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Abstract In the event that a system does not satisfy a spec-
ification, a model checker will typically automatically pro-
duce a counterexample trace that shows a particular instance
of the undesirable behavior. Unfortunately, the important
steps that follow the discovery of a counterexample are gen-
erally not automated. The user must first decide if the coun-
terexample shows genuinely erroneous behavior or is an ar-
tifact of improper specification or abstraction. In the event
that the error is real, there remains the difficult task of un-
derstanding the error well enough to isolate and modify the
faulty aspects of the system. This paper describes a (semi-)
automated approach for assisting users in understanding and
isolating errors in ANSI C programs. The approach, derived
from Lewis’ counterfactual approach to causality, is based
on distance metrics for program executions. Experimental
results show that the power of the model checking engine
can be used to provide assistance in understanding errors
and to isolate faulty portions of the source code.

Keywords Model checking - Error explanation -
Fault localization - Automated debugging

1 Introduction

In an ideal world, given a trace demonstrating that a system
violates a specification, a programmer or designer would
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always be able in short order to identify and correct the
faulty portion of the code, design, or specification. In the real
world, dealing with an error is often an onerous task, even
with a detailed failing run in hand. Debugging is one of the
most time consuming tasks in the effort to improve software
quality [6], and locating an error is the most difficult aspect
of the debugging process [59]. This paper describes the ap-
plication of a technology traditionally used for discovering
errors to the problem of understanding and isolating errors.

Error explanation describes approaches that aid users in
moving from a trace of a failure to an understanding of the
essence of the failure and, perhaps, to a correction for the
problem. This is a psychological problem, and it is unlikely
that formal proof of the superiority of any approach is possi-
ble. Fault localization is the more specific task of identifying
the faulty core of a system, and is suitable for quantitative
evaluation.

Model checking [16, 18, 46] tools explore the state-space
of a system to determine if it satisfies a specification. When
the system disagrees with the specification, a counterexam-
ple trace [17] is produced. This paper explains how a model
checker can provide error explanation and fault localization
information. For a program P, the process (Fig. 1) is as
follows.

1. The bounded model checker CBMC uses loop unrolling
and static single assignment to produce from P and its
specification a Boolean satisfiability (SAT) problem, S.

P + spec.

/\ counterexample

counterexample A
CBMC explain 6,7 \;/ As
1 34

S |2 S5 closest successful execution

SAT solver PBS

finds a counterexample finds closest successful execution
as measured by distance metric

Fig. 1 Explaining an error using distance metrics
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The satisfying assignments of S are finite executions of
P that violate the specification (counterexamples).

2. CBMC uses a SAT solver to find a counterexample.

3. The explain tool produces a propositional formula,
S’. The satisfying assignments of S’ are executions of
P that do not violate the specification. explain ex-
tends S’ with constraints representing an optimization
problem: find a satisfying assignment that is as similar
as possible to the counterexample, as measured by a dis-
tance metric on executions of P.

4. Explain uses the PBS [2] solver to find a successful
execution that is as close as possible to the counter ex-
ample.

5. The differences (As) between the successful execution
and the counterexample are computed.

6. A slicing step is applied to reduce the number of As the
user must examine. The As are then presented to the user
as explanation and localization.

If the explanation is unsatisfactory at this point, the user
may need to add assumptions and return to step 1 (see
Sect. 6). The most important novel contributions of this work
are the third, fourth, and sixth steps of this process: previous
approaches to error explanation did not provide a means for
producing a successful execution guaranteed to be as similar
as possible to a counter example, and lacked the notion of
causal slicing.

There are many possible approaches to error explana-
tion. A basic notion shared by many researchers in this area
[7, 28, 62] and many philosophers [56] is that to explain
something is to identify its causes. A second common in-
tuition is that successful executions that closely resemble a
faulty run can shed considerable light on the sources of the
error (by an examination of the differences in the successful
and faulty runs) [28, 49, 63].

Lewis [40] has proposed a theory of causality that pro-
vides a justification for the second intuition if we assume
explanation is the analysis of causal relationships. If expla-
nation is, at heart, about causality, and, as Lewis proposes,
causality can be understood using a notion of similarity (that
is, a distance metric), it is logical that successful executions
resembling a counterexample can be used to explain an er-
TOr.

Following Hume [33, 34, 56] and others, Lewis holds
that a cause is something that makes a difference: if there
had not been a cause ¢, there would not have been an ef-
fect e. Lewis equates causality to an evaluation on the basis
of the distance metrics between possible worlds (counter-
factual dependence) [41]. This provides a philosophical link
between causality and distance metrics for program execu-
tions.

For Lewis, an effect e is dependent on a cause ¢ at a
world w iff at all worlds most similar to w in which —c, it
is also the case that —e. Causality does not depend on the
impossibility of —¢ and e being simultaneously true of any
possible world, but on what happens when we alter w as /it-
tle as possible, other than to remove the possible cause c.
This seems reasonable: when considering the question “Was

Larry slipping on the banana peel causally dependent on
Curly dropping it?” we do not, intuitively, take into account
worlds in which another alteration (such as Moe dropping
a banana peel) is introduced. This intuition also holds for
causality in programs, despite the more restricted context of
possible causes: when determining if a variable’s value is
a cause for a failed assertion, we wish to consider whether
changing that value results in satisfying the assertion with-
out considering that there may be some other (unrelated)
way to cause the assertion to fail. Distance metrics between
possible worlds are problematic, and Lewis’ proposed crite-
ria for such metrics have been criticized on various grounds
[31, 37].

Program executions are much more amenable to mea-
surement and predication than possible worlds. The prob-
lems introduced by the very notion of counterfactuality are
also avoided: a counterfactual is a scenario contrary to what
actually happened. Understanding causality by considering
events that are, by nature, only hypothetical may make the-
oretical sense, but imposes certain methodological difficul-
ties. On the other hand, while explaining features of program
executions, this aspect of counterfactuality is usually mean-
ingless: any execution we wish to consider is just as real, and
as easily investigated, as any other. A counterexample is in
no way privileged by actuality.

If we accept Lewis’ underlying notions, but replace pos-
sible worlds with program executions and events with propo-
sitions about those executions, a practically applicable defi-
nition of causal dependence emerges:

Definition 1 (Causal dependence) A predicate e is causally
dependent on a predicate ¢ in an execution a iff:

1. ¢ and e are both true for a (we abbreviate this as c(a) A

e(a)).

2. There exists an execution b such that: —c(b) A —e(b)A
Vb . (e Ae)) = (d(a,b) <d(a,b))).

where d is a distance metric for program executions (defined
in Sect. 3). In other words, e is causally dependent on ¢ in an
execution « iff executions in which the removal of the cause
also removes the effect are more like a than executions in
which the effect is present without the cause.

Figure 2 shows two sets of executions. In each set, an ex-
ecution a, featuring both a potential cause ¢ and an effect e,
is shown. Also shown in each set is an execution b, such that
(1) neither the cause ¢ nor the effect e is present in b and (2)
that is as similar as possible to a. That is, no execution which
does not feature either ¢ or e is closer to a than b. Execution
b’ in each group is, in like manner, as close as possible to a,
and features the effect e but not the potential cause c. If b is
closer to a than b’ is (that is, d(a,b) < d(a,b’), as in the
first set of executions), we say that e is causally dependent
on c. If b’ is at least as close to a as b (as in the second set
of executions), we say that e is not causally dependent on c.

This article describes a distance metric that allows de-
termination of causal dependencies and the implementation

' Qur causal dependence is actually Lewis’ counterfactual depen-
dence.
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Fig. 2 Causal dependence

of that metric in a tool called explain [27] that extends
CBMC,? a model checker for programs written in ANSI C.
The focus of the paper, however, is not on computing causal
dependence, which is only useful after forming a hypothesis
about a possible cause ¢, but on helping a user find likely
candidates for ¢.> Given a good candidate for c, it is likely
that code inspection and experimentation are at least as use-
ful as a check for causal dependence.

The approach presented in this paper is automated in that
the generation of a closest successful execution requires no
intervention by the user; however, it may be necessary in
some cases for a user to add simple assumptions to improve
the results produced by the tool. For most of the instances
seen in our case studies, this is a result of the structure of
the property, and can be fully automated; more generally,
however, it is not possible to make use of a fully automated
refinement, as an explanation can only be evaluated by a
human user: there is no independent objective standard by
which the tool might determine if it has captured the right
notion of the incorrectness of an execution, in a sense useful
for debugging purposes. In particular, while the specifica-
tion may correctly capture the full notion of correct and in-
correct behavior of the program, it will not always establish
sufficient guidance to determine the correct executions that
are relevant to a particular failing execution. Assumptions
are used, in a sense, to refine the distance metric (instead
of the specification) by removing some program behaviors
from consideration. The frequency of this need is unknown:
only one of our examples required the addition of a non-
automatable assumption. See Sect. 6.1 for the details of this
occasional need for additional guidance.

The basic approach, presented in Sect. 4, is to explain an
error by finding an answer to an apparently different ques-
tion about an execution a: “How much of @ must be changed
in order for the error e not to occur?”’—explain answers
this question by searching for an execution, b, that is as simi-
lar as possible to @, except that e is not true for b. Typically, a
will be a counterexample produced by model checking, and

2 http://www.cs.cmu.edu/~modelcheck/cbmc/

3 Computing causal dependence using two bounded model checking
queries is described elsewhere [26].
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e will be the negation of the specification. Section 4.2 pro-
vides a proof of a link between the answer to this question
about changes to a and the definition of causal dependence.
The guiding principle in both cases is to explore the implica-
tions of a change (in a cause or an effect) by altering as little
else as possible: differences will be relevant if irrelevant dif-
ferences are suppressed.

2 Related work

This paper is an extension of the TACAS 2004 paper [25]
which originally presented error explanation based on dis-
tance metrics: we introduce further case study and experi-
mental results and a new slicing method, shedding light on
the need for user-introduced assumptions. The explain
tool is described in a CAV 2004 paper [27].

Recent work by Chechik, Tan, and others has described
proof-like and evidence-based counterexamples [14, 57].
Automatically generating assumptions for verification [20]
can also be seen as a kind of error explanation: an assump-
tion describes the conditions under which a system avoids
error. These approaches appear to be unlikely to result in
succinct explanations, as they may encode the complexity
of the transition system; one measure of a useful explana-
tion lies in how much it reduces the information the user
must consider.

Error explanation facilities are now featured in Mi-
crosoft’s SLAM [8] model checker [7] and NASA’s Java
PathFinder 2 (JPF) [60] model checker [28]. Jin, Ravi, and
Somenzi proposed a game-like explanation (directed more at
hardware than software systems) in which an adversary tries
to force the system into error [35]. Of these, only JPF uses a
(weak) notion of distance between traces, and it cannot solve
for nearest successful executions.

Sharygina and Peled [54] propose the notion of the
neighborhood of a counterexample and suggest that an ex-
ploration of this region may be useful in understanding an er-
ror. However, the exploration, while aided by a testing tool,
is essentially manual and offers no automatic analysis.

Temporal queries [13] use a model checker to fill in a
hole in a temporal logic formula with the strongest formula
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that holds for a model. Chan and others [13, 29] have pro-
posed using these queries to provide feedback in the event
that a property does not hold on a model.

Simmons and Pecheur noted in 2000 that explanation of
counter examples was important for incorporating formal
verification into the design cycle for autonomous systems,
and suggested the use of Truth Maintenance Systems (TMS)
[45] for explanation [55].

Analyses of causality from the field of artificial in-
telligence appear to rely on causal theories or more pre-
cise logical models of relationships between components
than are available in model checking of software systems
[24, 42, 48], but may be applicable in some cases. The JADE
system for diagnosing errors in Java programs makes use
of model-based techniques [43]. The program model is ex-
tracted automatically, but requires a programmer to answer
queries to manually identify whether variables have correct
values at points that are candidates for diagnosis. Wotawa
has discussed the relationship between model-based debug-
ging and program slicing [61].

Shapiro [53] introduced a technique for debugging logic
programs that relies on interaction with a user as an oracle.
Further developments based on this technique have reduced
the number of user queries (in part by use of slicing) [38].
Related techniques for debugging of programs in functional
languages, such as Haskell, rely on similar models or queries
and a semantics of the consequences of computations [4].

Fault localization and visualization techniques based on
testing, rather than verification, differ from the verification
or model-based approaches in that they rely on (and ex-
ploit) the availability of a good test suite. When an error
discovered by a model checker is not covered by a test suite,
these techniques may be of little use. Dodoo et al. [22] use
the Daikon invariant detector [23] to discover differences in
invariants between passing and failing test cases, but pro-
pose no means to restrict the cases to similar executions
relevant for analysis or to generate them from a counterex-
ample. The JPF implementation of error explanation also
computes differences in invariants between sets of success-
ful executions and counter examples using Daikon. Program
spectra [50, 30] and profiles provide the basis for a num-
ber of testing-based approaches, which rely on the presence
of anomalies in summaries of test executions. The Tarantula
tool [36] uses a visualization technique to illuminate (likely)
fault statements in programs, as does y Slice [1].

Our work was partly inspired by the success of Andreas
Zeller’s delta debugging technique [63], which extrapolates
between failing and successful test cases to find similar ex-
ecutions. The original delta-debugging work applied to test
inputs only, but was later extended to minimize differences
in thread interleavings [15]. Delta-debugging for deriving
cause—effect chains [62] takes state variables into account,
but requires user choice of instrumentation points and does
not provide true minimality or always preserve validity of
execution traces. The AskIgor project* makes cause—effect
chain debugging available via the web.

4 http://www.askigor.com

Renieris and Reiss [49] describe an approach that is quite
similar in spirit to the one described here, with the advan-
tages and limitations of a testing rather than model check-
ing basis. They use a distance metric to select a successful
test run from among a given set rather than, as in this paper,
to automatically generate a successful run that resembles a
given failing run as much as is possible. Experimental results
show that this makes their fault localization highly depen-
dent on test case quality. Section 6.3 makes use of a quan-
titative method for evaluating fault localization approaches
proposed by Renieris and Reiss.

The “slicing” technique presented in Sect. 5 should be
understood in the context of both work on program slicing
[1, 58, 64] and some work on counterexample minimization
[26, 47]. The technique presented here can be distinguished
from these approaches in that it is not a true slice, but the re-
sult of a causal analysis that can only be performed between
two executions which differ on a predicate (in this applica-
tion, the presence of an error).

Distance metrics can also be used to explain abstract
counterexamples [12], in which As (deltas) are presented in
terms of changes to predicates on program variables, rather
than in terms of concrete values. The methodology presented
in this paper is applied to the MAGIC [11] model checker,
and the resulting gains in the generality of explanations are
described. The distance metric used differs from that pre-
sented in this paper in that it does not rely on static single
assignment. The resulting metric is possibly more intuitive
than the one described in Sect. 3; however, the use of align-
ments sometimes results in serious performance problems
and occasionally produces less satisfactory explanations.

The explain tool has been extended to automatically
generate and test hypotheses about causal dependence (as
defined in Sect. 1), in order to provide some of the automatic
generalization supplied by abstract explanation [26].

This paper presents a new distance metric for program
executions, and uses this metric to provide error explana-
tions based on Lewis’ counterfactual analysis of causality.
While previous approaches have taken into account the sim-
ilarity of executions, our approach is the first to automati-
cally generate a successful execution that is maximally sim-
ilar to a counterexample. Solving this optimization problem
produces a set of differences that is as succinct as possible.
Our novel slicing algorithm then makes use of the program
semantics and the fact that we are only interested in causal
differences to further reduce the amount of information that
must be understood by a user.

3 Distance metrics for program executions

A distance metric [52] for program executions is a function
d(a, b) (where a and b are executions of the same program)
that satisfies the following properties.

1. Nonnegative property: VYa . Vb . d(a, b) > 0.
2. Zero property:Va .¥b .d(a,b) =04 a =b.
3. Symmetry:Ya . Vb . d(a,b) =d(b, a).
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1 int main () {

2 int inputl, input2, input3; //input values
3 int least = inputil; //least#0

4 int most = inputl; //most#0

5 if (most < input2) //guard#i

6 most = input2; //most#1,2

7 if (most < input3) //guard#2

8 most = input3; //most#3,4

9 if (least > input2) //guard#3

10 most = input2; //most#5,6 (ERROR!)
11 if (least > input3) //guard#4

12 least = input3; //least#1,2

13 assert (least <= most); //specification
14 }

Fig. 3 minmax.c

4. Triangle inequality: Ya . Vb . V¢ . d(a,b) +d(b,c) >
d(a,c).

In order to compute distances between program execu-
tions, we need a single, well-defined representation for those
executions.

3.1 Representing program executions

Bounded model checking (BMC) [10] also relies on a
representation for executions: in BMC, the model check-
ing problem is translated into a SAT formula whose satis-
fying assignments represent counterexamples of a certain
length.

CBMC [39] is a BMC tool for ANSI C programs. Given
an ANSI C program and a set of unwinding depths U (the
maximum number of times each loop may be executed),
CBMC produces a set of constraints that encode all exe-
cutions of the program in which loops have finite unwind-
ings. CBMC uses unwinding assertions to notify the user
if counterexamples with more loop executions are possi-
ble. The representation used is based on static single as-
signment (SSA) form [3] and loop unrolling. CBMC and
explain handle the full set of ANSI C types, structures,
and pointer operations including pointer arithmetic. CBMC
only checks safety properties, although in principle BMC
(and the explain approach) can handle full LTL [9].5

Given the example program minmax.c (Fig. 3), CBMC
produces the constraints shown in Fig. 6 (U is not needed,
as minmax.c is loop-free).® The renamed variables describe
unique assignment points: most#1 denotes the second pos-
sible assignment to most, least#2 denotes the third
possible assignment to least, and so forth. CBMC as-
signs uninitialized (#0) values nondeterministically—thus
inputl, input2, and input3 will be unconstrained
32-bit integer values. The \guard variables encode the con-
trol flow of the program (\guaxrd#1 is the value of the con-
ditional on line 5, etc.), and are used when presenting the
counterexample to the user (and in the distance metric). Con-
trol flow is handled by using ¢ functions, as usual in SSA

5 Explanation for LTL properties has been implemented for error
explanation in MAGIC [12].

6 Output is slightly simplified for readability.

form: the constraint {—10}, for instance, assigns most#2 to
either most#1 or most#0, depending on the conditional
(\guard#1) for the assignment to most#1 (the syntax is
that of the C conditional expression). Thus most#2 is the
value assigned to most at the point before the execution
of line 7 of minmax.c. The property/specification is repre-
sented by the claim, {1}, which appears below the line, indi-
cating that the conjunction of these constraints should imply
the truth of the claim(s). A solution to the set of constraints
{—1}—{—14} is an execution of minmax.c. If the solution sat-
isfies the claim, {1} (least#2 <= most#6), it is a suc-
cessful execution of minmax.c; if it satisfies the negation of
the claim, —{1} (least#2 > most#6), it is a counterex-
ample.

CBMC generates CNF clauses representing the conjunc-
tion of ({—1}A{=2}A... {—14}) with the negation of the
claim (—{1}). CBMC calls zChaff [44], which produces a
satisfying assignment in less than a second. The satisfying
assignment encodes an execution of minmax.c in which the
assertion is violated (Fig. 4).

Figure 5 shows the counterexample from Fig. 4 in terms
of the SSA form assignments (the internal representation
used by CBMC for an execution).

In the counterexample, the three inputs have values of
1, 0, and 1, respectively. The initial values of least and

Initial State

State 1 line 2 function c::main

(input1#0)
inputi = 1
State 2 line 2 function c::main
(input2#0)
input2 = 0
State 3 line 2 function c::main
(input3#0)
input3 = 1
State 4 line 3 function c::main
(least#0)
least = 1
State 5 line 4 function c::main
(most#0)
most = 1
State 12 line 10 function c::main
(most#6)
most = 0
Failed assertion: assertion line 13 function c::main
Fig. 4 counterexample for minmax.c
inputl#0 =1 most#3 =1
input2#0 = 0 most#4 =1
input3#0 = 1 \guard#3 = TRUE
least#0 = 1 most#5 = 0
most#0 = 0 most#6 = 0
\guard#1 = FALSE \guard#4 = FALSE
most#1 =0 least#1 =1
most#2 = 1 least#2 = 1
\guard#2 = FALSE

Fig. 5 counterexample values for minmax.ce



A. Groce et al.

{-14} least#0 == inputi#0

{-13} most#0 == inputi#0

{-12} \guard#1 == (most#0 < input2#0)

{-11} most#1 == input2#0

{-10} most#2 == (\guard#1 ? most#1 : most#0)
{-9} \guard#2 == (most#2 < input3#0)

{-8} most#3 == input3#0

{-7} most#4 == (\guard#2 ? most#4 : most#3)
{-6} \guard#3 == (least#0 > input2#0)

{-5} most#5 == input2#0

{-4} most#6 == (\guard#3 ? most#5 : most#4)
{-3} \guard#4 == (least#0 > input3#0)

{-2} 1least#l == input3#0

{-1} 1least#2 == (\guard#4 ? least#l : least#0)
|

{1} least#2 <= most#6

Fig. 6 Constraints generated for minmax.c

most (least#0 and most#0) are both 1, as a result of
the assignments at lines 3 and 4. Execution then proceeds
through the various comparisons: at line 5, most#0 is com-
pared to input2#0 (this is \guard#1). The guard is not
satisfied, and so line 6 is not executed. Lines 8 and 12 are
also not executed because the conditions of the if state-
ments (\guard#2 and \guard#4, respectively) are not
satisfied. The only conditional that is satisfied is at line 9,
where least#0 > input2#0. Line 10 is executed, as-
signing input?2 to most rather than least.

In this simple case, understanding the error in the code is
not difficult (especially as the comments to the code indicate
the location of the error). Line 10 should be an assignment
to least rather than to most. A good explanation for this
faulty program should isolate the error to line 10.

For given loop bounds (irrelevant in this case), all exe-
cutions of a program can be represented as sets of assign-
ments to the variables appearing in the constraints. More-
over, all executions (for fixed U) are represented as assign-
ments to the same variables. Different flow of control will
simply result in differing \guard values (and ¢ function
assignments).

3.2 The distance metric d

The distance metric d will be defined only between two exe-
cutions of the same program with the same maximum bound
on loop unwindings.” This guarantees that any two execu-
tions will be represented by constraints on the same vari-
ables. The distance, d(a, b), is equal to the number of vari-
ables to which a and b assign different values. Formally:

Definition 2 (Distance, d(a, b)) Let a and b be executions
of a program P, represented as sets of assignments, a =
{vo = valg, vy = val{,...,v, = valj} and b = {vg =

Valb, v = Valb, Uy = valﬁ}.

d(a,b) =" AG)

i=0

7 counterexamples can be extended to allow for more unwindings in

the explanation.

where

) 0 if val? =val’
AD=11 g e ” val?
l 1

Here vg, vy, vy, etc. do not indicate the first, second,
third, and so forth assignments in a considered as an ex-
ecution trace, but uniquely named SSA form assignments.
The pairing indicates that the value for each assignment in
execution a is compared to the assignment with the same
unique name in execution b. SSA form guarantees that for
the same loop unwindings, there will be a matching as-
signment in b for each assignment in @. In the running
example {vg, v{, V2, v3, ...} are {input1#0, input2#0,
input3#0, least#0, most#0, ...}, execution a could
be taken to be the counterexample (Figs. 4 and 5), and exe-
cution b might be the most similar successful execution (see
Figs. 8 and 9).

This definition is equivalent to the Levenshtein distance
[52] if we consider executions as strings where the alpha-
bet elements are assignments and substitution is the only
allowed operation.® The properties of inequality guarantee
that d satisfies the four metric properties.

The metric d differs from the metrics often used in se-
quence comparison in that it does not make use of a notion of
alignment. The SSA form based representation encodes an
execution as a series of assignments. In contrast, the MAGIC
implementation of error explanation represents an execution
as a series of states, including a program counter to repre-
sent control flow. Although viewing executions as sequences
of states is a natural result of the usual Kripke structure ap-
proach to verification, the need to compute an alignment and
compare all data elements when two states are aligned can
impose a serious overhead on explanation [12].

In the CBMC/explain representation, however, the is-
sue of alignments does not arise. Executions @ and b will
both be represented as assignments to inputl, input2,
input3, \guard#0-\guard#4, least#0-least#2,
and most#0-most#6. The distance between the execu-
tions, again, is simply a count of the assignments for which
they do not agree. This does result in certain counter-
intuitive behavior: for instance, although neither execution a
nor execution b executes the code on line 12 (\guard#4 is
FALSE in both cases), the values of 1east#1 will be com-
pared. Therefore, if the values for input3 differ, this will
be counted twice: once as a difference in input 3, and once
as a difference in least#1, despite the second value not
being used in either execution. In general, a metric based on
SSA form unwindings may be heavily influenced by results
from code that is not executed, in one or both of the exe-
cutions being compared. Any differences in such code can
eventually be traced to differences in input values, but the
weighting of differences may not match user intuitions. It is
not that information is /ost in the SSA form encoding: it is,

8 A Levenshtein distance is one based on a composition of atomic
operations by which one sequence or string may be transformed into
another.



Error explanation with distance metrics

as shown in the counterexamples, possible to determine the
control flow of an execution from the \guard or ¢ function
values; however, to take this into account complicates the
metric definition and introduces a potentially expensive de-
gree of complexity into the optimization problem of finding
a maximally similar execution.

A state and alignment-based metric avoids this peculiar-
ity, at a potentially high computational cost. Experimental
results [12] show that in some cases the “counterintuitive”
SSA form based metric may produce better explanations—
perhaps because it takes all potential paths into account.

In summary, the representation for executions presented
here has the advantage of combining precision and relative
simplicity, and results in a very clean (and easy to compute)
distance metric. The pitfalls involved in trying to align exe-
cutions with different control flow for purposes of compar-
ison are completely avoided by the use of SSA form. Ob-
viously, the details of the SSA form encoding may need
to be hidden from non-expert users (the CBMC GUI pro-
vides this service)—a good presentation of a trace may
hide information that is useful at the level of representa-
tion. Any gains in the direct presentability of the represen-
tation itself (such as removing values for code that is not
executed) are likely to be purchased with a loss of simplic-
ity in the distance metric d, as seen in the metric used by
MAGIC.

3.3 Choosing an unwinding depth

The definition of d presented above only considers execu-
tions with the same unwinding depth and therefore (due to
SSA form) the same variable assignments. However, it is
possible to extend the metric to any unwinding depth by
simply considering there to be a difference for each variable
present in the successful execution but not in the counterex-
ample. Using this extension of d, a search for a successful
execution can be carried out for any unwinding depth. It is,
of course, impossible to bound in general the length of the
closest successful execution. In fact, no successful execution
of a particular program may exist. However, given a clos-
est successful execution within some unwinding bounds, it
is possible to determine a maximum possible bound within
which a closer execution may be found. For a program P,
each unwinding depth determines the number of variables
in the SSA form unwinding of the program. If the coun-
terexample is represented by i variables, and the success-
ful execution’s unwinding requires j > i variables, then
the minimum possible distance between the counterexam-
ple and any successful execution at that unwinding depth is
j — i. Given a successful execution with distance d from a
counterexample, it is impossible for a successful execution
with unwinding depth such that j —i > d to be closer to the
counterexample.

9 Each A, as shown below, would potentially introduce a case split
based on whether the code was executed in one, both, or neither of the
executions being compared.

4 Producing an explanation

Generating an explanation for an error requires two phases:

e First, explain produces a successful execution that is
as similar as possible to the counterexample. Section 4.1
describes how to set up and solve this optimization prob-
lem.

e The second phase produces a subset of the changes be-
tween this execution and the counterexample which are
causally necessary in order to avoid the error. The sub-
set is determined by means of the A-slicing algorithm
described in Sect. 5.

4.1 Finding the closest successful execution

The next step is to consider the optimization problem of find-
ing an execution that satisfies a constraint and is as close as
possible to a given execution. The constraint is that the exe-
cution not be a counterexample. The original BMC problem
is formed by negating the verification claim V', where V is
the conjunction of all assertions, bounds checks, overflow
checks, unwinding assertions, and other conditions for cor-
rectness, conditioned by any assumptions. For minmax.c, V
is:

{1} : least#2 <= most#6

and the SAT instance S to find a counterexample is formed
by negating V:

—{1}: least#2 > most#6.

In order to find a successful execution it is sufficient to use
the original, unnegated, claim V.

The distance to a given execution (e.g., a counterexam-
ple) can be easily added to the encoding of the constraints
that define the transition relation for a program. The values
for the A functions necessary to compute the distance are
added as new constraints (Fig. 7) by the explain tool.

These constraints do not affect satisfiability; correct val-
ues can always be assigned for the As. The A values are

inputi1#0A == (inputi#0 != 1)
input2#0A == (input2#0 !'= 0)
input3#0A == (input3#0 != 1)

least#0A == (least#l !'= 1)
most#0A == (most#l !'= 1)
\guard#1 A == (\guard#1 !'= FALSE)
most#1A == (most#2 != 0)

most#2A == (most#3 != 1)
\guard#2A == (\guard#2 != FALSE)

most#3A == (most#4 != 1)
most#4A == (most#5 != 1)
\guard#3A == (\guard#3 != TRUE)
most#5A == (most#6 !'= 0)
most#6A == (most#7 != 0)

\guard#4 A == (\guard#4 '= FALSE)
least#1A == (least#2 != 1)
least#2A == (least#3 != 1)

Fig. 7 As for minmax.c and the counterexample in Fig. 4



A. Groce et al.

Initial State

State 1 line 2 function c::main

(input1#0)
inputl =1
State 2 line 2 function c::main
(input2#0)
input2 = 1
State 3 line 2 function c::main
(input3#0)
input3 =1
State 4 line 3 function c::main
(least#0)
least = 1
State 5 line 4 function c::main
(most#0)

most = 1

Fig. 8 Closest successful execution for minmax.c

used to encode the optimization problem. For a fixed a,
d(a,b) = n can directly be encoded as a constraint by re-
quiring that exactly n of the As be set to 1 in the solution.
However, it is more efficient to use pseudo-Boolean (0-1)
constraints and use the pseudo-Boolean solver PBS [2] in
place of zChaff. A pseudo-Boolean formula has the form:

n

D cibi )k

i=1
where for 1 < i < n, each b; is a Boolean variable, ¢; is a
rational constant, k£ a rational constant, and >« is one of {<,
<, >, >, =}. For our purposes, each c; is 1, and each b; is
one of the A variables introduced above.'® PBS accepts a
SAT problem expressed as CNF, augmented with a pseudo-
Boolean formula. In addition to solving for pseudo-Boolean
constraints such as d(a, b) = k,d(a,b) < k,d(a,b) > k,
PBS can use a binary search to solve a pseudo-Boolean op-
timization problem, minimizing or maximizing d(a, b). For
error explanation, the pseudo-Boolean problem is to mini-
mize the distance to the counterexample a.

From the counterexample shown in Fig. 4, we can gener-
ate an execution (1) with minimal distance from the counter
example and (2) in which the assertion on line 13 is not
violated. Constraints {—1}—{—14} are conjoined with the
A constraints (Fig. 7) and the unnegated verification claim
{1}. The pseudo-Boolean constraints express an optimiza-
tion problem of minimizing the sum of the As. The solution
is an execution (Fig. 8) in which a change in the value of
input?2 results in least <= most being true at line
13. This solution is not unique. In general, there may be a
very large set of executions that have the same distance from
a counterexample.

The values of the As (Fig. 10) allow us to examine pre-
cisely the points at which the two executions differ. The first
change is the different value for input2. At least one of the
inputs must change in order for the assertion to hold, as the

10 1n practice, several A variables (for example, changes in guards)
may be equivalent to the same CNF variable, after simplification. In
this case, the coefficient on that variable is equal to the number of As
it represents.

inputl#0 =1 most#3 =1
input2#0 = 1 most#4 = 1
input3#0 = 1 \guard#3 = FALSE
least#0 = 1 most#5 = 1
most#0 = 1 most#6 = 1
\guard#1 = FALSE \guard#4 = FALSE
most#1 =1 least#1 =1
most#2 = 1 least#2 = 1
\guard#2 = FALSE

Fig. 9 Closest successtul execution values for minmax.c

Value
Value

changed:
changed:

Guard changed:

input2#0 from O to
most#1 from O to 1
file minmax.c line
least#0 > input2#0
file minmax.c line

1

6 function c::main
(\guard#3) was TRUE
9 function c::main

Value changed: most#5 from O to 1
file minmax.c line 10 function c::main
Value changed: most#6 from 0 to 1

Fig. 10 A values (A = 1) for execution in Fig. 8

other values are all completely determined by the three in-
puts. The next change is in the potential assignment to most
at line 6. In other words, a change is reported at line 6 despite
the fact that line 6 is not executed in either the counterex-
ample or the successful execution. It is, of course, trivial to
hide changes guarded by false conditions from the user; such
changes are retained in this presentation in order to make the
nature of the distance metric clear. Such assignments are au-
tomatically removed by the A-slicing technique presented
in Sect. 5 (see Fig. 16). This is an instance of the counter-
intuitive nature of the SSA form: because the condition on
line 5 is still not satisfied (indeed, none of the guards are sat-
isfied in this successful execution), the value of most which
reaches line 7 (most#2) is not changed. While one of the
potential values for most at the merge point is altered, the ¢
function, i.e., the conditional split on the guard for most#2,
retains its value from the counter example. The next change
occurs at the guard to the erroneous code: 1east#0 is no
longer less than input2#0, and so the assignment to most
at line 10 is not executed. The potential value that might have
been assigned (most#5) is also changed, as input2 has
changed its value. Finally, the value of most that reaches the
assertion, most#6, has changed from 0 to 1 (because line
10 has not been executed, although in this case executing
line 10 would not change the value of most). The explana-
tion shows that not executing the code at line 10, where the
fault appears, causes the assertion to succeed. The error has
been successfully isolated.

4.2 Closest successful execution As and causal dependence

The intuition that comparison of the counterexample with
minimally different successful executions provides informa-
tion as to the causes of an error can be justified by showing
that As from a (closest) successful execution are equivalent
to a cause c:

Theorem 1 Let a be the counterexample trace and let b be
any closest successful execution to a. Let D be the set of As
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for which the value is not 0 (the values in which a and b
differ). If § is a predicate stating that an execution disagrees
with b for at least one of these values, and e is the propo-
sition that an error occurs, e is causally dependent on § in
a.

Proof A predicate e is causally dependent on § in a iff for all
of the closest executions for which —§ is true, —e is also true.
Since —§ only holds for executions which agree with b for
all values in D, =§(b) must hold. Additionally, —e(b) must
be true, as b is defined as a closest successful execution to a.
Assume that some trace b’ exists, such that =§(b’) A e(b) A
d(a,b’) < d(a,b). Now, b’ must differ from b in some value
(as e(b’) A —e(b)). However, b’ cannot differ from b for any
value in D, or 8§(b") would be true. Thus, if b’ differs from b
in a value other than those in D, b’ must also differ from a in
this value. Therefore, d(a, b') > d(a, b), which contradicts
our assumption. Hence, e must be causally dependent on §
ina.

In the running example minmax.c, § is the predi-
cate (input3#0 != 0) V (most#3 != 0) V
(least#l != 0) VvV (least#2 != 0). Finding the
closest successful execution also produces a predicate c(8)
on which the error is causally dependent. Actually, this
proof holds for any successful execution. Minimizing the
distance serves to minimize the number of terms in 6. A
& with minimal terms can be used as a starting point for
hypotheses about a more general cause for the error.

More generally, this proof should hold for any metric
which can be formulated in terms of a Levenshtein distance
such that operations can be represented by mutually exclu-
sive independent terms that can be conjoined (as with the
atomic changes to the SSA form representation). Such a for-
mulation should be possible for the non-SSA form metric
used with abstract explanation [12]; however, the reduction
to atomic terms in that case is considerably less natural, and
the value of an explanation as a conjunction in terms of pred-
icates on states and predicate values once alignment and po-
sition are taken into account is dubious.

5 A-slicing

A successful path with minimal distance to a counterexam-
ple may include changes in values that are not actually rel-
evant to the specification. For example, changes in an input
value are necessarily reflected in all values dependent on that
input.

Consider the program and A values in Figs. 11 and 12.
The change to z is necessary but also irrelevant to the asser-
tion on line 14. Various static or dynamic slicing techniques
[58] would suffice to remove the unimportant variable z.
Generally, however, static slicing is of limited value as there
may be some execution path other than the counterexample
or successful path in which a variable is relevant. Dynamic
slicing raises the question of whether to consider the input
values for the counterexample or for the successful path.

9
1 int main () {
2 int inputl, input2;
3 intx=1,y=1, z = 1;
4 if (inputi > 0) {
5 x += 5;
6 y += 6;
7 z += 4;
8
9 if (input2 > 0) {
10 x += 6;
11 y += 5;
12 z += 4;
13
14 assert ((x < 10) || (y < 10));
15 }

Fig. 11 slice.c

Value changed:
Guard changed:

input2#0 from 1 to O
input2#0 > 0 (\guard#2) was TRUE
line 9 function c::main

Value changed: x#4 from 12 to 6

line 10 function c::main
Value changed: y#4 from 12 to 7

line 11 function c::main
Value changed: =z#4 from 9 to 5

line 12 function c::main

Fig. 12 A values for slice.c

If we assume a failing run with the values 1 and 1 for
inputl and input?2, a typical dynamic slice on the ex-
ecution would indicate that lines 2—6, 9—11 are relevant. In
this case, however, the explanation technique has already fo-
cused our attention on a subset of the failing run: no changes
appear other than at lines 9—12. If dynamic slicing was ap-
plied to these A locations rather than the full execution, lines
9-11 would be considered relevant, as both x and y influ-
ence the assertion at line 14. Starting with differences rather
than the full execution goes beyond the reductions provided
by a dynamic slice.

Notice, however, that in order to avoid the error, it is not
required that both x and y change values. A change in either
x or y is sufficient. It is true that in the program as written,
a change is only observed in x when a change is also ob-
served in y, but the basic assumption of error explanation is
that the program’s behavior is incorrect. It might be useful to
observe (which dynamic slicing will not) that within a sin-
gle execution two routes to a value change that removes the
observed error potentially exist.

This issue of two causal “routes” within an execution is
independent of the possibility that there may be more than
one successful execution at a particular distance. In the case
of slice.c, there are clearly two possible explanations based
on two executions at the same distance from the counterex-
ample: one in which input1 is altered and one in which
input?2 is altered. If multiple explanations at the same dis-
tance exist, explain will arbitrarily select one. In the event
that this choice reflects a way to avoid the consequences of
an error rather than capturing the faulty code, assumptions
must be used to narrow the search space, as described in
Sect. 6.1. The A-slicing technique assumes that a single ex-
planation has already been chosen. It should be noted that
A-slicing can sometimes be used to “detect” a bad choice of
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explanation (as discussed in Sect. 6.3) in that an explanation
may be reduced to a very small set of As that clearly cannot
contain a fault.

The same approach used to generate the A values can be
used to compute an even more aggressive “dynamic slice.”
In traditional slicing, the goal is to discover all assignments
that are relevant to a particular value, either in any possible
execution (static slicing) or in a single execution (dynamic
slicing). In reporting A values, however, the goal is to dis-
cover precisely which differences in two executions are rel-
evant to a value. Moreover, the value in question is always
a predicate (the specification). A dynamic slice is an answer
to the question: “What is the smallest subset of this program
which always assigns the same values to this variable at this
point?” A-slicing answers the question “What is the small-
est subset of changes in values between these two executions
that results in a change in the value of this predicate?”

To compute the A-slice, we use the same A and pseudo-
Boolean constraints as presented above. The constraints on
the transition relation, however, are relaxed. For every vari-
able v; such that A(i) = 1 in the counterexample with con-
straint v; = expr, and values Valf and Valib in the counterex-
ample and closest successful execution, respectively, a new
constraint is generated:

(v,- = Valf) \% ((v,- = V‘dlf’) A = expr))

That is, for every value in this new execution that
changed, the value must be either the same as in the orig-
inal counterexample or the same as in the closest successful
run. If the latter, it must also obey the transition relation, as
determined by the constraint v; = expr. For values that did
not change (A (i) = 0) the constant constraint v; = val{ is
used.

Consider the SSA form variable x#3, which has a value
of 12 in both the counterexample (a) and the successful exe-
cution (b). The A value associated with x#3 is 0, and so the

old constraint!! for x#3, x#3 == x#2 + 6is replaced in
the A-slicing constraints with the constant assignment x#3
== 12.

The variable y#4, on the other hand, is assigned a value
of 12 in the counterexample (a) and a value of 7 in the
successful execution (b), and is therefore associated with
a A value of 1. The constraint for this variable is y#4
== (\guard#2 ? y#3 y#2). To produce the new
constraint on y#4 for A-slicing, we take the general form
above and substitute y#4 for v;, 12 for val?, 7 for valﬁ’ , and
(\guard#2 ? y#3 y#2) for expr:

(y#4 == 12) || ((y#4 == 7)
(\guard#2 ? y#3 v#2)))

The “execution” generated from these constraints may
not be a valid run of the program (it will not be, in any case
where the slicing reduces the size of the As). However, no
invalid state or transition will be exposed to the user: the
only part of the solution that is used is the new set of As.

&& (y#4 ==

T Constraints are always the same for both counterexample and suc-
cessful execution.

These are always a subset of the original As. The improper
execution is only used to focus attention on the truly neces-
sary changes in a proper execution. The change in the transi-
tion relation can be thought of as encoding the notion that we
allow a variable to revert to its value in the counterexample
if this alteration is not observable with respect to satisfying
the specification.
The A-slicing algorithm is as following.

1. Produce an explanation (a set of As) for a counter exam-
ple as described in Sect. 4.1.

2. Modify the SAT constraints on the variables to reflect the
As between the counterexample and the chosen closest
successful execution by

e replacing the constraints for variables in the set of As
with:

(vi = val?) vV ((vi = Vall-b) A (v = expr))

e and replacing the constraints for all other variables
with

v; = val!

(which is the same as v; = valf-’ , in this case).

3. Use PBS to find a new (potentially better) solution to
the modified constraint system, under the same distance
metric as before.

Figure 13 shows some of the original constraints for
slice.c. The modified constraints used for computing the A-
slice are shown in Fig. 14. The relaxation of the transition
relation allows for a better solution to the optimization prob-
lem, the A-slice shown in Fig. 15. Another slice would re-
place y with x. It is only necessary to observe a change in
either x or y to satisfy the assertion. A-slicing produces ei-
ther lines 9 and 10 or 9 and 11 as relevant, while dynamic
slicing produces the union of these two routes to a changed
value for the assertion.

{-7} \guard#2 == (input2#0 > 0)
{-6} x#3 == x#2 + 6

{-5} y#3 == y#2 + 5

{-4} z#3 == z#2 + 4
{-3}
{-2}
{-1}

- x#4 == (\guard#2 ? x#3 : x#2)
= y#4 == (\guard#2 7 y#3 : y#2)
- z#4 == (\guard#2 ? z#3 : z#2)

{1} \guard#0 => x#4 < 10 || y#4 < 10

{-7} \guard#2 == (input2#0 > 0)
{-8} =x#3 == 12
{-5} y#3 == 12
{-4} =z#3 == 9
{-3} (x#4 == 12) ||
((x#4 == 8) && (x#4 == (\guard#2 7 x#3 : x#2)))
{-2} (y#4 == 12) ||
((y#4 == 7) && (y#4 == (\guard#2 7 y#3 : y#2)))
{-1} (z#4 == 9) ||
((z#4 == 5) &k (z#4 == (\guard#2 7 z#3 : z#2)))

I
{1} \guard#0 => x#4 < 10 || y#4 < 10

Fig. 14 A-slicing constraints for slice.c
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11

Value changed:
Guard changed:

input2#0 from 1 to O

input2#0 > 0 (\guard#2) was TRUE
line 9 function c::main

Value changed: y#4 from 12 to 7

Fig. 15 A-slice for slice.c

Value changed:
Guard changed:

input2#0 from 0 to 1
least#0 > input2#0 (\guard#3) was TRUE
file minmax.c line 9 function c::main

Value changed: most#6 from 0 to 1

Fig. 16 A-slice for minmax.c

The A-slicer can be used to produce all of the possi-
ble minimal slices of a set of differences (in this case, these
consist of a change to x alone and a change to y alone),
indicating the possible causal chains by which an error can
be avoided, when the first slice produced does not help in
understanding the error. Additional slices can be produced
by adding a constraint to the SAT representation that re-
moves the latest slice from the set of possible solutions (i.e.,
a blocking clause). The new set of constraints are given to
PBS, along with a pseudo-Boolean constraint restricting so-
lutions to those at the same distance as the previous slice(s).
This can be repeated (growing the constraints by one block-
ing clause each time) until the PBS constraints become un-
satisfiable, at which point all possible slices have been pro-
duced. This division into causal “routes” is not a feature of
traditional dynamic slicing.

Revisiting the original example program, we can apply
A-slicing to the explanation in Fig. 10 and obtain the smaller
explanation shown in Fig. 16.

In this case, the slicing serves to remove the changes in
values deriving from code that is not executed that are intro-
duced by the reliance on SSA form.

5.1 Explaining and slicing in one step

The slicing algorithm presented above minimizes the
changes in a given successful execution, with respect to a
counterexample. However, it seems plausible that in some
sense this is solving the wrong optimization problem: per-
haps what we really want is to minimize the size of the final
slice, not to minimize the pre-slicing As. It is not immedi-
ately clear which of two possible optimization problems will
best serve our needs:

e Find an execution of the program P with minimal dis-
tance from the counterexample a. This distance, natu-
rally, may take into account behavior that is irrelevant to
the erroneous behavior and will be sliced away.

e Find an execution of the program P that minimizes the
number of relevant changes to the counterexample a
(where relevance is determined by A-slicing).

We refer to the second technique as one-step slicing as
the execution and slice are computed at the same time. Be-
fore returning to the issue of which approach is best, we will
demonstrate that solving the second optimization problem is
indeed feasible.

5.1.1 Naive approach

The simplest approach to computing a one-step slice would
be to use the slicing constraints in place of the usual SSA
unwinding in the original search for a closest execution. The
constraint used in the two-phase approach:

(vi =val?) v ((vi = valf?) A (v = expr))

relies upon a knowledge of valf’ from an already discovered
closest successful execution. Unfortunately, removing this
term to produce the constraint:

(vi = val?) v (v; = expr)

fails to guarantee that the set of observed changes will be
consistent with any actual execution of the program (or even
that each particular changed value will be contained in any
valid execution of the program).

5.1.2 Shadow variables

In order to preserve the property that the slice is a subset of
an actual program execution, the one-step slicing algorithm
makes use of shadow variables.

For each assignment in the original SSA, a shadow copy
is introduced, indicated by a primed variable name. For each
shadow assignment, all variables from the original SSA are
replaced by their shadow copies, e.g.

Vg = V3 + Vs
becomes
Vg = Vs + s

and the constraints ensuring a successful execution are ap-
plied to the shadow variables. In other words, the shadow
variables are exactly the constraints used to discover the
most similar successful execution: the shadow variables are
constrained to represent a valid successful execution of the
program. Using As based on the shadow variables would
give results exactly equivalent to the first step of the two-
phase algorithm, in that the only change is the priming of
variables.

The slicing arises from the fact that the distance met-
ric is not computed over the shadow variables. Instead,
the shadow variables are used to ensure that the observed
changes presented to a user are a subset of a single valid suc-
cessful execution. The As for the distance metric are com-
puted over non-primed variables constrained in a manner
very similar to the first A-slicing algorithm:

(vi = val?) v ((vi = val}) A (v; = expr))

with Valib replaced by val;. Rather than first computing a
minimally distant successful execution, the one-step slicing
algorithm produces a (possibly non-minimally distant) suc-
cessful execution as it computes a minimal slice. Because it
cannot be known which variables will be unchanged, there
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{-12} x#3’ == 6 + x#2’
{-11} (x#3 == 12) || ((x#3 == x#3’) && (x#3 == 6 + x#2))
{-10} y#3’ == 5 + y#2’
?9?‘: (y#3 == 12) || ((y#3 == y#3’) && (y#3 == 5 + y#2))
-8 z#3’ == 4 + z#2’
{-7} (z#3 == 9) || ((2#3 == z#3’) && (z#3 == 4 + z#2))
{-6} =x#4’ == (\guard#2’ ? x#3’ : x#2’)
{-5} (x#a == 12) || ((x#4 == x#4’) &&

(x#4 == (\guard#2 ? x#3 : x#2)))
{-4} y#4’ == (\guard#2’ 7 y#3’ : y#2)
{-3} (y#4 == 12) || ((y#4 == y#4’) &&

(y#4 == (\guard#2 ? y#3 : y#2)))
{-2} =z#4’ == (\guard#2’ 7 z#3’ : z#2)
{-1} (z#4 == 9) || ((z#4 == z#4’) &&

(z#4 == (\guard#2 ? z#3 : z#2)))
|
{1} \guard#0 => x#4 < 10 || y#4 < 10
{2} \guard#0’ => x#4’ < 10 || y#4’ < 10

Fig. 17 One-step A-slicing constraints for slice.c

are no constant constraints as in the two-phase algorithm (re-
call that the constant constraints are just a simplification of
the above expression, in any case).

The As are computed over the non-shadow variables us-
ing the same distance metric as in both steps of the two-
phase algorithm. The As that are reported to the user use the
values from the non-primed variables: however, for all actual
changes, this will match the shadow value, which guarantees
that all changes are a subset of a valid successful execution.
Figure 17 shows a subset of the shadow and normal con-
straints produced for slice.c. In the case of slice.c, slicing in
one-step produces no changes: the slice is already minimal.

5.1.3 Disadvantages of one-step slicing: The relativity
of relevance

Interestingly, when the results of one-step and two-phase
slicing differ, it is generally the case that the one-step ap-
proach produces less useful results. Table 2 in Sect. 6.4
shows the results for applying one-step slicing to various
case studies. The one-step approach does not provide a sig-
nificant improvement in localization over the original coun-
terexamples, and is considerably less effective than the two-
phase algorithm (results in Table 1): the explanations pro-
duced are, on average, of much lower quality, and take
longer to produce.

That the two-phase approach is faster is not surprising.
The PBS optimization problems in both phases will always
be smaller than that solved in the one-step approach (by a
factor of close to two, due to the need for shadow variables).
The slicing phase is also highly constrained: setting one bit
of any program variable may determine the value for 32 (or
more) SAT variables, as each SSA form value has only two
possible values.

The most likely explanation for the poor explanations
produced by one-step slicing is that it solves the wrong op-
timization problem. In A-slicing, “relevance” is not a de-
terministic artifact of a program and a statement, as it is in
static slicing. Instead, relevance is a function of an explana-

tion: the A-slicing notion of relevance only makes sense in
the context of a given counterexample and successful exe-
cution. If the successful execution is poorly chosen, the re-
sulting notion of relevance (and hence the slice) will be of
little value. Optimizing the size of the final slice is unwise
if it is possible for a slice to be small because it is based
on a bad explanation—and, as shown in Sect. 6, this is cer-
tainly possible. It is not so much that optimizing over “ir-
relevant” changes is desirable, but that it is impossible to
know which changes are relevant until we have chosen an
execution. Given that the distance metric already precludes
irrelevant changes that are not forced by relevant changes,
it is probably best to simply optimize the distance between
the executions and trust that A-slicing will remove irrelevant
behavior—once we have some context in which to define
relevance.

An appealing compromise would be to compute the orig-
inal distance metric only over SSA form values and guards
present in a static slice with respect to the error detected in
the original counterexample.

6 Case studies and evaluation

Two case studies provide insight into how error explanation
based on distance metrics performs in practice. The TCAS
resolution advisory component case study allows for com-
parison of fault localization results with other tools, includ-
ing a testing approach also based on similarity of successful
runs. The uC/OS-II case study shows the applicability of the
explanation technique to a more realistically sized example
taken from production code for the kernel of a Real-Time
Operating System (RTOS). The fault localization results for
both studies are quantitatively evaluated in Sect. 6.3.

6.1 TCAS case study

Traffic Alert and Collision Avoidance System (TCAS) is an
aircraft conflict detection and resolution system used by all
US commercial aircraft. The Georgia Tech version of the
Siemens suite [51] includes an ANSI C version of the Reso-
lution Advisory (RA) component of the TCAS system (173
lines of C code) and 41 faulty versions of the RA component.
A previous study of the component using symbolic execu-
tion [21] provided a partial specification that was able to de-
tect faults in 5 of the 41 versions (CBMC'’s automatic array
bounds checking detected 2 faults). In addition to these as-
sertions, it was necessary to include some obvious assump-
tions on the inputs.!?

Variation #1 of the TCAS code differs from the correct
version in a single line (Fig. 18). A > comparison in the
correct code has been changed into a > comparison on line
100. Figure 19 shows the result of applying explain to the

12 cBMC reports overflow errors, so altitudes over 100,000 were pre-
cluded (commercial aircraft at such an altitude would be beyond the aid
of TCAS in any case).
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100c100
// (correct version)
< result = !(Own_Below_Threat()) || ((Own_Below_Threat()) &&
(! (Down_Separation >= ALIM())));
// (faulty version #1)
> result = !(Own_Below_Threat()) || ((Own_Below.Threat()) &&
(! (Down_Separation > ALIM())));

Fig. 18 Diff of correct TCAS code and variation #1

Value changed:
Value changed:

Input_Down_Separation#0 from 400 to 159
P1_BCond#1 from TRUE to FALSE
line 255 function c::main

Fig. 19 First explanation for variation #1 (after A-slicing)

PrB = (ASTEn && ASTUpRA);

P1_BCond = ((Input_Up_Separation < Layer_Positive RA_Alt_Thresh) &&
(Input_Down_Separation >= Layer_Positive RA_Alt_Thresh));
assert (! (P1_BCond && PrB)); // P1.BCond -> ! PrB

Fig. 20 Code for violated assertion

counterexample generated by CBMC for this error (after A-
slicing). The counterexample passes through 90 states before
an assertion (shown in Fig. 20) fails.

The explanation given is not particularly useful. The as-
sertion violation has been avoided by altering an input so
that the antecedent of the implication in the assertion is not
satisfied. The distance metric-based technique is not always
fully automated; fortunately user guidance is easy to sup-
ply in this case. We are really interested in an explanation
of why the second part of the implication (PrB) is true
in the error trace, given that P1_BCond holds. To coerce
explain into answering this query, we add the constraint
assume (P1_BCond) ; to variation #1. After model check-
ing the program again we reapply explain. The new ex-
planation (Fig. 22) is far more useful.

In this particular case, which might be called the
implication-antecedent problem, automatic generation of
the needed assumption is feasible: the tool only needs to ob-
serve the implication structure of the failed assertion, and
that the successful execution falsifies the antecedent. An as-
sumption requiring the antecedent to hold can then be intro-
duced. The original counterexample is still valid, as it clearly
satisfies the assumption.'? As noted in the introduction it is
not to be expected that all assumptions about program be-
havior that are not encoded directly in the specification can
be generated by the tool. In some cases, users may need to
augment a program with subtle assumptions that the distance
metric and specification do not capture.

Observe that, as in the first explanation, only one in-
put value has changed. The first change in a computed
value is on line 100 of the program—the location of
the fault! Examining the source line and the counterex-
ample values, we see that ALIM () had the value 640.
Down_Separation also had a value of 640. The subex-
pression (! (Down_Separation > ALIM())) has a

13" A new counterexample is used in the TCAS example to avoid hav-
ing to adjust line numbers, but an automatically generated assumption
would not require source code modification.

value of TRUE in the counterexample and FALSE in the
successful run. The fault lies in the original value of TRUE,
brought about by the change in comparison operators and
only exposed when ALIM () = Down_Separation. The
rest of the explanation shows how this value propagates to
result in a correct choice of RA.

Figures 21 and 23 show the explanation process as it ap-
pears in the explain GUI. The error is highlighted in red
(black), and all source lines appearing in the explanation are
highlighted in orange (gray). Note that although the coun-
terexample in the screenshots is actually for a different as-
sertion violation (CBMC’s initial settings determine which
counterexample is produced), the localization information is
unchanged.

For one of the five interesting14 variations (#40), a use-
ful explanation is produced without any added assumptions.
Variations #11 and #31 also require assumptions about the
antecedent of an implication in an assertion. The final varia-
tion, #41, requires an antecedent assumption and an assump-
tion requiring that TCAS is enabled (the successful execu-
tion finally produced differs from the counter example to
such an extent that changing inputs so as to disable TCAS
is a closer solution). The second assumption differs from the
implication-antecedent case in that adding the assumption
requires genuine understanding of the structure and behav-
ior of TCAS. Automation of this kind of programmer knowl-
edge of which behaviors are relevant to a particular coun-
terexample (e.g., that comparison to executions in which
TCAS does not activate is often meaningless) is implausible.

6.2 uC/OS-II case study

wC/OS-11' is a real-time multitasking kernel for micropro-
cessors and microcontrollers. CBMC applied to a (now su-
perseded) version of the kernel source discovered a locking
protocol error that did not appear in the developers’ list of
known problems with that version of the kernel. The checked
source code consists of 2,987 lines of C code, with heavy use
of pointers and casts. The counterexample trace contains 43
steps (passing through 82 states) and complete values for
various complex data structures used by the kernel. Reading
this counterexample is not a trivial exercise.

Figure 24 shows the basic structure of the code con-
taining the error. For this error, the actual conditions in the
guards are irrelevant: the error can occur even if various con-
ditions are mutually exclusive, so long as the condition at
line 1927 is not invariably false. Figure 25 shows the expla-
nation for the error produced by explain.

The ©nC/OS locking protocol requires that the func-
tion OS_EXIT_CRITICAL should never be called twice
without an intervening OS_ENTER_CRITICAL call. The
code guarded by the conditional on line 1927 (and thus

14 The two errors automatically detected by CBMC are constant-
valued array indexing violations that are “explained” sufficiently by
a counter example trace.

15 http://www.ucos-ii.com/
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File Project Trace Window Help
fcasviac
233; X
234: 1P
i P1_ACond = {{Input_Up_Separation >= Layer_Positive_RA_AIlt_Thresh) &&
236: (Input_Down_Separation < Layer_Positive_RA_AIt_Thresh));
237;
238: P1_BCond = ((Input_Up_Separation < Layer_Positive_RA_AI_Thresh) &&
239: (Input_Down_Separation »= Layer_Positive_RA_Alt_Thresh));
240:
241: assume(P1_BCond);
242;
243; asserti!ﬁl_.‘\(:ond a& PrAR; # P1_ACond - = | Pré,
244: =5
245:
248: Pz
247;
248: P2_aCond = ((Input_Up_Separation < Layer_Positive_RA_Alt_Thresh) && M|
249; (Input_Down_Separation < Layer_Positive_RA_Alt_Thresh) &&
250: gingul Uﬂ Segaratiun > InEut Down Separatlonn: /
Sources | TraJ:esI Errors Ou1put| Debug |
SAT checker. negaled claim is SATISFIABLE, i.e., does not hold =
assertion
‘Writing counterexample file tmp.ce_. 1
Varificatinn failad /
Name Value
Up_Separation 615 (00000000000000000000001001100111) KY
need_downward_RA FALSE
need_upward_RA TRUE
Input_Alt_Layer_Value 2 (00000000000000000000000000000010)
Input_Climb_Inhibit TRUE |
Input_Cur_Vertical_Sep 46766 (00000000000000001011011010101110)
Input_Down_Separation 640 (00000000000000000000001010000000)
Input_High_Confidence TRUE #
! untitied [unnamed: 77 of 78 lassertion
Fig. 21 Explaining tcasvl.c
Value changed: Input_Down_Separation#0 from 500 to 504 . .
Value changed: Down_Separation#1 from 500 to 504 moving the Call .tO OS—EXIT—CRI'I.‘ICAL) and the Var.la.ble
line 215 function c::main error, which is set by the code in the branch. A-slicing
Value changed: result#l from TRUE to FALSE :
line 100 function c::Non Crossing Biased Climb removes the Change mn errpr. .
Value changed: result#3 from TRUE to FALSE The source code for this branch should contain a re-
Value changed: tmp#l from TRUE to FALSE o ) turn statement, forcing an exit from the function OS-
line 106 function c::Non Crossing Biased Climb
Guard changed: \guard#l && tmp#1 (\guard#7) was TRUE SemPend (the return should appear between the as-
line 144 function c::alt_sep_test signment at line 1931 and the end of the block at line
Value changed: need_upward RA#1 from TRUE to FALSE 1932) it d t. Th P £ 11 ti
lins 944 SunEbion o6 :alY Eap bant ; it does not. The missing return allows execution
Guard changed: \guard#15 && need_upward RA#1 (\guard#16) to proceed to a condition on line 1934. Both the if and
vas TRUE else branches of this conditional eventually force a call to
line 152 function c::alt_sep_test . .
Guard changed: \guard#15 && !'need_upward RA#1 (\guard#17) OS_EXIT_CRITICAL, Vlolatlng the locklng pI'OtOCO] when-
was FALSE ever the guard at line 1927 is satisfied. explain has cor-
line 152 function c::alt_sep_test . . . .
Guard changed: \guard#17 && !need downward RA#1 (\guard#19) rectly localized the error as far as is possible. The problem is
was FALSE a code omission, which prevents the explanation from pin-
line 156 function c::alt_sep-test C . .
Value changed: ASTUpRA#2 from TRUE to FALSE pointing the precise }me .of ‘the error (no change between
Value changed: ASTUpRA#3 from TRUE to FALSE executions can occur in missing source code, obviously), but
Value changed: ASTUpRA#4 from TRUE to FALSE the explanation has narrowed the fault down to the four lines
Value changed: PrB#1 from TRUE to FALSE

line 230 function c::main

Fig. 22 Second explanation for variation #1 (after A-slicing)

not executed in the successful execution) makes a call to
OS_EXIT_CRITICAL and sets a value to 1. The explana-
tion indicates that the error in the counterexample can be
avoided if the guard on line 1927 is falsified. This change in
control flow results in a change in the variable LOCK (by re-

of code guarded by line 1927.

CBMC produces a counterexample for C/OS-II in 44
s, and explain generates an explanation in 62 s. A-slicing
requires an additional 59 s, but is obviously not required in
this case. The SAT instance for producing a counterexample
consists of 235,263 variables and 566,940 clauses. The PBS
instance for explanation consists of 236,013 variables and
568,989 clauses, with 69 variables appearing in the pseudo-
Boolean constraint.
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File Project Trace Window Help

fcasvlac
a1: _Bool Non_Crossing_Biased_Climb() K
9220 |
93: int upward_preferred;
94: int upward_crossing_situation;
35: _Bool result;
96:
a7: upward_preferred = Inhibit_Biased_Climb() > Down_Separation; m
98: if (upward_preferred)
93: {
100: = result = |{Own_Below_Threat() || ((Cwn_Below_Threat()) && ((Down_Separation > ALIM{));
101: }
102: else
103:
104: result = Own_Above_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM();
1085: }
106: refumn result; 7
Sources | Tracasl Errors Ouiputl Dahugl
DIElas aner minimizaton. Y
Yalue changed: Input_Down_Separation_1#0 from 640 to 654
Yalue changed: result_1#1 from TRUE o FALSE
file tcasvia.c line 100 function c:Non_Crossing_Biased_Climb
Yalue changed: result_1#3 from TRUE to FALSE -l
Guard changed: result_1#3 && ‘\guardel (\guard#7) was TRUE /|
- Walue
LA [laiaieie e e e e TOT 13
TRUE
46766 (00000000000000007011071010101110) _1
__CLassing_Biased_Descend /
| !unﬁﬂelﬂ explicas.log: 46 of 84 Eassertlon

Fig. 23 Correctly locating the error in tcasvl.c

1925 0S_ENTER-CRITICALQ);
1927 if (...) {
1929  OS_EXIT_CRITICALQ);

1931 (kxerr) = 1;

/* missing return here! */

1932 }

1934 if ... A

1938 0S_EXIT_CRITICAL();
1941 } else {

1943 if (.. {

1945 0S_EXIT_CRITICALQ);

1948 } else {

1956 0S_EXIT_CRITICALQ);

1981 return;

Fig. 24 Code structure for uC/OS-II error

Guard changed: (...) && \guard#1 (\guard#2) was TRUE
line 1927 function c::0SSemPend

Value changed: LOCK#9 from O to 1
Value changed: error#3 from 1 to O

Fig. 25 Explanation for £C/OS-II error

6.3 Evaluation of fault localization

Renieris and Reiss [49] propose a scoring function for evalu-
ating error localization techniques based on program depen-
dency graphs (PDGs) [32]. A PDG is a graph of the structure
of a program, with nodes (source code lines in this case) con-
nected by edges based on data and control dependencies. For
evaluation purposes, they assume that a correct version of a
program is available. A node in the PDG is a faulty node if
it is different than in the correct version. The score assigned
to an error report (which is a set of nodes) is a number in the
range 0—1, where higher scores are better. Scores approach-
ing 1 are assigned to reports that contain only faulty nodes.
Scores of 0 are assigned to reports that either include every
node (and thus are useless for localization purposes) or only
contain nodes that are very far from faulty nodes in the PDG.
Consider a breadth-first search of the PDG starting from the
set of nodes in the error report R. Call R a layer, BFSy. We
then define BF S,+1 as a set containing BF'S,, and all nodes
reachable in one directed step in the PDG from BF'S,,. Let
BF'S, be the smallest layer BF'S, containing at least one

faulty node. The score for R is 1 — ‘lf;ZSG*ll. This reflects
how much of a program an ideal user (who recognizes faulty
lines on sight) could avoid reading if performing a breadth-
first search of the PDG beginning from the error report. This
scoring method has been sufficiently accepted in the fault

localization community to be used by Cleve and Zeller in
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Table 1 Scores for localization techniques

explain assume JPF R &R CBMC

Variable exp Slice Time assm Slice Time JPF Time n-c n-s CBMC Time
#1 051 0.00 4 090 091 4 0.87 1,521 0.00 0.58 041 1

#11 036 000 5 088 093 7 0.93 5,673 0.13 0.13 0.51 1
#31 0.76 0.00 4 089 093 7 FAIL - 0.00 0.00 0.46 1
#40 075 088 6 - - - 0.87 30482 0.83 0.77 0.35 1
#41 0.68 000 8 0.84 088 5 030 34 058 0.92 0.38 1
Average 0.61 0.18 54 0.88 091 5. 0.59 7,542 0.31 048 042 1
nC/OS-11 .99 099 62 - - - N/A  N/A N/A  N/A 097 44
uC/OS-1I* 081 081 62 - - - N/A N/A N/A  N/A 0.00 44

Note. Explanation execution time in seconds. Best results in italics. FAIL indicates memory exhaustion (>768 MB used)

“Indicates alternative scoring method

evaluating their latest improvements to the delta-debugging
technique [19].

Renieris and Reiss report fault localization results for the
entire Siemens suite [49]. Their fault localization technique
requires only a set of test cases (and a test oracle) for the
program in question. The Siemens suite provides test cases
and a correct version of the program for comparison. To ap-
ply the explain tool a specification must be provided for
the model checker; unfortunately, most of the Siemens suite
programs have not been specified in a suitable manner for
model checking. It would be possible to hard-code values
for test cases as very specific assertions, but this obviously
does not reflect useful practice—“successful” runs produced
might be erroneous runs not present in the test suite. Most of
the Siemens programs are difficult to specify using asser-
tions. The TCAS component, however, is suitable for model
checking with almost no modification.

Table 1 shows scores for error reports generated by ex -
plain, JPF, and the approach of Renieris and Reiss. The
score for the CBMC counterexample is given as a base-
line. CodeSurfer [5] generated the PDGs and code pro-
vided by Manos Renieris computed the scores for the error
reports.

The first two columns under the “explain” heading
show scores given to reports provided by explain with-
out using added assumptions, before and after A-slicing. For
versions #1, #11, #31, and #41, the original explanation in-
cludes a faulty node as a result of an input change; however,
the faulty node is only “accidentally” present in the report,
and is removed by slicing. This is not a failure of the slic-
ing algorithm, but a sign that the explanation is poor: the
changes required to avoid the error do not include a faulty
node, but, because the TCAS code includes many depen-
dencies on the inputs, a change in a fault location happens to
arise from the input change. Because relevance in A-slicing
is defined with respect to a given execution (i.e., explana-
tion), slicing a bad explanation may produce a very small
and clearly useless result, as in these cases. These results
suggest that A-slicing can be used to detect very poor ex-
planations: if nothing “interesting” (possibly faulty) remains

after slicing, the original explanation is almost certainly re-
flecting behavior that we do not want to compare to the coun-
terexample, such as in the implication-antecedent case. The
columns under the “assume” heading show explain re-
sults after adding appropriate assumptions, if needed.

The next group of scores and times (under the “JPF”
heading) show the results of applying JPF’s error explana-
tion tools [28] to the TCAS example. Because JPF does
not produce a single report in the same fashion as ex-
plain, a combination of results from the various analyses
produced by JPF, specifically only(pos) U only(neg) U
(all(neg)\all(pos)) U (all(pos)\all(neg)) for transitions
and transforms, was used to evaluate the fault localization.
The details of this computation are somewhat involved,
but at a high level this report is based on a sample of
successful and failed executions of the program, and
contains: (1) nodes appearing in either only successful or
only failing runs and (2) those nodes appearing in either
all successful but not all failed or all failed but not all
successful runs. In order to produce any results (or even find
a counterexample) with JPF it was necessary to constrain
input values to either constants or very small ranges based
on a counter example produced by CBMC. Comparison
with the JPF scores is therefore of somewhat dubious
value.

The columns under the “R & R” heading show average
scores for two of the localization methods described by
Renieris and Reiss [49]. The scores for their methods
vary depending on which failing test case is used as a
basis for computing the localization. For the most part, the
difference between the minimum, maximum, and average
scores for each variation were small (less than 0.04), except
for variation #11, with a maximum score of 0.95 and a
minimum of 0.00, producing a low average. The many
low scores produced by these methods probably indicate
collisions: cases in which the spectra used are too coarse to
distinguish between some failing run and some successful
run [49]. Run-times are not reported for these methods, as
they are (roughly) equivalent to the time needed to run the
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various test cases, and therefore not suitable for comparison
to the model checking approaches.

The last two columns provide a baseline: scores and
times for the counterexamples generated by the CBMC
model checker.

After introducing assumptions and slicing, 0.88 was
the lowest score for an explain report. Ignoring pre-
assumption accidental inclusions of faults, A-slicing always
resulted in improved scores. The best average results are
those for the explain approach after adding assumptions
and slicing.

The nC/OS-II explanation receives a score of 0.99 (A-
slicing does not change the score in this case). Somewhat
surprisingly, the CBMC counterexample itself receives a
score of 0.97: it is very short in comparison to the com-
plete source code, and (naturally) passes through the faulty
node. Any fault-containing and succinct report will receive
a good evaluation for a sufficiently large program. Another
useful way to view the results in the pC/OS-II case is that
the explanation points directly to the error and contains four
lines of results for a user to read. The counterexample also
includes the error, but contains over 450 lines of text for
a user to understand. Even after removing over 200 lines
of program state information, the counterexample contains
over 220 lines. Reading from the end of counterexample, 30
lines (from state 82 to state 65) must be read before encoun-
tering the faulty node. It is presumably far less likely that
the user will grasp the significance of this branch when it
is not presented in isolation. To remedy the difficulty in dis-
tinguishing report quality for large programs, a modified for-
mula suggested by Manos Renieris uses the size of the coun-
terexample as a baseline in the formula, in place of |P DG|:

1 - |?CF g‘*‘ Using this formula (results marked with ¢ in
Table 1), the counter example itself receives a score of
0.00,'° and the C/OS-II explanation is given a score of
0.81 (a perfect explanation would receive a score of 0.95,
as it must contain at least one node: even the best explana-
tion cannot reduce the user’s required reading below 5% of

the original counterexample nodes).

6.4 Evaluation of one-step slicing

Table 2 shows the poor results obtained by applying one-
step slicing (Sect. 5.1) to the case studies. Execution times
are on average slightly over four times greater for the TCAS
results (and > 3.5 times longer for the £ C/OS-II example,
which includes lengthy parsing and processing times). More
importantly, the explanations produced are of much lower
quality. Without assumptions, the average quality drops be-
low that of the raw counterexamples. With assumptions, the
explanations are only slightly better than the counterexam-
ples, on average. Averaging the best results overall gives a

16 In principle, a report could receive a negative score if it did not
contain a faulty node; the counterexample will always receive a score
of 0.00, as it is the same size as itself and must contain a faulty node.

Table 2 Scores with one-step slicing

explain assume CBMC

Variable exp Time assm Time CBMC Time
#1 0.00 26 033 26 041 1

#11 046 18 046 16 051 1

#31 0.00 31 081 29 0.46 1
#40 084 15 - - 0.35 1
#41 0.00 27 033 26 0.38 1
Average 026 234 048 243 042 1
nC/OS-1I 0.00 223 - - 0.97 44
uC/OS-1I*  0.00 223 - - 0.00 44

%Indicates alternative scoring method

score of 0.55, while for the two-phase algorithm, the aver-
age is a respectable 0.91.

The problems with one-step slicing arise in part from the
ability to avoid an error by changing only an input value and
a very small number of intermediate values. The SSA form
allows most of the computational changes produced by such
an alteration to (correctly) be sliced away, but computing
the distance metric over this tiny slice is meaningless, given
that the original executions were radically different. Con-
sider, for example, the explanation produced for the TCAS
variation #1 by one-step slicing (Fig. 26).

The code shown in Fig. 27 is used to determine if a
Resolution Advisory is computed by TCAS: the properties
for TCAS are predicated on the assumption that ASTEn
is set to true (indicating a resolution has been computed).
The implication in the assertion (P1_BCond = !PrB) is
always satisfied if no advisory is computed, because this
will force PrB to be false (see Fig. 20). The change in this
explanation results in the 1f branch in this code not being
taken. Although this causes a large change in the program
values, the slicing algorithm correctly notes that the only

Value changed:
Value changed:

Input_Other_Capability_1#0 from 2 to 1
Other_Capability#1 from 2 to 1

line 217 function c::main
tcas_equipped.1#1 from FALSE to TRUE
line 136 function c::alt_sep_test
ASTEn#2 from TRUE to FALSE

PrB#1 from TRUE to FALSE

line 230 function c::main

Value changed:

Value changed:
Value changed:

Fig. 26 One-step slicing report for TCAS variation #1

Bool enabled, tcas_equipped, intent_not_known;
Bool need_upward RA, need_downward RA;
int alt_sep;
ASTBeg = 1;
enabled = High Confidence && (Own_Tracked_Alt_Rate <= OLEV) &&
(Cur_Vertical_Sep > MAXALTDIFF);
tcas_equipped = Other_Capability == TCAS_TA;
intent_not known = Two_of_Three Reports_Valid &&
Other RAC == NO_INTENT;
alt_sep = UNRESOLVED;
if (enabled && ((tcas_equipped && intent_not_known) ||
'tcas_equipped))

ASTEn = 1;

Fig. 27 Code for determining if RA is computed
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value crucial for the property change is the alteration to the
value of ASTEn used in computing PrB.

Similar issues result in poor explanations for the other
TCAS examples. It might well be possible to generate good
explanations with one-step slicing in its current form, but the
need to introduce a large number of user-produced assump-
tions makes the technique of very limited value, given the
better performance of two-phase slicing. In practice, it ap-
pears that computing distances over complete executions is
simply better than optimizing the A-slices, in the absence of
some fundamental reworking of one-step slicing.

7 Conclusions and future work

No single “best” approach for error explanation can be for-
mally defined, as the problem is inherently to some extent
psychological. Lewis’ approach to causality is both intu-
itively appealing and readily translated into mathematical
terms, and therefore offers a practical means for deriving
concise explanations of program errors. A distance metric
informed by Lewis’ approach makes it possible to gener-
ate probably-most-similar successful executions by translat-
ing metric constraints into pseudo-Boolean optimality prob-
lems. Experimental results indicate that such executions are
quite useful for localization and explanation.

There are a number of interesting avenues for future re-
search. An in-depth look at interactive explanation in prac-
tice and further empirical evaluation is certainly in order. It
might be fruitful to use static slicing to improve the distance
metric, as suggested in Sect. 5.1.3. Combining the SSA form
based metric with predicate abstraction appears likely to re-
sult in better explanations than either the current CBMC or
MAGIC approaches [12].
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