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Abstract. Predicate (PA) and Numeric (NA) abstractions are  Predicate abstraction uses an automated decision proce-
the two principal techniques for software analysis. Infias  dure (ADP) to reduce program verification to propositional
per, we develop an approach to couple the two techniqueseasoning with a model checker. This makes PA well-suited
tightly into a unified framework via a single abstract domain for verifying programs and properties that are control elniv
called NumPREDDOM. In particular, we develop and evalu- and (mostly) data-independent. For example, PA is weleguit
ate four data structures that implementMWPReDDOM but  for verifying the code fragment in Fig. 1(a). However, in the
differ in their expressivity and internal representatioi al-  worst case, the reduction to propositional reasoning i®-€xp
gorithms. All our data structures combine BDDs (for efficien nential in the number of predicates. Hence, PA is not as ef-
propositional reasoning) with data structures for repréeg  fective for data-driven and (mostly) control-independemat-
numerical constraints. Our technique is distinguishedtby i grams and properties, such as the code fragment shown in
support for complex transfer functions that allow two way in Fig. 1(b). In summary, PA works best for propositional rea-
teraction between predicate and numeric information durin soning, and performs poorly for arithmetic.
state transformation. We have implemented a general frame-  Numeric abstraction reduces program verification to rea-
work for reachability analysis of C programs on top of our soning about conjunction of linear constraints. For inséan
four data structures. Our experiments on non-trivial eXasp - NA with the Intervalsdomain is limited to conjunctions of in-
show that our proposed combination of PA and NA is moregqualities of the forme; < = < c,, wherex is a variable and
powerful and more efficient than either technique alone. ., ¢, are numeric constants. Instead of relying on a general-
purpose ADP, NA leverages a Numeric Abstract Domain — a
collection of special data-structures and algorithmsgesd
to represent and manipulate sets of numeric constraints effi
ciently, and to encode statements as transformers of nameri
1 Introduction constraints. Thus, in contrast to PA, NA is appropriate far v
ifying properties that are (mostly) control-independdnit

. . . require arithmetic reasoning. For example, NA is well sliite
Predicate abstraction (PA) [3] and Abstract Interpretafi) fo?verifying the code fragm%nt in Fig. 1F()b). On the flip side

with numeric abstract domains, called Numeric abstractionNA erforms poorly when propositional reasoning (i.e.,-su
(NA) [6], are two mainstream techniques for automatic pro- b poorly brop g {.€.,-sup

gram verification. Although it is sometimes assumed that théOortlng 0_I|SJunct|ons af‘d negatloqs)_ is required. For exam-
difference between the two is that of precision versus eﬁi-Ple'.NA is not well suited for verifying the code fragment
ciency, experience of projects based on PA (such as SLAM [3]5] Fig. 1(a).. ) o

and those based on NA (such as ASFER[6]) indicates that In practice, precise, efficient and scalable program anal-
both techniques can balance efficiency and precision whedSiS requires the strengths of both predicate and numeric ab
applied to problems in a particular domain. These two tech-Straction. For instance, in order to verify the code fragmen
niques have complementary strengths and weaknesses. A cdmEig- 2(a), propositional reasoning is needed to dististyu:
bination of PA and NA is more powerful and efficient than ei- between different program paths, and arithmetic reasoning

ther technique alone. Achieving an effective combinatibn o 1S needed to efficiently compute an invariant strong enough
PA and NA is the subject of our paper. to discharge the assertion. More importantly, in this exam-

ple the propositional and numeric reasoning must interact i
Send offprint requeststo non-trivial ways.
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assune(i==1 || i==2);
switch(i) if(3 <=yl <= 4)
case 1. al=3; break; x1 =yl - 2;
case 2: a2=-4; break; X2 =yl + 2;
switch (i) else if(3 <= y2 <= 4)
case 1. assert(al>0); break; x1l =y2 - 2;
case 2: assert(a2<0); break; X2 = y2 + 2;
default: assert(0); assert (5 <= (x1+x2) <= 10);
@) (b)
Fig. 1. Two example programs.

Any meaningful combination of PA and NA must have at Name Value Example Num.
least two f_eatures: (Q) propositional pred_icates arepnéted NEXPoINT 227 x N PV AO<z<5) EXP
as numeric constraints where appropriate, and (b) abstract
transfer functions respect the numeric nature of predicate NEX 2YP —» N (PAOLz<3)V
The first requirement means that, unlike most Al-based com- (gn1<z<5) EXP
binations, the combined abstract d_omain cannot treat prec_ji MTNDD VP s N (PAO<z<3)V
cates as uninterpreted Boolean variables. The secondeequi (gA1 <z <5) SYM
mentimplies that the combination must support abstragstra
formers that allow the numeric information to affect the up- NDD 2P 2V (pA(z=0Vz=3)V
date of the predicate information, and vice versa. (@A(z=1Vz=5)) SYM

Against this background we make the following contri- _ _ :
butions. First, we present the interface of an abstract dfoma Table 1. Summary of implementations of0MPREDDOM; Vp = predicates;
u : ' p N = numerical abstract value¥alue = type of an abstract elemertixam-

called NUuMPREDDOM, that combines both PA and NA. The ple = example of allowed abstract valudum = numeric part representation
interface is distinguished by very rich syntax for abstteats-  (explicit or symbolic).

formers that tightly combines updated to predicate and nu-

meric parts of the abstract state. This allows predicate and

numeric state information to influence each other.

Second, we propose four data-structures — NEXH,  piicitly combining analysis engines, devising new abstrac
NEX, MTNDD, and NDD — that implement NMPRED-  domains, designing new data structures to allow greater in-
Dowm. The data structures (summarized in Table 1) differ interaction between existing domains, and delegating al rea

their expressiveness and in the choice of representation fospning to a decision procedure for a fragment of arithmetic.
the numeric part of the domain. All of the data-structurgs su

port very efficient (symbolic) propositional reasoning.ush
they are well suited for our target application — PA-based pr Numeric and Predicate AbstractionThe problem of com-
gram analysis. bining PA and NA involves combining their abstract domains,
Third, we present experimental results on non-trivial ex-and is well studied in Abstract Interpretation [11]. Typiga
amples, and compare and contrast between pure predicate addstract domains are combined usindpanain producte.g.,
straction, pure numeric abstraction, and our four datzesires. direct, reduced [10,11], or logical [15]. Furthermoredia-
Our experiments show that the proposed combination is mor@unctive completiofil1] is used to extend a domain with dis-
powerful and more efficient than either PA or NA in isolation junctions (or unions). The domains we develop in this paper
and that our four implementations ofUM PREDDOM exhibit ~ are variants of a (disjunctive completion of) reduced patdu
meaningful tradeoffs between expressiveness and efficienchetween domains of PA and NA. In practice, our combina-
of various operations. tion of PA and NA achieves a form of automated value-based
The rest of this paper is structured as follows. We sur-trace partitioning[20].
vey related work in Section 2 and review background ma-  one approach for combining abstract domains is to com-
terial in Section 3. In Section 4, we present the interface ofyine results of the analyses — e.g., by using light-weigtd-da
NumPREDDOM. In Section 5, we describe the particularities fjoy analyses, such as alias analysis and constant propaga-
of each of our NMPREDDOM implementations. Finally, ex-  tion — to simplify a program prior to applying predicate ab-
perimental results and conclusions are presented in $€&tio  straction. Thus, the invariants discovered by one anadysis
assumed by the other. For instance, Jain et al.[18] present
a technique to compute numeric invariants using NA which
are then used to simplify PA. However, this approach only
works when the verification task can be cleanly partitioned
There are several approaches to combine propositional andto arithmetic and propositional reasoning. For examipple,
numeric reasoning in a program verifier. These include exdis ineffective for verifying the program in Fig. 2(a), where

2 Related Work
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purely numeric reasoning is too imprecise to produce any
useful invariants.

There are many similarities and differences between com-

bining theories in an SMT-solver and combining numeric and

Another approach is to run the analyses over differentpropositional reasoning in an abstract domain (as we dg here
abstract domains in parallel within a single analysis frame In the rest of the section, we highlight some of the key differ
work, using the abstract transfer functions of each domsin a€nces:

is. The analyses may influence each other, but only through
conditionals of the program. This approach is often taken by
large-scale abstract interpreters [6], that use diffeabstract B
domains to abstract distinct program variables. Receatly,
similar approach has been incorporated into software model
checker RAST [12,4,5]to combine predicate abstraction with
various data-flow analyses. In principle, this can be adhpte
to combining PA and NA. The expressiveness of this combi-
nation is comparable to NEX®NT — our simplest combined
domain.

From the approaches that tightly combine predicate and
numeric abstractions the work of Bultan et al. [8] is closest
to ours. They present a model checking algorithm to reason
about systems whose transition relation combines proposi-
tional and numeric constraints. Their algorithms are based
a data structure that uses BDDs [7] for propositional reason
ing and the Omega libratyfor arithmetic reasoning. While
this data structure is similar to NEX, we support more com-
plicated transfer functions and provide an interface téaep
the Omega library with an arbitrary numeric abstract domain

Our domains MTNDD and NDD use BDDs for a purely
symbolic representation of abstract values. Thus, thesiare
ilar to Difference Decision Diagrams (DDDs) [22] that repre
sent propositional formulas over difference constraidtsy-
ever, unlike DDD, we do not restrict the domain of numerical _
constraints. This makes our implementation more general, a
the cost of strong canonicity properties of DDDs.

The contribution of our work is in adapting, extending,
and evaluating existing work on combining propositional an
arithmetic reasoning about programs to the needs of sadtwar
model checking. To our knowledge, none of the tight combi-
nations of the two abstract domains have been evaluated in
the context of PA-based software model checking.

Satisfiability Modulo Theory (SMT)The SMT-problem is
the problem of deciding satisfiability of a first order (typ-
ically, quantifier free) formula whose atomic terms are in-
terpreted in one or more theories. An SMT-solver is a tool
that solves the SMT problem. Current state-of-the-art SMT-
solvers can reason about combined theories of propositiona
logic, uninterpreted functions, and linear arithmetic.

An SMT-solver is often the main theory-aware reason-
ing engine in a program verifier. For example, it is the main
engine for predicate abstraction [2,19, 9], or, when comdbin
with interpolation, it can be used to implement predicadasr
formers (e.g., [21]). In our approach, we use an SMT-solver
for computing predicate abstraction part of an abstraostra

Data-structures for Boolean formulas over combined
theories: Both abstract domains and SMT-solvers use data-
structures to represent Boolean formulas. However, they
differ in the requirements they impose on those data-strast
A data-structure for an abstract domain must support effi-
cient application of transfer functions and application of
widening. This is not a requirement for a data-structure in
an SMT-solver.

The data-structures we present in this article are based
on BDDs. This provides us with a DNF representation of
an abstract value that is needed for application of abstract
transfer functions. In contrast, SMT-solvers use CNF-ase
data-structure for Boolean formulas.

— Precision versus efficiency trade-offsin an abstract do-

main, every abstract operation muster-approximatea
corresponding concrete one. Thus, the designer of an ab-
stract domain can choose between a more efficient but
more approximate implementation and a less efficient but
more precise implementation of every operation. This is
our main motivation for developing four different combi-
nations of PA and NA — each achieving different trade-
off on the precision versus efficiency scale. In contrast, in
SMT all operations must be interpreted precisely.
Quantifier elimination: The key steps in an Abstract Inter-
pretation-based program analysis are the computation and
application of abstract transformers. In general, thesesst
are reduced to quantifier elimination (i.e., existentially
projecting “previous state” variables in the strongestpos
condition computation). Thus, quantifier elimination (or
its over-approximation) is an essential operation for any
abstract domain. In contrast, quantification is not a stan-
dard operation supported by an SMT-solver. Moreover,
SMT-solvers are often used to reason about theories that
even do not admit quantifier elimination at all (e.g., the
theory of uninterpreted functions).

— Widening: Another key property of an Abstract Inter-

pretation-based program analysis is that it is always guar-
anteed to terminate. This is achieved by requiring each
abstract domain to have an approximation scheme, called
widening that computes a closed form (or a limit) for any
increasing chain of abstract values. Widening operation is
unique to abstract domains. It is not clear how to define an
analogous operation (or why it is even needed) for SMT
solvers.

In summary, at a high-level, combining predicate and nu-

former and for the refinement step of the Counter-Examplemeric abstract domains is similar to combining predicaté an

Guided Abstraction-Refinment (CEGAR) loop.

L http://ww. cs. und. edu/ proj ect s/ onega

numeric reasoning in SMT-solving. However, we believe that
the requirements and the details of the combination are quit
different.
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assume(x1==x2); assumér; = x);
if (Alyl +y2] == 3) ((assumep);

x1 f yl - 2 x1:=y1 — 2 A q := choicf, f);
|X2 =y2 + 2; 2 1= y2 + 2 A\ q := choicgz1 +2 = y1 Ap,f)) V
el se (assumé—p);
. Al x1 + x2] = 5; q := choicéf, t)));
if (A[x1 + x2] == 3) ((assuméy);

X1l = x1 + x2;
X2 = x2 +yl - 2
assert (x1==x2);

T =21 + T2;
ra = e+ yr — 2) V assuménq));
asserfzi = x2)

@ (b)

Fig. 2. A program (a), and its abstraction (b) with = {p, ¢}, Vv = {1, z2,y1,y2}, wherep £ ((A[y1 + y2] = 3), andq = (A[z1 + z2] = 3).

3 Background Name Notation Abstract Elements
Intervals  Box(V) {1 <v<ca|ci,e2 €eNyweV}

In this section,_ we define our basic notation and our view of Octagons ~ @T(V) (o1 +v>c|ceN, v, e V)
abstract domains.

Polyhedra R(V) linear inequalities oveV’

3.1 Expressions and Statements Predicates ReD(V) propositional formulas ovelr’
Table 2.Common abstract domaink; is a set of numeric/propositional vari-
LetV denote the set of program variablésdenote the set of  ables;V domain of numeric constants.
expressions over, andB C E denote Boolean expressions.
There are two kinds cdtomicstatements:

1. an assignment,:= ¢, wherel is a variable inV” ande s the seminal work by Cousot and Cousot [11]. Often, an ab-
an expression i, and o stract and concrete domain are viewed as lattices connected
2. an assumptiorgssumée), wheree is in B. by a Galois connection. In this article, we take a more opera-

Assume operations are used to model conditional branche&onal view of an abstract domain asastract data typenat
i.e., if-then-else blocks, as well as assumptions usechguri Satisfies the interface #sDom(V') shown in Fig. 3. Such a

verification. We write |s|| to denote the collecting semantics, View of an abstract domain is sufficient for our purpose. We
i.e., the strongest post-condition transformer, as a fanct assume that the concrete domain is the set of expressipns

from B to B. and not, for example, program states. We Age denote the
set of all theabstract elementsf ABsDom(V'). The inter-
Example 1. The following are some examples of collecting face AssDom(V) consists of the following functions:

semantics of atomic statements: ) o
1. abstractiony, and concretizationy, that convert between

[lz: =2+ 1||(x > 3) = (z > 4) expressions and abstract elementsljn
|z:=5||(x=3Ay=6)=(x=5Ay=06) 2. met;t ar(;ddj_oi_n the_at a(ppr_oxi)mate con_jur;ction (intersec-
oy _ tion) and disjunction (union), respectively;
[assume > 4)[|(y = 6) = (= > 41y = 6). 3. leq that approximates implication (subset);
O 4. isTop andisBot check for validity (universality), and un-
satisfiability (emptiness), respectively;
A program is a control-flow graph annotatedlbgp-free 5. widen is a widening operator [11] that over-approximates
statementsS. The setS' is constructed by composing atomic 3 disjunction and guarantees convergence when applied to

statements as follows: any (possibly infinite) sequence of abstract elements; and
1. sequentially, writters; ; s, meaning execution of; is 6. aPost approximates the semantics of a program state-
followed by the execution of,; ment as ambstract transformeii.e., a function fromA to A.

2. non-deterministically, writtes; Vv s,, meaning a non-

o . . The set of requirements at the bottom part of Fig. 3 en-
deterministic choice between executionsgfandss. q P 9

sure that the abstract domain is a sound approximation of the
concrete one. For example, the first rule ensures that for any
3.2 Abstract Domain expressior, abstractiond) of e, followed by concretization

() of the result is weaker (i.e., bigger, or less precise) than
We assume that the reader is familiar with abstract interpre  Table 2 shows several commonly used abstract domains.
tation. For a detailed overview of Al, we refer the reader to The first three domains, collectively called Numeric, aredus



Arie Gurfinkel and Sagar Chaki: Combining Predicate and Numeric Atistn for Software Model Checking 5

Interface: ABsDOM(V) must be false. Note thatand f do not have to be mutually
v A-B a B=A4 disjoint. Formally, the semantics of a Boolean assignment i
meet : AxA— A join :AxA— A defined as
isTop : A — bool isBot : A — bool
leq :Ax A— bool widen : Ax A— A o : _

aPost: S — (A — A) ||p := choicet, f)“(‘f) = / .

Requires: let R=(p' A=f)V (=p A—t)in

leta,b,c € Aje € B,x=(a),y =~(b),z="(c)in Ve -eAR)P'/p],

e = y(ale)) (aPost(s)(a) =b) = (||s||(x) =y)  Wheref,t, ande are propositional formulas over predicates

)=1b)
leq(a,b) = (z = y)  (meet(a,b) = ¢) = (z Ay = 2) in Vp, and the notatiore[p’/p] stands for replacing all oc-
: - currences o’ in e by p. Semantics of parallel composition
isTop(a) = () (join(a,b) =¢) = (x Vy = 2) . - : .
) ) of Boolean assignments is obtained by composing the se-
isBot(a) = (—z) (widen(a,b) =c¢) = (zVy = 2)

mantic relations of the individual assignments, as usual. T
our knowledge, thehoice, f) function was first introduced

Fig. 3. Interface of an abstract domaif denotes Boolean expressiotss, (and calledchoosé by Ball et al. [2] in the context of us-
denotes statements, adcdenotes abstract values. ing Boolean and cartesian abstractions for model checking C
programs. Ball et al. [2] also described an automated psoces

) ) ) ) for constructing abstract transformers involviclgoicegt, f)
to represent and manipulate arithmetic constraints. Téte la from C statements using a theorem prover.

one, ReD(V'), represents propositional formulas over a set
of predicates. Example 3. The abstract transformer

p := choicép, —p)

leavesp unchangedy is true after the transforméif p was
true before). The abstract transformer

3.3 Abstract Transformers

For ease of presentation, we define a syntax for abstrasttran
formers. Let NDom(V) be a numeric domain over variables p := choicéfalse, false)
V. The numeric domain has two abstract transformers: as-

sign and assume. The syntax for the assign transformer dihanges non-deterministically (nothing prevenidrom be-
NDoMm(Vy) is ing either true or false in the next state). The abstracstran

former
Tyi=ep N ATy i =ep, p := choicép A g, false)

where eache; is in Vy, and eacty; is a linear arithmetic = makesp true after the transformer if bothandgq were true
expression ovely. The syntax for the assume transformer before it and changgsnon-deterministically otherwise. O

is . . .
In the case of a numeric abstract domain, an abstraction

of a given a concrete statemertty an abstract transformer is
wheree is a linear Boolean expression ovéf;. The seman-  done by the domain itself. In the case of predicate abstragcti
tics of the assign and assume transformers are standard — am abstraction by Boolean assignments is computed using a
sign models abstract state update via variable assignmenttheorem prover [13, 3].

while assume models abstract state update via addition of

new constraints.

assumée) ,

3.4 Binary Decision Diagrams
Example 2. The following are two examples of numeric ab-

stract transformers: Reduced Ordered Binary Decision Diagrams (RO_BDDS, or
BDDs for the purpose of this paper) [7] are a canonical repre-
ri=y+1lAy:=o-1, sentation of propositional formulas. A BDD is a DAG whose

inner nodes correspond to propositional variables, twé lea
nodes (i.e., nodes with no successors) correspondingéo tru
a and false. A path in a BDD corresponds to an assignment of
] ] ~values to variables. The paths leading to the true node-corre
For the predicate domainRD(Vp) over a set of predi-  gnond to all satisfying assignments of a formula represente
catesl/p, an abstract transformer is represented Bpalean by a BDD.
assignment of the form We use0 and 1 to denote the constant BDDs for false
p := choicd(, f), and true, respectively. I_:or a BDD, we usevarOf(u) for
the variable corresponding to the rootwafbddT () for the
wherep € Vp is a predicate, and and f are Boolean ex- then-branch of:, andbddE(u) for the else-branch of, re-
pressions oveVp. Informally, ¢ represents the condition un- spectively. We make use of the following well known BDD
der whichp must be true, and the condition under whicp operations:

assumér +y < 5).
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Interface: NUMPREDDOM(Vy, Vp) extends ABSDOM 3.
ap :B— A an :B— A
unprime : A — A reduce : A — A
exists :2'7 x A — A  aPosty : S — (A — A)

Fig. 4. The interface of NMPREDDOM: V) andVp are numeric and propo-
sitional variables, respectivelf, B, S, and A are as in Fig. 3.

4,

1. conjunction BddAnd), disjunction pddOr), and nega-
tion (bddNot);

2. if-then-elselfddlite);

3. existential quantificatiorb@idExists); and

4. variable renamingoddPermute).

Many of the above operations are implemented uniformly us-
ing a functionbddApply( f, u,v), whereu, v are BDDs, and

f is abinary operator (i.e., conjunction, disjunction, eticat

is defined only for the constant BDDs.

4 NumPREDDoOM: Interface

In this section, we describe the interface afiPREDDOM
and abstract transfer functions supported by it. The iaterf
NuUMPREDDOM is shown in Fig. 4. It extends, i.e., has all
the functions of, the basic abstract domaias®om shown

in Fig. 3. Notably, \UMPREDDOM has two types of vari-
ables: numericVy, and propositional (or predicaté)p. Fur-
thermore, the domain is extended implicitly with “primed”
propositional variables

Ve 2 {p' |peVp}.

The meaning of each predicatén Vp is given by the con-

5.

existential quantificatiorexists, over-approximates ex-
istential quantification opropositionalvariables from an
abstract value. It must satisfy the over-approximationcon
dition:

(3V - y(a)) = ~(exists(V, a))
variable renamingynprime, renames all “primed” propo-
sitional variables into the corresponding unprimed ones;
abstract numeric transformerPosty, lifts an abstract
numeric only transformer to the combined domain; Given
anumeric transformerand a NUMPREDDOM valuea, A
an, Wherea,, is a conjunction over predicates ¥ and
a, IS @ conjunction over numeric constraints oVar,

aPosty (7)(a, A ay,) £ a, A aPosty (1) (ay,) -

Moreover, it must distribute over disjunction. That is,

aPosty (7)(ay V az) 2
join(aPosty (7)(a1), aPosty (7)(az)) .

. the reduction functiomeduce, is a special operation that

refines an abstract value by sharing information between
propositional and numeric parts of the value. It must sat-
isfy an over-approximation condition:

v(a) = ~(reduce(a)) .

During analysisreduce is applicable before or after any
abstract operation to increase the precision of the final
result. However, calls toeduce are expensive. By fac-
toring it out in the interface, we allow its judicious use to
target a suitable precision versus efficiency tradeoff.

cretization functiony. Conceptually, each element ot PRED- 4.1 Projection

Dowis a quantifier free first-order propositional formula over
predicated/p and numeric constraints over variablésg.

To define the abstraction functienof NUMPREDDOM, we

first introduce projection functions. These are used tolbrea

Example 4.Consider NNMPREDDOM(Vy, Vp) whereVy =
{z,y}, andVp = {p}. A possible element is

(pA(x>0)A(y>0)V(pAxz<0).

Note that predicates can be interpreted as constraintsaver
meric variables. For instance, it is possible thgi) = (z >
0). In this case, the value afis represented both in predicate
and numeric parts of the abstract value. a

The functions provided by dvPREDDOM in addition to
ABsDoOM are:

apart an expression that combines numeric and predicats.ter
Let Vp be a set of predicated/y a set of numeric vari-
ables, and: be a conjunction of numeric terms, predicates,
and negations of predicates.

1. Thepropositional projectionof ¢ onto Vp, denoted by

proj»(Vp,e), is a minterm ovell/p that is implied by
(i.e., over-approximates)

2. Thenumeric projectiorof e onto Vy, denoted by

projy (Viv, €), is a conjunction of numeric constraints over
Vi that is implied bye.

1. abstraction functionyy, is a restriction of the abstraction Example 5. The following are some sample applications of

function« to conjunctions of linear constraints ovéx;
That is, ifay(e) = a, thena is a conjunction of numeric
constraints over variables Wy ande = vy(a).

2. abstraction functionyp, is a restriction of the abstraction
function « to minterms ovelp; That is, ifap(e) = q,
thena is a propositional formula over predicatesliip
ande = ~(a).

the projection functions:

projp,({ph,p A (z 2 0) A (y > 0)) =p
projp({z > 0},p A (x> 0)A(y >0)) = (x >0)
projy({y},p A (> 0)A(y>0) =y >0
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1. int x, y, *p;
2 ...

3 if (*p > 0) {
4: *p = X,

5: } else {

6: *p = 3
7}

8 ...

Fig. 5. A fragment of a C program.

Assume. The “assume” abstract transformer’s syntax is
assumee),
wheree is an arbitrary expression. It semantics is
AX - meet(a(e), X).

It is used to approximate program conditionals with a combi-
nation of predicate and numeric conditions.

Example 6.For example, consider a fragment of a C pro-
gram shown in Fig. 5. In the program,andy are two in-

Note that we have only partially specified the projection teger variables, and is a pointer to an integer. Ellipsis in-

functions. The exact definitions @iroj, andproj, are left

to the implementation. In our implementation, they are don€jcatesVp = {p

dicate that part of the program is not shown. Let the pred-
&zx,p = &y} and numeric variables

via approximations based on syntactic reasoning. More prey,, = {x,y}. Then, the conditional of the then-branch of
cise semantic constructions via the use of theorem proverge if-statement on line 3,

are possible as well. Such implementation choices, as lsng a

they satisfy the over-approximation conditions abovegcff
the efficiency vs. precision trade off, but not the soundéss
the abstract domain.

4.2 Abstraction

Let e be a quantifier free formula in negation normal form.
The abstraction functioa(e) is defined recursively usingp
anday as follows:

— if eis aterm, then
a(e) £ meet(ap(projp(VpUVp, ), an (projy (Vi e)))
— elseife = e; A eg, then
a(e) £ meet(aler), alez))
— elseife = e; V es, then

a(e) £ join(aler), alez))

4.3 Abstract Transformers

assuméxp > 0),

can be approximated by the assume transformer

assumép=&x Az >0)V(p=&yAy>0)V
(p # &y A p # &a))

Informally, the abstract transformer says that eithep @ints
to x andz is positive, or (b} points toy andy is positive, or
(c) p does not point to either or y. O

Conditional. The “conditional” abstract transformer’s syn-
taxise?r, wheree is an arbitrary expression, ands a purely
numeric transformer. Its semantics is

AX - aPosty (7)(«Post(assumée)) (X)) .

The conditional transformer is most useful in a combina-
tion with other transformers.

Example 7.Again, consider the program fragment in Fig. 5,
and recall thal’p = {p = &z,p = &y} andVy = {z,y}.
The assignmentp := 3 on line 6 can be abstracted by a con-
ditional transformer:

(p=&z?z:=e)V(p=&yly:=e),

NumPREDDOM supports a rich set of abstract transformersInformally, the above transformer means that eigh@oints

(shown in a BNF grammar in Fig. 6). In this section, we de-
scribe the syntax and semantics of each type of transformepoint to eitherz or y, andz andy are unchanged.

illustrate in what situations it is required, and, when agpl
ble, provide a common implementation.

Numeric. The “numeric” abstract transformer’s syntax is
T1:=ep N NTp:=eg,

where the variables im; ande; are inVy. Its semantics is
defined in terms of thePosty of each implementation of
NuMPREDDOM as follows:

AX - aPosty(zy =€y A Az i=ep)(X).

Itis a basic building block for abstracting arithmetic tséor-
mations.

to z andz gets3, or p points toy andy gets3, or p does not
O

Predicate. The “predicate” abstract transformer’s syntax is
p1 :=choicdty, f1) A -+ A p, := choicdt,, f.),

where eaclp; is in Vp and each; and f; is an expression
over Vp andVy. Its semantics is defined using conjunction
and existential quantification as follows:

let R = a(/\ (0§ A=fi) V (=w} A=) in

AX - unprime(exists({p1, ..., pn}, meet(X, R))).

The predicate transformer is the basic building block for
predicate abstraction. It depends on both predicate and nu-
meric information.
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is abstracted as
Tu=7N|Ta |7 | TP | Tvp | (Dase case)

T, T sequence
foondet), (y=1tw=viw=w)A
T~p = (e?Tn) A TP (numeric + predicate) (y=1):=choicdx =1,z #1).
7p ::=p := choicde, e) | (predicate)
T ATP The above abstract transformer means thla¢comes 1 iffe
Te = elTN (conditional) was 1, andr getsv or w depending on whetherwas equal
Ta 1= ASSUMEe) (assume) to 1 before. Note that the predicage= 1 is influenced by
TN B=T =0 | (numeric) numeric constraints omn, and influences the next value of
TN NTN 0

Fig. 6. BNF grammar for abstract transformers supported by Sequential and Non-DeterministicThe syntax of “sequen-
NUMPREDDOM; p is a predicate;z a numeric variablee an expres- tial” and “non-deterministic” abstract transformers ivegi
sion over predicates and numeric terms; numeric expression. . . L .
by 71; 72 andr V 1o, respectively. Their semantics is defined
using function composition arjdin operator, respectively:

Example 8. Again, consider the program fragment in Fig. 5.  aPost(7; ) = AX - aPost(72)(aPost(r ) (X))
Let the predicates aPost( V 75) = AX - join(aPost(r1)(X), aPost(rs) (X))

Ve ={y>0,p=&u,p =&y} Example 10.A complete example of the combined predicate
and numeric abstraction is shown in Fig. 2. Part (a) of the
figure shows a fragment of a program. Part (b) of the figure
shows the abstraction of Part (a) with predicates= {p, ¢},
wherep £ ((Alyr + y2] = 3), andq £ (Alz1 + 2] = 3),

and numeric variableBy = {z}. Then, the assignmerp:=
z on line 4 can be abstracted as:

(y > 0):= and numeric variable®y = {1, z2,y1,y2}. Note that the
choicd(p = &z) A (y > 0) V (p=&y) A (x > 0) two parts of Fig. 2 are formatted to align their correspond-
(p==&x)A(y<0)V(p==&y)A(x<0)). ing statements. Moreovesissumeand disjuction are used in
Fig. 2(b) to model f - t hen- el se statements in Fig. 2(a).
Intuitively, this abstract transformer means thyabecomes The abstraction is precise enough to establish that the pro-

positive if p points tox andy was positive, or if points toy gram is safe (i.e., the assertions are not violated). Theipre
andz was positive. Moreovery; becomes non-positive (i.e., categp andg are necessary to separate different paths through
< 0) if either p points tox andy was non-positive, or ip the control flow. A transfer function for predicagemust de-
points toy andz was non-positive. O pend on a combination of numeric constraints and the value
of the predicate. In this example, the tight combination of
predicate and numeric abstraction is crucial: an abstmacti
Numeric and Predicate.The “numeric and predicate” ab- of part (a) using only numeric domain oVik is not precise

stract transformer’s syntax involves a parallel compositf  engugh to establish safety; discovering the predicates for
conditional numeric and predicate transformers as follows precise predicate abstraction is non-trivial. 0

(e?Tn) ATp, From Concrete to Abstract ProgramsThe transformers pre-
sented in this section are abstract in the sense that their se
mantics is defined using the transformers of the underlying
predicate and numeric abstract domains and the basic opera-
tions (i.e,meet, join, etc.) of N\UMPREDDOM.

Using NuMPREDDOM to abstract and reason about a con-
crete program requires an additional abstraction functién
That is, since the purely numeric transformerdoes not de-  that maps concrete statements to abstract transformers. An

pend on the predicates, this parallel composition is redluce implementation obx™ must be sound: for any concrete pro-
to a sequential one. This transformer is used to abstraet sta gram statement, the semantics af™ (s) must “over-approximate”
ments that influence both predicates and numeric constrainthe semantics of. However, an implementation is free to
simultaneously. Even though, does not involve predicates, Make its own trade-off between precision and efficiency. We
itis influenced by predicates in the conditien describe our implementation ef” in Section 6.
In summary, the critical operations in theuM PRED-

Example 9.Let Vp = {y = 1} andVy = {z,v,w}. Then, DoM interface areexists, unprime, projy, projp, ay, ap,
the parallel statement v, leq, meet, join, widen, aPost andreduce. In the rest of

the article, we present four different implementationsesie

yi=xAz:=(y=1%:w operations and evaluate them empirically.

wheree is an arbitrary expression,y is a purely numeric
transformer, andp is a predicate transformer. Its semantics
is defined using the equivalence

(e?Tn) A Tp = assumee); Tp; Ty -
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5 NuMPREDDOM: Implementations the condition ), would be much more expensive to imple-
ment. Thereduce operation is defined as follows:

In this section, we describe four different implementagion
of NUMPREDDOM. We useN to denote the set of abstract

values of the underlying numeric domain oUéy, andP to  Example 11.Consider NEXRINT domain withVp = {q,7},
denote the set of propositional formulas ouér. In other v, — (4 41, and predicateg andr interpreted ag 2 (z =
words, P = 22" \We write N.op and P.op to mean the () andr £ (y = 0). Then,

abstract operationp over numerics and predicates respec-

tively. We writeC, 1, LI andV to meanleq, meet, join and ~ reduce(qVr,z =3Ay >0) = (~gAr,x =3Ay=0).
widen when the abstract domain is clear from context We . , L ,
write X.top, X.bot to meanX.a(true) and X.a(false), Note that the output akeduce is equivalent to its input in the
spectively, representing the top and the bottom eIements gfoncrete world, since
the domainX. All four implementations of NMPREDDOM
share the definitions gfroj, andproj,, which are based on

syntactic simplification of expressions to a normal form.  However, the output is strictly more precise than the input i
the abstract world since

reduce(v) = a(y(v)).

v(qVr,z=3Ay>0)=v(-qAr,z=3Ay=0).

5.1 NEXPoINT: Numeric Explicit Points

led((~gAr,z=3Ay=0),(¢gVrz=3Ay>0) /
NEXPOINT domain is the simplest of our combinations. The —leq((qV 7,z =3Ay > 0),(~gAr,z =3 Ay =0)).
set of abstract values of NEXINT is P x N. ANEXPOINT
value is represented by a p&jr, n) wherep is a BDD andn This means that applyingduce during abstract analysis has
is a numeric abstract value. Intuitively, a pgirn) represents  the potential of yielding more precise results. Similarly,
the expressio®.y(p) AN.y(n). The top and bottom elements

of NEXPoINT are defined as follows: reduce(q V 7,z =3 Ay < 0) = NEXPOINT.bot.

NEXPOINT.top 2 (P.top, N.top) Once again, the output ofduce is equivalent to its input in

. the concrete world, since
NEXPoINT.bot £ (P.bot, N.bot)

. . . y(gVr,z=3ANy<0)=false.
The exists and unprime operations are performed on the

BDD part of the tuple: However, the output is strictly more precise than the input i
exists(S, (p,n)) 2 (bddExists(S, p), n) the abstract world, since
unprime(S, (p,n)) = (bddPermute(S’, S, p),n), leq(NEXPoOINT.bot, (¢ Vr,x =3 Ay < 0)) /\
whereS C Vp is a set of propositional variables, asl = —leq((¢ vV r,x =3 Ay < 0), NEXPOINT.bot) .

{s' | s € S}. Most of the remaining operations are performed

pointwise. Specifically, =
an(e) 2 (Ptop, N.ale)) The abstract domains NEX and MTNDD, presented in
N the next two sections, share the above definitiomeaiuce
ap(e) = (P.ale), N.top) with NEXPoINT. Therefore, we only defineeduce specif-
v(p,n) = Pr(p) A N.y(n) ically for our fourth abstract domain NDD. The following
theorem summarizes the correctness of NEXH.
op((p,n). (v',n")) £ (P.op(p,p’), N.op(n,n'))
leq((p,n),(p’,n')) 2 pCp AnCn/ Theorem 1. NEXPOINT implementdNumMPREDDOM.
aPosty (s) £ A(p,n) « (p, N.aPost(s)(n)), Proof. We know that NEX®INT exports all operations re-

quired by NumPREDDOM. We prove that the operations sat-
isfy the required properties.

For the meet operation, let(p,n) and (p’,n’) be two
NEXPOINT abstract values. We know that:

whereop € {meet,join,widen}. Note that our definition
of leq above is sound, i.e., satisfies the requirementg®f
shown in Fig. 3. However, it is not the strongest (most pre-
cise) possible one. In particular, it does not ensure theipre
sion condition: Poy(p) A PA(p') = Py(pnip') A
NA(n) AN~A(')= Ny(nnn'
leq((p.m). (¥,m)) © ((p.m) = 1@ () (AN = N i)
The advantage of our definition is that it admits an efficient
implementation on top of thieq operators of the underlying (Py(p) A NW( NAPA{P) AN~y =
numeric and predicate domains. A more pretasg ensuring PA(pnp’) AN~y(nmn')

which implies
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which implies
Y(psn) Ay(p',n') = y(prip,nnin') .

For thejoin operation, le{p, n) and(p’, n’') be two NEXROINT
abstract values. We know that:

Pr(p) v Pr(p') = Py(pUp’) A\
N.y(n)V Ny(n') = Ny(nun')

which implies

(P(p) AN (n) V(PA(p) A Ny(n')) =
PAr(pUp' ) ANAy(nun)

which implies
Y(p,n) VAP, n) = ypUp ,nUn’) .

The proof forwiden is similar to that ofjoin. ForisTop, let
(p,n) be an abstract NEX®NT value such thasTop(p, n).
Thereforep = P.top andn = N.top, and henceP.v(p) =
true and N.y(n) = true. That is,y(p,n) = true, which is
what we want.

ForisBot, let(p, n) be an abstract NEX®NT value such
thatisBot(p, n). Thereforep = P.bot andn = N.bot, and
hence P.y(p) = false andN.y(n) = false. Thatis,y(p,n) =
false, which is what we want.

Forleq, let(p,n) and(p’, n’) be two NEXROINT abstract
values such thaip,n) C (p’,n’). Therefore,

pCp AnCn
which implies
Py(p) = PA(p') AN Ny(n) = Noy(n)
which implies
Py(p) A Ny(n) = Pr(p') A Ny(n')

which is what we want. To prove that=- ~v(«a(e)) for any
expressiore, we induct on the structure af and consider
three cases:

— Case l.eis aterm. In this case,

a(e) £ meet(aP(projP(VP U VI/’v 6)), aN(projN(VJ\U 6)))

Let us writee p to meanproj,(Vp U V), e) andey to mean
proj (Vv e). Therefore,

a(e) = (P.a(ep), N.top) M (P.top, N.a(en)) =
(P.a(ep) M Ptop, N.top M N.a(en))

Hence, from the definitions aheet and~, and the fact that
P.y(P.top) = true and N.y(N.top) = true, we know that

PA~(P.afep)) N Ny(N.alen)) = v(ale))
Now, we know that
ep = P~y(P.a(ep)) /\eN = N.y(N.alen))

Thereforeep A exy = v(af(e)). Finally, from the definitions
of proj, andproj,, we know thate = ep ande = ey.
Thereforeg = ep Aen = y(a(e)), which is what we want.

— Case 2e = e1 A es. Inthis case,
a(e) £ meet(a(ey), a(es))

By inductive application, we know that

er = y(aler) /\ e2 = v(ale2))
Therefore,
e=e1 Aex = y(aler)) Ay(a(e))

Also, by the definition ofneet, we know that:

v(aler)) Av(alez)) = y(meet(a(er), alez))) = v(ale))

Hencee = ~v(a(e)), which is what we want.
— Case 3e = e1 V es. Inthis case,

a(e) £ join(aler), alez))

By inductive application, we know that

e1 = v(ale1)) /\ e2 = y(ale2))
Therefore,
e=e;Vey = y(afer)) Vy(ale))

Also, by the definition ofoin, we know that

v(aler)) Vrlalez)) = (ioin(aler), alez))) = v(ale))

Hencee = ~(a(e)), which is what we want.

Finally, the requirement onPost is satisfied by combin-
ing the semantics of MMPREDDOM abstract transformers
with the requirement on”. This completes the proof. O

5.2 NEX: Numeric Explicit Sets

The NEX domain extends the expressive power of N EXP
by allowing different predicate valuations to map to diéfet
numeric constraints. Each abstract value of the NEX domain
is a function2? — N and is represented as a set of pairs

{(p1,n1),..., (Prsn1)} S P x N,

where eaclp; is a BDD, each; is a numeric abstract value.
To ensure that each NEX value is indeed a function, the set
must satisfy the following well-formedness conditions:

V1 <i<k.p; # PbotAn; # N.bot (C1)

ConditionsC1-C3 above ensure that the data structures are
as “tight” as possibleC1 guarantees that the representation
of any abstract value does not include any “empty” compo-
nents,C2 ensures that any two elemeiis, n, ) and(pz, n2)

are distinguished by their numeric components, &3den-
sures that the elements of a NEX value are “mutually dis-
joint”. Intuitively, a NEX value is a “union” of NEX®INT
values that are distinguished by their numeric components.
Thus, NEX improves upon the precision of NE&ERT by
replacing imprecise numerjoin with union.
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u: —U\{(pﬂl) ¥, n)}u{lpup,n)}
returnu

1: NEX norm (2F*% )

2. while (3(p,n) € u.p = P.botVvn = N.bot) do
3 w=u\ {(pn)}

4:  while (3(p, )Gu/\ﬂ(p n) € u) do

5:

6:

Fig. 7. Implementation ohorm.

Example 12.Suppose thaVy = {z,y} andVp = {p,q}.
Then the expression

e (pA=gAhz<0)V(=pAgAy<0)
is represented precisely by the NEX abstract value
{(pA—qz<0),(-pA gy <0)}.

Note thate has no precise representation in terms of NEX¥Pr
abstract values. O

The top and bottom elements of NEX are defined as

NEX.top £ {(P.top, N.top)}
NEX.bot 2 0.

11

2PXN NEXJoin (NEX u, NEX v)
if (u=0) returnv
if (v=0) returnu
letu be{(p,n)} U X andv be{(p’,n)} U X’
vi={(prp,nun’)}
y:= NEXJoin({(p 1 —p’,n)}, X")
z := NEXJoin({(p’ M —p,n")}, X)
returnz U y U 2z U NEXJoin(X, X')

Fig. 8. Implementation oNEXJoin.

The abstraction and concretization operations for NEX
are defined as follows:

an(e) = {(Ptop, N.a(e))}

ap(e) = {(P.afe), N.top)}
Y{(pi,ni) i1, k) & \/ PA(pi) AN Ny(n;)
1<i<k

We define thdeq operation for NEX in two stages. First
we defineleq between a NEXBINT and a NEX value. Let
v = (p,n) be a NEXPINT value and

";)}z‘=1,..k

v = {(p},

To explain the other NEX operations, we introduce a nor-pbe a NEX value. Then, we say that_ v’ iff

malizing procedure calledorm. The implementation aform
is given in Fig. 7. Given a set C P x N satisfyingC3,
norm(u) returns a NEX value, i.e.,v C P x N satisfies

C1-C3. The following theorem summarizes the key proper-

ties ofnorm.

Theorem 2. Let u be an element o2”*¥ satisfying con-
dition C3. Then, (a)norm(u) is a NEX value that is se-
mantically equivalent tai; (b) the complexity ohorm is in

O([uf?).

Proof. Proof of Part(a) follows from the fact that every step

of norm maintains the semantic value of its inpytand that

norm(u) is a legal NEX abstract value. Proof of Part(b) fol-

lows from the fact thahorm looks at all pairs of elements in
u. Note that it is also possible to implememirm in linear
time by using a hashtable. ad

The operationgxists andunprime are performed on the
BDDs, and are then joined together. Specifically,

k
| |{(bddExists(S, p:),

i=1

exists(S, {(pi, i) biz1,.k) = ni)},

and
unprime({ (p, i) }i=1,.x) =
k
| |{(bddPermute(Ve, Vs, pi), ni)} ,
=1
where| | is the join operator of NEX that is defined later in
this section.

pE ||

{ilnCnj}
Finally, for any two NEX values
v = {(pi,ni)}izl,..k;
andv’, we say thateq(v, v') iff
V1<i<k.(p,n;) .
We now define the operatiomseet, join, andwiden.

meet(u,v) = norm
{enp ,nnn) | (p,n) € un(p',n') € v})
join(u, v) £ norm(NEXJoin(u, v))
widen(u, v) £ norm(NEXWiden(u, v))

The functionNEXJoin used to defingoin above is described
in Fig. 8. The key idea behindEXJoin is to ensure that its
output satisfie€3 by splittingp LI p’ into three mutually dis-
joint fragmentsyp M p’, p M —p’ andp’ M —p. The algorithm
NEXWiden is identical toNEXJoin except that it use¥ in-
stead ofLl at Line 5. Note thatneet is defined differently
because, unlikgin andwiden, it distributes over union. The
complexity ofmeet(u, v), join(u, v) andwiden(u, v) opera-
tions is iNO(|u] - |v]). Finally, the operatiomxPosty is de-
fined as follows:

aPosty(s) £ Av.norm({(p, N.aPost(s)(n)) | (p,n) € v}).
Theorem 3. NEX implementsNumMPREDDOM.

Proof. Follows from the above definitions. a
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BDD MJoinOp (BDD w, BDD v)

¢ if(u=1Vov=1)retunl
0) returnv

v= 0) returnu
isNum(u) A isNum(v)
nu := N.a(toEXpr(u))
nv := N.a(toExpr(v))
returntoBdd(N.~y(nu U nv))
returnnull

_ Fig. 10.Implementation oMJoinOp.
CY

Fig. 9. A value from MTNDD domain: shown as an MTDD (a), and a BDD
(b). 1-edges are solid, 0-edges are dashed. Edd@ear®omitted for brevity.

1:
.
3 if
4. if
- 5 if
6:
2
8
9

AAAA

)

|(a:>0)/\(a:=y)| x>0)

1: BDD ctxApply (BDD u, Opg, N ¢, SetV)
20 r:=g(u,c)

3: if (r # null) returnr

4:  b:=varOf(u); e:=term(u)

5. tt = ctxApply(bddT(u),g,eM¢c, V)

6. ff = ctxApply(bddE(u), g,—eM¢, V)
7. if(beV)
8 returnbddOr(tt, f)
9

5.3 MTNDD: Multi-Terminal Numeric Decision Diagrams

MTNDD is a symbolic alternative to NEX. The values of - else

MTNDD are also functions of type"” +— N. Unlike in 10: returnbddite(b, tt, f)
NEX, in MTNDD a value is represented as a BDD over
predicate and numeric terms. This symbolic representation
automatically maintains the partitioning conditidd$-C3 of

Fig. 11.Implementation ottxApply.

NEX. )
Conceptually, an MTNDD value is a Multi-Terminal vert between expressions and BDDs. Formally,
BDD [1], whose terminals are numeric abstract values from MTNDD.top £ 1

N. In ourimplementation, we simulate MTBDDs with BDDs

A
by (a) associating a BDD variable with each predicate and MTNDD bot = 0

numeric term, and (b) restricting variable ordering to easu ap(t) £ toBdd(P.y(P.a(t)))
that predicate variables always precede numeric onesniyor a ) 2 toBdd(N ~(N.alt
term ¢ that is both predicate and numeric (i.projp(t) = an(®) R (Ny(N.a(t))
t = projy(t)), we allocate two distinct BDD variables: one 7(v) = toExpr(v)

representing the predicate, and one representing the rmmer,
term. Note that although there are infinitely many numeric.
terms, only finitely many are used in any analysis. Thus, we
allocate variables for numeric terms dynamically.

Note that in the definition ofvp and oy, the correspond-
|ng predicate and numeric domains are used to hormalize the
expressiornt before it is stored as a BDD. Thumprime oper-
ation is done usingpddPermute. The MTNDD.exists op-
eration is implemented identically bmldEXxists, with the ex-
Example 13.LetVp = {p1,p2}, p1 = (# > 0),p2 = (2 < ception that MTNDDjoin is used instead dfddOr. We omit

y), andVy = {z, y}. Consider an expression the explicit definition of MTND Dexists for brevity.
The operationsneet, join, widen, leq, andaPosty are
(>0)A(z=y)N(z=y). implemented usingddApply. They work by (a) usingddApply

to recursively traverse the input BDD(s) until the inpute ar
Its representation by an MTBDD and by a BDD are shown inreduced to BDDs over only numeric terms; (b) converting nu-
Fig. 9(a) and Fig. 9(b), respectively. 0 meric BDDs to abstract values and applying the correspond-
ing numeric operation; and (c) encoding the result back as a
We assume existence of the functiagaBdd andtoExpr BDD. To illustrate, MTNDDjoin is defined as:
to convert between BDDs and expressions in the usual way. o _
That is, ife is an expression, thenBdd(e) is the BDD cor- MTNDD join(u, v) £ bddApply(MJoinOp, u, v)
responding toe, and if u is a BDD thentoExpr(u) is an
expression represented hy Note that similar conversions
for NEXPoOINT and NEX were done vi&®.« and P.y of the
predicate abstraction domain. Furthermore, we assume exi
tence of the functioisNum(v) that for a BDDv determines
whether the root variable efis a numeric term.
The top and bottom values of MTNDD, MTND.p
and MTNDD.bot, are represented by BDOsand0, respec-
tively. Abstraction and concretization functions simpgne ~ Theorem 4. MTNDD implementdNumMPREDDOM.

where the code folMJoinOp is shown in Fig. 10. Note that

we require that all BDD variables corresponding to predisat
recede all BDD variables that correspond to numeric terms.
hus, whenever a root of a BDDis numeric, the rest of

is numeric as well. The implementations of operatioreet,

widen, leq, andaPosty follow the same pattern. We omit

their explicit definitions for brevity.
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Proof. Follows from the above definitions. O

MTNDD operations are implemented using genéddApply.

Thus, their complexity is linear in the size of their inputs.

5.4 NDD: Numeric Decision Diagrams

NDD is our most expressive domain. Its elements ag'in’" .

An NDD value is represented by a BDD encoding a proposi-

tional formula over predicate and numeric terms.
Each termt is assigned a unique BDD variable. This as-

signment takes negation into account: any two complemen-

tary termst; andt,, i.e.,t; = —its, are associated with the
opposite phases of the same BDD variable. For example,
x > 0is mapped to a BDD variable, thenz < 0 is mapped
to —v. We writeterm(v) to denote the term corresponding
to v. We extend the notation to BDDs and wrierm(u) to
mean the term of the root variable of BDD

The BDD variable allocated to a terfis independent of
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1: BDD reduceOp(BDD u, N c¢)
2: if N.isBot(c) return0

3:  if (u=0) return0

4: if (u==1) returnl

5.  returnnull

Fig. 12.Implementation ofeduceOp.

1: BDD NDDPost(s)(BDDu, N ¢)
2:  if N.isBot(c) return0

3: if (u=0) return0

4:  if (u==1) returna(N.aPost(s)(c))
5:  returnnull

Fig. 13.Implementation oNDDPost(s); s is @ numeric statement.

if

removed. An important observation is that if a BRDs se-
mantically unsatisfiable, theeduce(v) reduces to 0.

To implementleq, we use the fact that for any two for-

mulasu, andv, v implieswv (i.e., u is less than) iff u A —wv
is unsatisfiable. We udsldNot for the negation, anceduce

whethert is a predicate, a numeric term, or both: each term, .ok unsatisfiability. Formally,

gets just one variable. Thus, an expressidaat is propo-
sitionally inconsistent is always represented by the speci
BDD 0. Note that this is not true of the other three imple-
mentations. For example, 1&% = {p}, p = (= > 0), and
Vi = {z}. Then,p A (z < 0) is reduced t®.

Almost all of NDD operations are done using correspond-

ing BDD operations. The ND@op and NDDbot are repre-
sented by BDD4 andO, respectively. Abstraction and con-
cretization functionsvp, oy, and~ are exactly the same as

leq(u, v) £ reduce(meet(u, bddNot(v))) = 0.

The implementation oftPosty (s) is similar toreduce.
It usesctxApply to apply the numeric transformer ofto
every path of a BDD. For a purely numeric statemenive
define a functioNDDPost(s)(u, ¢) as shown in Fig. 13. As-
suming thatNumV is the set of all numeric BDD variables,
«aPosty is defined as follows:

in MTNDD — they simply convert between expressions andaPosty (s)(u) = ctxApply(u, NDDPost(s), N.top, NumV) .

BDDs. Functionginprime, exists, meet, andjoin are imple-
mented adddPermute, bddExists, bddAnd, andbddOr,
respectively. Theviden operation is implemented by conver-
sionto MTNDD.

All of these operations work on propositional structure of

the abstract value. They treat numeric constraints asemint
preted propositional symbols. Their complexity is linear i
the size of the input.

The operationseduce, leq, andaPost are different since

they must take into account the semantics of the numeri

terms. To implement them, we introduce a functidApply,
whose implementation is shown in Fig. 11. The function
ctxApply(u, g, ¢, V') recursively traverses a BDb, collect-
ing the context of the current path in applying operation
g at the subtrees, and and existentially eliminating vaeisbl
in V. The complexity ofctxApply is linear in the number of
paths inu.

The reduce operation is implemented by removing all
unsatisfiable paths from a BDD. It is implemented using
ctxApply as follows:

ctxApply(u, reduceOp, N.top, 0) ,

where the code fareduceOp is shown in Fig. 12. The opera-
tor reduceOp checks for satisfiability of the current context,
and replaces unsatisfiable context withThe rules for BDD

simplification ensure that a path with unsatisfiable context

Note that in this case;txApply existentially quantifies all
numeric terms, anllDDPost adds the result of transforming
them.

Recall that in NDD predicate and numeric terms share
BDD variables. This complicates the implementation of the
“numeric and predicate” abstract transformer. Specifycill
is not possible to redude?rx) A 7p to @ sequential compo-
sition (as in Section 4). Part of the BDD that is affected by
Tp may be needed for application of;. We solve this prob-
fem by adding special “shadow” BDD variables to represent
predicate terms during the computation of the transformer.
The transformer is implemented in three steps: firgt,is
applied with its result stored in “shadow” variables, seton
Ty is applied eliminating variables changed 1y, third the
state is restored from the shadow variables.7ebe a pred-
icate transformer of the form\; p; := choicdt;, f;). Let R
be the relational semantics of (as defined in Section 4).
LetV = NumV U {p;}; be the set of all numeric variables
and all variables changed by. Then,aPost(ty A 7p)(u)
is defined as:

unprime(ctxApply(u 1 R, NDDPost(7y ), N.top, V))

We further elaborate on the definition: then R part cor-
responds to partial application ef>, ctxApply appliesTy
and eliminates all current-state variabled/inandunprime
copies shadow variables into current state.
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Example 14.For example, leVp be {(z = 3),(z = 4)} ,
Vi be{z}, 7n bex:=z+1, andrp be(x = 4):=choicdz =
3,f). Assume that is (z = 3) A (x > 3). Then, applyingp
partially results in(z = 3) A (z > 3) A (z = 4)'; applying
7n and eliminating(z = 3) producegx > 4) A (x = 4)/,

and renaming yield&x > 4) A (x = 4). O
Theorem 5. NDD implementdNuMPREDDOM.
Proof. Follows from the above definitions. a

5.5 Summary

In summary, we (informally) compare our four implementa-
tions with respect to six criteria: precision, i.e., alilio rep-
resent different abstract values; succinctness, i.eciseness
of representation; performance of the data structure whed u
solely for predicate (PA) or numeric abstraction (NA); and
efficiency of propositional (i.e., meet, join), and numeoje
erations. The results are shown in Table 3.

NDD is the most precise domain. Furthermore, since it

uses BDDs to encode the propositional structure of the yalue

it is more succinct than NEX and MTNDD that do not share

storage between predicate and numeric parts of the abstract

value. Succinctness of NEXPNT is a side-effect of its im-
precision.

All of the data-structures reduce to BDDs when there are
no numeric terms present. Thus, they are all equally well

suited for predicate abstraction. NEXRT and NEX rep-
resent numeric abstract value explicitly and, therefore, a
efficient for numeric abstraction. Both MTNDD and NDD
encode numeric values symbolically and introduce addition
overhead.

NDD is the best data structure for propositional opera-

tions since those are implemented directly using BDDs. At

the same time, it is the worst for numerical operations —
those usetxApply, whose complexity is linear in the number
of paths in a diagram. Again, the efficiency of NEXIRT is

a by-product of its imprecision.

As shown by our informal comparison, there is no clear
winner between the four choices. In the next section, we eval
uate the data structures empirically in the context of saxfiew
model checking.

6 Empirical Evaluation

To evaluate our data-structures, we have build a generci+ea
ability analysis engine for C programs. The engine is imple-
mented in 4vA. In addition to the four NMPREDDOM im-
plementations described in Section 5, we have also imple
mented a traditional abstract interpreter, referred toNas “
meric”, and traditional predicate abstraction, referrechs
“Predicate”. Note that both “Numeric” and “Predicate” do-
mains are implemented as instances oMPREDDOM. More-
over, our NEXRINT domain corresponds to the typical com-
bination of PA and NA as suggested in [12,4,5]. Thus, our

Arie Gurfinkel and Sagar Chaki: Combining Predicate and Numerstrattion for Software Model Checking

experiments compare our new technique against the standard
abstraction interpretation-based approach, the stamdedit
cate abstraction approach, and standard combination @f pre
icate and numeric domains.

All experiments were done on a 2.4GHz machine with
4GB of RAM. In the rest of this section, we describe our
implementation and experimental results.

6.1 Implementation

For our experiments, we implemented a tool that checks for
the reachability of a control flow locatioA RROR in a pro-
gram Prog by using the following general strategy.

1. Initially, one of our six implementations of N1 PRED-
Dow is selected with/» = Vv = (). Let us denote this
implementation byV PD.

Each statement in Prog is converted to the abstract
transformen” (s). This yields an abstract prograﬁ/r?gy.

For an expression, let Approz(e) denote the weakest
formula overVp whose interpretation implies We im-
plementedh” as follows, wheredpprox(e) is computed
using a theorem prover, using the same algorithm as in
thesLAM tool [3]:

— " (assumée)) £ assumée A - Approz(—e)). Note
that: (i) we overapproximatein terms ofVp by first
underapproximating.e, and then negating the result,
and (ii) the abstract transformer obtained by applying
a" to assumée) is of the formassumeée’) wheree’ is
a Boolean expression oveély U Vp.

- a"(v:=e€) = 75 A Tp Where:

@) ™5 = A,,ev, vi = € Wheree; = eif v; = v
ande; = v; otherwise, and
(b) 7p & Ay, epy Pi = choicgl;, f;) such that:

2.

t; = Approx(WP;) N WP; , and
fi & Approx(=WP;) A=WP;

where W P; is the weakest precondition [3] of
~(p;) with respect ta := e. Note thatt; and f;
are Boolean expressions oviéy U Vp.
— Lets £ s1;50. Thena™(s) = a”(s1); a" (s2).
— Lets = 51V s9. Thena (s) £ a7 (sy) V o’ (sa).
. An inductive invariant is computed fd% using stan-
dard abstract interpretation wifii P D, and iterative fixed
point computation. If the invariant & RROR is found
tobeN PD.bot, thenE RROR is declared to be unreach-
able and the procedure terminates.
A trace C'E exhibiting the reachability o RROR in
P/@ is constructed by replaying the abstract interpreter
backwards, using a method analogous to that of Gula-
vani et al. [14]. Next, the satisfiability of the weakest-
precondition of CE is checked. If the weakest precon-
dition is found to be satisfiable, thefiE’ corresponds to
a concrete execution d?rog. In this case FRROR is
declared to be reachable, and the procedure terminates.

4,
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PPrecision  Succinct PA  NA PropOp Num Op

NEXPOINT - ++ + o+ ++ ++
NEX + - + + - ++
MTNDD + - + - + -

NDD ++ + + - ++ --

Table 3. Summary of the implementationByecision = precision of abstract valueSuccinct = succinctness of the representati® = applicability to
predicate abstractioA = applicability to numeric abstractiorop Op = complexity of propositional operations (meet, join, etbliym Op = complexity
of numeric operations.

_ 6.3 Realistic Examples
int x = 0;

(@) while (x < O +x;
assert(x == C); For a more realistic evaluation, we used a set of 22 bench-
marks (3 from a suite by Zitser et al. [23], 2 from OpenSSL
version 0.9.6¢, 9 based on a controller for a metal casting
i”f ?X(l); <0)n=o plant, 2 based on the Micro-C OS version 2.72, and 6 based
®) eseif(xc<o n <o on Windows device drivers). We analysed them using our
if(x0 < 0) assert(n == 0); four implementations of NMPREDDOM and also with PA

else if(xC < 0) assert(n = 0);

and NA separately.
Fig. 15 shows the total time taken by each individual ex-
Fig. 14. Two templates for synthetic examples. periment. Since the goal of the experiments is to explore the
difference between our data structures, we only report the
time taken by the last iteration of abstraction-refinemet a
_ . i ) . do not include the time needed to find a suitable abstraction.
5. Otherwise,N PD is “refined” by adding new numeric  g4ch run was limited to 60 seconds. In the figure, a time of 18
variables or predicates via the following simple scheme. goconds indicates failure, either due to memory exhaysiion
— Construct an UNSAT-core of the weakest precondi-because our simple abstraction-refinement scheme failed to
tion of C'E. add new variables or predicates. Fig. 15 shows exactly which
— Ifanumeric variable in the UNSAT core is not present examples could be analyzed by each domain. In particular,
in Vv, add it toV and repeat from Step 1. only 9 could be analyzed numerically, and 17 using predi-
— Else, if a boolean expression in the UNSAT core is cates. In the case of PA, the maximum number of predicates
absent inV/p, add it toVp and repeat from Step 1. was 10; in the case of NA, the maximum number of numeric
— Else, the overall procedure terminates with failure.  variables was 17; in the combined domains, these were at 8
(with 6 for NDD) and 17, respectively. Thus, combining PA
We used thenPRON package for numeric reasoning (in - and NA requires fewer predicates, with fewest predicates re
our experiments we used the Polyhedra domainjva Jm- quired for the most expressive combination.
plementation of BDDs, and CVQLE for building the PA In Table 4, we show the number of examples analyzed and
part of the abstraction and for analyzing counterexamples. the time used by basic abstract operations. The total time in
cludesall of the analysis, including predicate abstraction with
CVCLITE. Note that the last 4 columns of the table corre-
spond to operations inside the reachability computatioey(t
do not add up to total time). The experiments indicate that
NEXand MTNDD join numeric constraints, but NDD main- a combination of PA and NA is more expressive, and more
tains an exact union. Thus, we conjecture that NDD performsmportantly, more efficient, than either one in isolation. |
poorly when numeric joins are exact. To validate this hypoth particular, all of the combined domains could not only solve
esis we experimented with the template shown in Fig. 14(a)more problems than PA, but were 6-7 times faster. For this
Our experiments support this hypothesis. NEX and MTNDD eyaluation, NDD performs the best (NEXIT solves only
scale beyon€ = 10000 (NEX performs better than MTNDD21/22 problems), which is probably explained by lack of deep
since it does not have the extra overhead of manipulatingoops in the benchmarks. The two extremes are NEX and
BDDs). NDD blows up even fo€ = 400. NDD: NEX transformers are efficient to apply, butjién is
Our second conjecture was that when a problem requiregather slow, while the opposite is true for NDD.
a propositionally complex invariant, the sharing capapif
NDD will place it at an advantage to NEX and MTNDD.
To test this conjecture we experimented with the template in/  Conclusion
Fig. 14(b). Our experiments support this hypothesis as. well
NDD requires seconds f@ = 10 while NEXand MTNDD In this article, we have presented an approach to couple PA
both require several minutes with NEX being the slowest. and NA tightly into a unified analysis framework via a sin-

6.2 Synthetic Examples
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Total Time
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Fig. 15.Bar-chart showing total time taken by each experiment.
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Domain Num | Total ~ join | aPost | Apply
Numeric 9 2.52 043 0.41| 0.44 0.38
Predicate 17 333.38| 0.05| 0.03| 0.20 0.06
NEXPOINT 21 42.30 | 0.38 | 1.13 | 4.04 8.50
NEX 22 45,17 | 0.59 | 2.22 | 3.99 7.20
MTNDD 22 9405 | 0.02| 3.71| 2.11 56.10
NDD 22 42.15 | 0.03 | 0.02 | 1.96 17.81

Table 4. Time requirements for various operations on realistic exasaple

Numeric = purely numeric analysis; Predicate = purely predieamalysis;
Num = no. of examples analysedpply = applying abstract transformers.
All times are in seconds.

gle abstract domain calledl\PREDDOM. We develop and
evaluate four data structures that implementMNPREDDOM
but differ in their expressivity and internal represeratand
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