic, transportation, energy, medical 

 

 

Prove correctness of distributed algorithm 
implementations 

• Pseudo-code is verified manually (semantic gap) 

• Implementations are heavily tested (low coverage) 

Model Checking Distributed Applications 

http://mcda.googlecode.com 
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Synchronous Distributed Algorithm (SDA) 

Shared Variables:𝑮𝑽 = 𝑮𝑽 𝟎 , 𝑮𝑽[𝟏] Node 𝟎 = 𝒇𝟎() Node 𝟏 = 𝒇𝟏() 

𝑮𝑽𝟎 

𝑮𝑽𝟏[𝟎] = 𝒇𝟎 𝑮𝑽𝟎  𝑮𝑽𝟏 𝟏 = 𝒇𝟏(𝑮𝑽𝟎) 

𝑮𝑽𝟏 

𝑹𝒐𝒖𝒏𝒅 𝟏 

𝑮𝑽𝟐[𝟎] = 𝒇𝟎 𝑮𝑽𝟏  𝑮𝑽𝟐 𝟏 = 𝒇𝟏(𝑮𝑽𝟏) 

𝑮𝑽𝟐 

𝑹𝒐𝒖𝒏𝒅 𝟐 

𝑮𝑽𝒊[𝟎] = 𝒇𝟎 𝑮𝑽𝒊−𝟏  𝑮𝑽𝒊 𝟏 = 𝒇𝟏(𝑮𝑽𝒊−𝟏) 

𝑮𝑽𝒊 

𝑹𝒐𝒖𝒏𝒅 𝒊 

𝑮𝑽𝒊−𝟏 
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SDA Syntax 

Program with 𝑛 nodes : 𝑃(𝑛) 
• Each node has a distinct 𝑖𝑑 ∈ 1, 𝑛  

• Array 𝐺𝑉 has 𝑛 elements, 𝐺𝑉[𝑖] writable only by node with id 𝑖 

 

Each element of 𝐺𝑉 is a bit-vector of width 𝑊 ∈ ℕ 

• Of those, the first 𝑍 ∈ [0,𝑊] bits are initialized non-deterministically 

• The remaining 𝑊 − 𝑍 bits are initialized to ⊥ 

 

In each round, node with id 𝑖𝑑 executes function 𝜌 whose body is a statement 

 

   𝑠𝑡𝑚𝑡 ≔ 𝑠𝑘𝑖𝑝 | 𝑙𝑣𝑎𝑙 = 𝑒𝑥𝑝             (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡) 

                  | 𝐼𝑇𝐸 𝑒𝑥𝑝, 𝑠𝑡𝑚𝑡, 𝑠𝑡𝑚𝑡      (𝑖𝑓, 𝑡ℎ𝑒𝑛, 𝑒𝑙𝑠𝑒) 

                  | 𝐴𝐿𝐿 𝐼𝑉, 𝑠𝑡𝑚𝑡      (𝑖𝑡𝑒𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 ∶ 𝑢𝑠𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒) 

                  | 𝑠𝑡𝑚𝑡+                  (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠) 

   𝑙𝑣𝑎𝑙 ≔ 𝐺𝑉 𝑖𝑑 𝑤                                                                 (𝑙𝑣𝑎𝑙𝑢𝑒𝑠) 

   𝑒𝑥𝑝 ≔ ⊤  ⊥  𝑙𝑣𝑎𝑙  𝐺𝑉 𝑖𝑣 𝑤   𝑖𝑑  𝐼𝑉 ⋄ (𝑒𝑥𝑝+)    (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠) 
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SDA Semantics and Verification 

States are possible values of 𝐺𝑉 : denoted 𝐴 

 

Initial states : 𝐼 ⊆ 𝐴 =  𝑎  ∀𝑖 ∈ 1, 𝑛 . ∀𝑥 ∈ 𝑍 + 1,𝑊 . 𝑎 𝑖 𝑥 = ⊥ } 

 

Transition Relation : 𝑅 ⊆ 𝐴 × 𝐴 =  𝑎, 𝑎′   ∀𝑖 ∈ 1, 𝑛 . 𝑎′ 𝑖 = 𝜌 𝑎  } 

 

Specification (1-index property) 𝜙 ≔ ∀𝑖.Ψ 𝑖  

• Ψ(𝑖) is an expression with 𝑖 as only free variable 

• 𝑎 ⊨ 𝜙 defined in a natural manner 

 

Model Checking: 𝑃 𝑛 ⊨ 𝜙 ⇔ ∀𝑎 ∈ 𝐴. ∀𝑎𝐼 ∈ 𝐼. 𝑎𝐼 , 𝑎 ∈ 𝑅∗ ⇒ 𝑎 ⊨ 𝜙 

 

Parameterized Model Checking: 𝑃𝐴𝑅𝑀𝑂𝐷𝐶𝐾 𝑃,𝜙 ≡ ∀𝑛 ∈ ℕ. 𝑃 𝑛 ⊨ 𝜙 
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Key Results 

Theoretical 

1. 𝑃𝐴𝑅𝑀𝑂𝐷𝐶𝐾 𝑃, 𝑛  𝑖𝑠 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑎𝑏𝑙𝑒 

• By reducing Post’s Correspondence Problem to it 

 

2. 𝑃𝐴𝑅𝑀𝑂𝐷𝐶𝐾 𝑃, 𝑛  𝑖𝑠 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑎𝑏𝑙𝑒 𝑒𝑣𝑒𝑛 𝑖𝑓 𝑍 = 1 

• Each node has just one bit of non-determinism available 

• Reduce SDA with 𝑍 ≥ 1 to a SDA with 𝑍 = 1 

 

3. 𝐸𝑣𝑒𝑛 𝑖𝑓 𝑍 = 0, 𝑃𝐴𝑅𝑀𝑂𝐷𝐶𝐾 𝑃, 𝑛  ℎ𝑎𝑠 𝑛𝑜𝑡 𝑐𝑢𝑡𝑜𝑓𝑓 

 

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 

1. 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑃𝐴𝑅𝑀𝑂𝐷𝐶𝐾 𝑃, 𝑛  𝑏𝑦 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑎𝑟𝑟𝑎𝑦 − 𝑏𝑎𝑠𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 

• Experimental results with MCMT and CUBICLE  
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Post’s Correspondence Problem (PCP) 

Input : Two sequences of strings 𝑈 = 〈𝑢1, … , 𝑢𝑚〉 and 𝑉 = 𝑣1, … , 𝑣𝑚  

Solution : sequence of indices 𝐼 = 〈𝑖1, … , 𝑖𝑝〉 with each 𝑖𝑥 ∈ [1,𝑚] s.t. 

• 𝑢𝑖1 ∙ ⋯ ∙ 𝑢𝑖𝑝= 𝑣𝑖1 ∙ ⋯ ∙ 𝑣𝑖𝑝 

Question: Does a solution exist? 

 

Example 1 : 𝑈 = 𝑎, 𝑎𝑏, 𝑏𝑏𝑎  𝑉 = 𝑏𝑎𝑎, 𝑎𝑎, 𝑏𝑏  

• Solution = 3,2,3,1 ∶  𝑏𝑏𝑎 ∙ 𝑎𝑏 ∙ 𝑏𝑏𝑎 ∙ 𝑎 = 𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑎𝑎 = 𝑏𝑏 ∙ 𝑎𝑎 ∙ 𝑏𝑏 ∙ 𝑏𝑎𝑎 

 

Example 2 : 𝑈 = 𝑎𝑎, 𝑎𝑎𝑏, 𝑏𝑎𝑎𝑎   𝑉 = 𝑎, 𝑏𝑏, 𝑎𝑏𝑏  

• No solution : each 𝑢𝑖 longer than corresponding 𝑣𝑖 

 

Known to be undecidable in general 

• E. L. Post. A variant of a recursively unsolvable problem, 1946 
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Result 1: Reducing PCP to PARMODCK (1) 

Use nodes to construct a solution 

Each node guesses four numbers : 𝑖𝑑𝑢, 𝑝𝑜𝑠𝑢, 𝑖𝑑𝑣, 𝑝𝑜𝑠𝑣 

• Logically, it represents 𝑝𝑜𝑠𝑢𝑡ℎ letter of 𝑢𝑖𝑑𝑢 and 𝑝𝑜𝑠𝑣𝑡ℎ letter of 𝑣𝑖𝑑𝑣 

• Check if this is a legal solution 

 

Example: 𝑈 = 𝑎, 𝑎𝑏, 𝑏𝑏𝑎  𝑉 = 〈𝑏𝑎𝑎, 𝑎𝑎, 𝑏𝑏〉 Solution = 3,2,3,1  

𝒊𝒅 𝟏 𝟐 3 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 

𝒃 𝒃 𝒂 𝒂 𝒃 𝒃 𝒃 𝒂 𝒂 

𝑖𝑑𝑢 − 3 3 3 2 2 3 3 3 1 

𝑝𝑜𝑠𝑢 − 1 2 3 1 2 1 2 3 1 

𝑖𝑑𝑣 − 3 3 2 2 3 3 1 1 1 

𝑝𝑜𝑠𝑣 − 1 2 1 2 1 2 1 2 3 

Solution 

String 

Node 0 is 

special. 

Does the 

checking. 
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Result 1: Reducing PCP to PARMODCK (2) 

Example: 𝑈 = 𝑎, 𝑎𝑏, 𝑏𝑏𝑎  𝑉 = 〈𝑏𝑎𝑎, 𝑎𝑎, 𝑏𝑏〉 Solution = 3,2,3,1  

 

 

 

 

 

 

 

 

Checks: 

𝑅𝑜𝑢𝑛𝑑 1  𝑖𝑑 ≠ 1 ⇒ 1 ≤ 𝑖𝑑𝑢 ≤ 𝑚 ∧ 1 ≤ 𝑝𝑜𝑠𝑢 ≤ 𝑢𝑖𝑑𝑢  

𝑅𝑜𝑢𝑛𝑑 1  𝑖𝑑 ≠ 1 ⇒ 1 ≤ 𝑖𝑑𝑣 ≤ 𝑚 ∧ 1 ≤ 𝑝𝑜𝑠𝑣 ≤ 𝑣𝑖𝑑𝑣  

𝑅𝑜𝑢𝑛𝑑 1  𝑖𝑑 ≠ 1 ⇒ 𝑢𝑖𝑑𝑢 𝑝𝑜𝑠𝑢 = 𝑣𝑖𝑑𝑣[𝑝𝑜𝑠𝑣] 

𝑅𝑜𝑢𝑛𝑑 2   𝑖𝑑 = 2 ⇒ 𝑝𝑜𝑠𝑢 = 1 ∧ 𝑝𝑜𝑠𝑣 = 1  

𝑅𝑜𝑢𝑛𝑑 3  𝑖𝑑 > 2 ⇒ (𝑖𝑓 𝐼 𝑠𝑡𝑎𝑟𝑡 𝑎 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑡ℎ𝑒𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑛𝑜𝑑𝑒 𝑒𝑛𝑑𝑠 𝑎 𝑠𝑡𝑟𝑖𝑛𝑔,  

𝑒𝑙𝑠𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑛𝑜𝑑𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑒𝑡𝑡𝑒𝑟 𝑖𝑛 𝑚𝑦 𝑠𝑡𝑟𝑖𝑛𝑔) 

𝑈𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑅𝑜𝑢𝑛𝑑𝑠  𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑑𝑢′𝑠 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑑𝑣′𝑠 

– 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑡𝑜𝑘𝑒𝑛 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑝𝑎𝑠𝑠𝑒𝑑 𝑓𝑟𝑜𝑚 𝑙𝑒𝑓𝑡 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡 

– 𝑆𝑢𝑐𝑐𝑒𝑒𝑑𝑠 𝑖𝑓𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑚𝑎𝑡𝑐ℎ 

𝒊𝒅 𝟏 𝟐 3 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 

𝒃 𝒃 𝒂 𝒂 𝒃 𝒃 𝒃 𝒂 𝒂 

𝑖𝑑𝑢 − 3 3 3 2 2 3 3 3 1 

𝑝𝑜𝑠𝑢 − 1 2 3 1 2 1 2 3 1 

𝑖𝑑𝑣 − 3 3 2 2 3 3 1 1 1 

𝑝𝑜𝑠𝑣 − 1 2 1 2 1 2 1 2 3 
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Result 2: Undecidability with 𝒁 = 𝟏 

Possible to simulate a 𝑃(𝑛) with 𝑍 > 1 with a 𝑃 (𝑍𝑛) with 𝑍 = 1 

 

Consider the set of nodes of 𝑃  with id 1, 𝑍 + 1, 2𝑍 + 1,… 

• Denote this set of nodes by 𝑁  

 

In the first round, every node in 𝑁  copies the single non-deterministic bit 
from the 𝑍 − 1 nodes following it 

• Essentially gives every node in 𝑁  access to 𝑍 non-deterministic bits 

 

Subsequently every node in 𝑁  simulates the corresponding node of 𝑃 

• Other nodes of 𝑃  stutter 

 

For any specification 𝜙, 𝑃𝐴𝑅𝑀𝑂𝐷𝐶𝐾 𝑃, 𝜙 ⇔ 𝑃𝐴𝑅𝑀𝑂𝐷𝐶𝐾 𝑃 , 𝜙  
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Result 3: No Cutoff even with 𝒁 = 𝟎 

Theorem: For every 𝐾 ∈ ℕ there exists a specification 𝜙 and a program 
𝑃 with 𝑍 = 0 such that 𝑃 𝐾 ⊨ 𝜙 ∧ 𝑃 𝐾 + 1 ⊭ 𝜙. 

 

Proof: Consider 𝑃 where each element of 𝐺𝑉 is initialized to 0 
(completely deterministic) and 𝜌 is: 

𝑖𝑓 𝑖𝑑 > 𝐾  𝐺𝑉 𝑖𝑑 = 2; 𝑒𝑙𝑠𝑒 𝐺𝑉 𝑖𝑑 = 1; 

 

Consider specification 𝜙 ≔ ∀𝑖. 𝐺𝑉 𝑖 ≠ 2. Clearly, 𝑃 𝑛 ⊨ 𝜙 ⇔ 𝑛 ≤ 𝐾. 

∎ 

 

Open Problem: Is 𝑃𝐴𝑅𝑀𝑂𝐷𝐶𝐾 𝑃,𝜙  decidable when 𝑍 = 0? 



13 

Toward Parameterized Verification 

Sagar Chaki, July 21, 2014 

© 2014 Carnegie Mellon University 

Empirical Result 

Can reduce each 𝑃 to an array-based system (ABS) 

• ABS = 〈array of arbitrary size, set of guarded commands〉 

• Each step: enabled command selected non-deterministically and applied 

• Command updates one array element 

• Challenge: how to implement a round 

• all elements must be updated 

 

Solution : based on two phase commit protocol 

• Implement a “barrier” using “universal guards” 

• Implement Two-Phase-Commit using barrier 

• Each transaction is a round 

• Experimental results (preliminary, more work needed) in paper 
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QUESTIONS? 
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