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Abstract. Predicate (PA) and Numeric (NA) abstractions are
the two principal techniques for software analysis. In thispa-
per, we develop an approach to couple the two techniques
tightly into a unified framework via a single abstract domain
called NUMPREDDOM. In particular, we develop and evalu-
ate four data structures that implement NUMPREDDOM but
differ in their expressivity and internal representation and al-
gorithms. All our data structures combine BDDs (for efficient
propositional reasoning) with data structures for representing
numerical constraints. Our technique is distinguished by its
support for complex transfer functions that allow two way in-
teraction between predicate and numeric information during
state transformation. We have implemented a general frame-
work for reachability analysis of C programs on top of our
four data structures. Our experiments on non-trivial examples
show that our proposed combination of PA and NA is more
powerful and more efficient than either technique alone.

1 Introduction

Predicate abstraction (PA) [3] and Abstract Interpretation (AI)
with numeric abstract domains, called Numeric abstraction
(NA) [6], are two mainstream techniques for automatic pro-
gram verification. Although it is sometimes assumed that the
difference between the two is that of precision versus effi-
ciency, experience of projects based on PA (such as SLAM [3])
and those based on NA (such as ASTRÉE [6]) indicates that
both techniques can balance efficiency and precision when
applied to problems in a particular domain. These two tech-
niques have complementary strengths and weaknesses. A com-
bination of PA and NA is more powerful and efficient than ei-
ther technique alone. Achieving an effective combination of
PA and NA is the subject of our paper.

Send offprint requests to:

Predicate abstraction uses an automated decision proce-
dure (ADP) to reduce program verification to propositional
reasoning with a model checker. This makes PA well-suited
for verifying programs and properties that are control driven
and (mostly) data-independent. For example, PA is well suited
for verifying the code fragment in Fig. 1(a). However, in the
worst case, the reduction to propositional reasoning is expo-
nential in the number of predicates. Hence, PA is not as ef-
fective for data-driven and (mostly) control-independentpro-
grams and properties, such as the code fragment shown in
Fig. 1(b). In summary, PA works best for propositional rea-
soning, and performs poorly for arithmetic.

Numeric abstraction reduces program verification to rea-
soning about conjunction of linear constraints. For instance,
NA with the Intervalsdomain is limited to conjunctions of in-
equalities of the formc1 ≤ x ≤ c2, wherex is a variable and
c1, c2 are numeric constants. Instead of relying on a general-
purpose ADP, NA leverages a Numeric Abstract Domain — a
collection of special data-structures and algorithms designed
to represent and manipulate sets of numeric constraints effi-
ciently, and to encode statements as transformers of numeric
constraints. Thus, in contrast to PA, NA is appropriate for ver-
ifying properties that are (mostly) control-independent,but
require arithmetic reasoning. For example, NA is well suited
for verifying the code fragment in Fig. 1(b). On the flip side,
NA performs poorly when propositional reasoning (i.e., sup-
porting disjunctions and negations) is required. For exam-
ple, NA is not well suited for verifying the code fragment
in Fig. 1(a).

In practice, precise, efficient and scalable program anal-
ysis requires the strengths of both predicate and numeric ab-
straction. For instance, in order to verify the code fragment
in Fig. 2(a), propositional reasoning is needed to distinguish
between different program paths, and arithmetic reasoning
is needed to efficiently compute an invariant strong enough
to discharge the assertion. More importantly, in this exam-
ple the propositional and numeric reasoning must interact in
non-trivial ways.
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assume(i==1 || i==2);
switch(i)
case 1: a1=3; break;
case 2: a2=-4; break;

switch (i)
case 1: assert(a1>0); break;
case 2: assert(a2<0); break;
default: assert(0);

if(3 <= y1 <= 4)
x1 = y1 - 2;
x2 = y1 + 2;

else if(3 <= y2 <= 4)
x1 = y2 - 2;
x2 = y2 + 2;

assert(5 <= (x1+x2) <= 10);

(a) (b)
Fig. 1.Two example programs.

Any meaningful combination of PA and NA must have at
least two features: (a) propositional predicates are interpreted
as numeric constraints where appropriate, and (b) abstract
transfer functions respect the numeric nature of predicates.
The first requirement means that, unlike most AI-based com-
binations, the combined abstract domain cannot treat predi-
cates as uninterpreted Boolean variables. The second require-
ment implies that the combination must support abstract trans-
formers that allow the numeric information to affect the up-
date of the predicate information, and vice versa.

Against this background we make the following contri-
butions. First, we present the interface of an abstract domain,
called NUMPREDDOM, that combines both PA and NA. The
interface is distinguished by very rich syntax for abstracttrans-
formers that tightly combines updated to predicate and nu-
meric parts of the abstract state. This allows predicate and
numeric state information to influence each other.

Second, we propose four data-structures — NEXPOINT,
NEX, MTNDD, and NDD — that implement NUMPRED-
DOM. The data structures (summarized in Table 1) differ in
their expressiveness and in the choice of representation for
the numeric part of the domain. All of the data-structures sup-
port very efficient (symbolic) propositional reasoning. Thus,
they are well suited for our target application – PA-based pro-
gram analysis.

Third, we present experimental results on non-trivial ex-
amples, and compare and contrast between pure predicate ab-
straction, pure numeric abstraction, and our four data-structures.
Our experiments show that the proposed combination is more
powerful and more efficient than either PA or NA in isolation
and that our four implementations of NUMPREDDOM exhibit
meaningful tradeoffs between expressiveness and efficiency
of various operations.

The rest of this paper is structured as follows. We sur-
vey related work in Section 2 and review background ma-
terial in Section 3. In Section 4, we present the interface of
NUMPREDDOM. In Section 5, we describe the particularities
of each of our NUMPREDDOM implementations. Finally, ex-
perimental results and conclusions are presented in Section 6.

2 Related Work

There are several approaches to combine propositional and
numeric reasoning in a program verifier. These include ex-

Name Value Example Num.

NEXPOINT 22
VP

×N (p ∨ q) ∧ (0 ≤ x ≤ 5) EXP

NEX 2VP 7→ N (p ∧ 0 ≤ x ≤ 3) ∨
(q ∧ 1 ≤ x ≤ 5) EXP

MTNDD 2VP 7→ N (p ∧ 0 ≤ x ≤ 3) ∨
(q ∧ 1 ≤ x ≤ 5) SYM

NDD 2VP 7→ 2N (p ∧ (x = 0 ∨ x = 3) ∨
(q ∧ (x = 1 ∨ x = 5))) SYM

Table 1.Summary of implementations of NUMPREDDOM; VP = predicates;
N = numerical abstract values;Value = type of an abstract element;Exam-
ple = example of allowed abstract value;Num = numeric part representation
(explicit or symbolic).

plicitly combining analysis engines, devising new abstract
domains, designing new data structures to allow greater in-
teraction between existing domains, and delegating all rea-
soning to a decision procedure for a fragment of arithmetic.

Numeric and Predicate Abstraction.The problem of com-
bining PA and NA involves combining their abstract domains,
and is well studied in Abstract Interpretation [11]. Typically,
abstract domains are combined using adomain product, e.g.,
direct, reduced [10,11], or logical [15]. Furthermore, adis-
junctive completion[11] is used to extend a domain with dis-
junctions (or unions). The domains we develop in this paper
are variants of a (disjunctive completion of) reduced product
between domains of PA and NA. In practice, our combina-
tion of PA and NA achieves a form of automated value-based
trace partitioning[20].

One approach for combining abstract domains is to com-
bine results of the analyses – e.g., by using light-weight data-
flow analyses, such as alias analysis and constant propaga-
tion – to simplify a program prior to applying predicate ab-
straction. Thus, the invariants discovered by one analysisare
assumed by the other. For instance, Jain et al.[18] present
a technique to compute numeric invariants using NA which
are then used to simplify PA. However, this approach only
works when the verification task can be cleanly partitioned
into arithmetic and propositional reasoning. For example,it
is ineffective for verifying the program in Fig. 2(a), where
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purely numeric reasoning is too imprecise to produce any
useful invariants.

Another approach is to run the analyses over different
abstract domains in parallel within a single analysis frame-
work, using the abstract transfer functions of each domain as
is. The analyses may influence each other, but only through
conditionals of the program. This approach is often taken by
large-scale abstract interpreters [6], that use differentabstract
domains to abstract distinct program variables. Recently,a
similar approach has been incorporated into software model
checker BLAST [12,4,5] to combine predicate abstraction with
various data-flow analyses. In principle, this can be adapted
to combining PA and NA. The expressiveness of this combi-
nation is comparable to NEXPOINT – our simplest combined
domain.

From the approaches that tightly combine predicate and
numeric abstractions the work of Bultan et al. [8] is closest
to ours. They present a model checking algorithm to reason
about systems whose transition relation combines proposi-
tional and numeric constraints. Their algorithms are basedon
a data structure that uses BDDs [7] for propositional reason-
ing and the Omega library1 for arithmetic reasoning. While
this data structure is similar to NEX, we support more com-
plicated transfer functions and provide an interface to replace
the Omega library with an arbitrary numeric abstract domain.

Our domains MTNDD and NDD use BDDs for a purely
symbolic representation of abstract values. Thus, they aresim-
ilar to Difference Decision Diagrams (DDDs) [22] that repre-
sent propositional formulas over difference constraints.How-
ever, unlike DDD, we do not restrict the domain of numerical
constraints. This makes our implementation more general, at
the cost of strong canonicity properties of DDDs.

The contribution of our work is in adapting, extending,
and evaluating existing work on combining propositional and
arithmetic reasoning about programs to the needs of software
model checking. To our knowledge, none of the tight combi-
nations of the two abstract domains have been evaluated in
the context of PA-based software model checking.

Satisfiability Modulo Theory (SMT).The SMT-problem is
the problem of deciding satisfiability of a first order (typ-
ically, quantifier free) formula whose atomic terms are in-
terpreted in one or more theories. An SMT-solver is a tool
that solves the SMT problem. Current state-of-the-art SMT-
solvers can reason about combined theories of propositional
logic, uninterpreted functions, and linear arithmetic.

An SMT-solver is often the main theory-aware reason-
ing engine in a program verifier. For example, it is the main
engine for predicate abstraction [2,19,9], or, when combined
with interpolation, it can be used to implement predicate trans-
formers (e.g., [21]). In our approach, we use an SMT-solver
for computing predicate abstraction part of an abstract trans-
former and for the refinement step of the Counter-Example
Guided Abstraction-Refinment (CEGAR) loop.

1 http://www.cs.umd.edu/projects/omega

There are many similarities and differences between com-
bining theories in an SMT-solver and combining numeric and
propositional reasoning in an abstract domain (as we do here).
In the rest of the section, we highlight some of the key differ-
ences:

– Data-structures for Boolean formulas over combined
theories:Both abstract domains and SMT-solvers use data-
structures to represent Boolean formulas. However, they
differ in the requirements they impose on those data-structures.
A data-structure for an abstract domain must support effi-
cient application of transfer functions and application of
widening. This is not a requirement for a data-structure in
an SMT-solver.
The data-structures we present in this article are based
on BDDs. This provides us with a DNF representation of
an abstract value that is needed for application of abstract
transfer functions. In contrast, SMT-solvers use CNF-based
data-structure for Boolean formulas.

– Precision versus efficiency trade-offs:In an abstract do-
main, every abstract operation mustover-approximatea
corresponding concrete one. Thus, the designer of an ab-
stract domain can choose between a more efficient but
more approximate implementation and a less efficient but
more precise implementation of every operation. This is
our main motivation for developing four different combi-
nations of PA and NA – each achieving different trade-
off on the precision versus efficiency scale. In contrast, in
SMT all operations must be interpreted precisely.

– Quantifier elimination: The key steps in an Abstract Inter-
pretation-based program analysis are the computation and
application of abstract transformers. In general, these steps
are reduced to quantifier elimination (i.e., existentially
projecting “previous state” variables in the strongest post-
condition computation). Thus, quantifier elimination (or
its over-approximation) is an essential operation for any
abstract domain. In contrast, quantification is not a stan-
dard operation supported by an SMT-solver. Moreover,
SMT-solvers are often used to reason about theories that
even do not admit quantifier elimination at all (e.g., the
theory of uninterpreted functions).

– Widening: Another key property of an Abstract Inter-
pretation-based program analysis is that it is always guar-
anteed to terminate. This is achieved by requiring each
abstract domain to have an approximation scheme, called
widening, that computes a closed form (or a limit) for any
increasing chain of abstract values. Widening operation is
unique to abstract domains. It is not clear how to define an
analogous operation (or why it is even needed) for SMT
solvers.

In summary, at a high-level, combining predicate and nu-
meric abstract domains is similar to combining predicate and
numeric reasoning in SMT-solving. However, we believe that
the requirements and the details of the combination are quite
different.
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assume(x1==x2);
if (A[y1 + y2] == 3)

x1 = y1 - 2;
x2 = y2 + 2;

else
A[x1 + x2] = 5;

if (A [x1 + x2] == 3)
x1 = x1 + x2;
x2 = x2 + y1 - 2;

assert(x1==x2);

assume(x1 = x2);
((assume(p);
x1 := y1 − 2 ∧ q := choice(f, f);
x2 := y2 + 2 ∧ q := choice(x1 + 2 = y1 ∧ p, f)) ∨

(assume(¬p);
q := choice(f, t)));

((assume(q);
x1 := x1 + x2;
x2 := x2 + y1 − 2) ∨ assume(¬q));

assert(x1 = x2)

(a) (b)

Fig. 2.A program (a), and its abstraction (b) withVP = {p, q}, VN = {x1, x2, y1, y2}, wherep , ((A[y1 + y2] = 3), andq , (A[x1 + x2] = 3).

3 Background

In this section, we define our basic notation and our view of
abstract domains.

3.1 Expressions and Statements

LetV denote the set of program variables,E denote the set of
expressions overV , andB ⊆ E denote Boolean expressions.
There are two kinds ofatomicstatements:

1. an assignment,l := e, wherel is a variable inV ande is
an expression inE, and

2. an assumption,assume(e), wheree is inB.

Assume operations are used to model conditional branches,
i.e., if-then-else blocks, as well as assumptions used during
verification. We write||s|| to denote the collecting semantics,
i.e., the strongest post-condition transformer, as a function
fromB toB.

Example 1.The following are some examples of collecting
semantics of atomic statements:

||x := x+ 1||(x > 3) ≡ (x > 4)

||x := 5||(x = 3 ∧ y = 6) ≡ (x = 5 ∧ y = 6)

||assume(x > 4)||(y = 6) ≡ (x > 4 ∧ y = 6) .

⊓⊔

A program is a control-flow graph annotated byloop-free
statementsS. The setS is constructed by composing atomic
statements as follows:

1. sequentially, writtens1; s2, meaning execution ofs1 is
followed by the execution ofs2;

2. non-deterministically, writtens1 ∨ s2, meaning a non-
deterministic choice between execution ofs1 ands2.

3.2 Abstract Domain

We assume that the reader is familiar with abstract interpre-
tation. For a detailed overview of AI, we refer the reader to

Name Notation Abstract Elements

Intervals BOX(V ) {c1 ≤ v ≤ c2 | c1, c2 ∈ N , v ∈ V }

Octagons OCT(V ) {±v1 ± v2 ≥ c | c ∈ N , v1, v2 ∈ V }

Polyhedra PK(V ) linear inequalities overV

Predicates PRED(V ) propositional formulas overV

Table 2.Common abstract domains;V is a set of numeric/propositional vari-
ables;N domain of numeric constants.

the seminal work by Cousot and Cousot [11]. Often, an ab-
stract and concrete domain are viewed as lattices connected
by a Galois connection. In this article, we take a more opera-
tional view of an abstract domain as anabstract data typethat
satisfies the interface ABSDOM(V ) shown in Fig. 3. Such a
view of an abstract domain is sufficient for our purpose. We
assume that the concrete domain is the set of expressionsB,
and not, for example, program states. We useA to denote the
set of all theabstract elementsof ABSDOM(V ). The inter-
face ABSDOM(V ) consists of the following functions:

1. abstraction,α, and concretization,γ, that convert between
expressions and abstract elements inA;

2. meet and join that approximate conjunction (intersec-
tion) and disjunction (union), respectively;

3. leq that approximates implication (subset);
4. isTop andisBot check for validity (universality), and un-

satisfiability (emptiness), respectively;
5. widen is a widening operator [11] that over-approximates

a disjunction and guarantees convergence when applied to
any (possibly infinite) sequence of abstract elements; and

6. αPost approximates the semantics of a program state-
ment as anabstract transformer, i.e., a function fromA toA.

The set of requirements at the bottom part of Fig. 3 en-
sure that the abstract domain is a sound approximation of the
concrete one. For example, the first rule ensures that for any
expressione, abstraction (α) of e, followed by concretization
(γ) of the result is weaker (i.e., bigger, or less precise) thane.

Table 2 shows several commonly used abstract domains.
The first three domains, collectively called Numeric, are used
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Interface: ABSDOM(V )
γ : A → B α : B → A

meet : A×A → A join : A×A → A

isTop : A → bool isBot : A → bool
leq : A×A → bool widen : A×A → A

αPost : S → (A → A)
Requires:

let a, b, c ∈ A, e ∈ B, x = γ(a), y = γ(b), z = γ(c) in

e ⇒ γ(α(e)) (αPost(s)(a) = b) ⇒ (||s||(x) ⇒ y)

leq(a, b) ⇒ (x ⇒ y) (meet(a, b) = c) ⇒ (x ∧ y ⇒ z)

isTop(a) ⇒ (x) (join(a, b) = c) ⇒ (x ∨ y ⇒ z)

isBot(a) ⇒ (¬x) (widen(a, b) = c) ⇒ (x ∨ y ⇒ z)

Fig. 3. Interface of an abstract domain:B denotes Boolean expressions,S

denotes statements, andA denotes abstract values.

to represent and manipulate arithmetic constraints. The last
one, PRED(V ), represents propositional formulas over a set
of predicates.

3.3 Abstract Transformers

For ease of presentation, we define a syntax for abstract trans-
formers. Let NDOM(VN ) be a numeric domain over variables
VN . The numeric domain has two abstract transformers: as-
sign and assume. The syntax for the assign transformer of
NDOM(VN ) is

x1 := e1 ∧ · · · ∧ xn := en ,

where eachxi is in VN , and eachei is a linear arithmetic
expression overVN . The syntax for the assume transformer
is

assume(e) ,

wheree is a linear Boolean expression overVN . The seman-
tics of the assign and assume transformers are standard – as-
sign models abstract state update via variable assignments,
while assume models abstract state update via addition of
new constraints.

Example 2.The following are two examples of numeric ab-
stract transformers:

x := y + 1 ∧ y := x− 1 ,

assume(x+ y ≤ 5) .

⊓⊔

For the predicate domain PRED(VP ) over a set of predi-
catesVP , an abstract transformer is represented by aBoolean
assignment of the form

p := choice(t, f) ,

wherep ∈ VP is a predicate, andt andf are Boolean ex-
pressions overVP . Informally, t represents the condition un-
der whichp must be true, andf the condition under whichp

must be false. Note thatt andf do not have to be mutually
disjoint. Formally, the semantics of a Boolean assignment is
defined as

||p := choice(t, f)||(e) =

let R = (p′ ∧ ¬f) ∨ (¬p′ ∧ ¬t) in

(∃VP · e ∧R)[p′/p] ,

wheref , t, ande are propositional formulas over predicates
in VP , and the notatione[p′/p] stands for replacing all oc-
currences ofp′ in e by p. Semantics of parallel composition
of Boolean assignments is obtained by composing the se-
mantic relations of the individual assignments, as usual. To
our knowledge, thechoice(t, f) function was first introduced
(and calledchoose) by Ball et al. [2] in the context of us-
ing Boolean and cartesian abstractions for model checking C
programs. Ball et al. [2] also described an automated process
for constructing abstract transformers involvingchoice(t, f)
from C statements using a theorem prover.

Example 3.The abstract transformer

p := choice(p,¬p)

leavesp unchanged (p is true after the transformeriff p was
true before). The abstract transformer

p := choice(false, false)

changesp non-deterministically (nothing preventsp from be-
ing either true or false in the next state). The abstract trans-
former

p := choice(p ∧ q, false)

makesp true after the transformer if bothp andq were true
before it and changesp non-deterministically otherwise. ⊓⊔

In the case of a numeric abstract domain, an abstraction
of a given a concrete statements by an abstract transformer is
done by the domain itself. In the case of predicate abstraction,
an abstraction by Boolean assignments is computed using a
theorem prover [13,3].

3.4 Binary Decision Diagrams

Reduced Ordered Binary Decision Diagrams (ROBDDs, or
BDDs for the purpose of this paper) [7] are a canonical repre-
sentation of propositional formulas. A BDD is a DAG whose
inner nodes correspond to propositional variables, two leaf
nodes (i.e., nodes with no successors) corresponding to true
and false. A path in a BDD corresponds to an assignment of
values to variables. The paths leading to the true node corre-
spond to all satisfying assignments of a formula represented
by a BDD.

We use0 and1 to denote the constant BDDs for false
and true, respectively. For a BDDu, we usevarOf(u) for
the variable corresponding to the root ofu, bddT(u) for the
then-branch ofu, andbddE(u) for the else-branch ofu, re-
spectively. We make use of the following well known BDD
operations:
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Interface: NUMPREDDOM(VN , VP ) extends ABSDOM

αP : B → A αN : B → A

unprime : A → A reduce : A → A

exists : 2VP ×A → A αPostN : S → (A → A)

Fig. 4.The interface of NUMPREDDOM: VN andVP are numeric and propo-
sitional variables, respectively.E, B, S, andA are as in Fig. 3.

1. conjunction (bddAnd), disjunction (bddOr), and nega-
tion (bddNot);

2. if-then-else (bddIte);
3. existential quantification (bddExists); and
4. variable renaming (bddPermute).

Many of the above operations are implemented uniformly us-
ing a functionbddApply(f, u, v), whereu, v are BDDs, and
f is a binary operator (i.e., conjunction, disjunction, etc.) that
is defined only for the constant BDDs.

4 NUMPREDDOM: Interface

In this section, we describe the interface of NUMPREDDOM

and abstract transfer functions supported by it. The interface
NUMPREDDOM is shown in Fig. 4. It extends, i.e., has all
the functions of, the basic abstract domain ABSDOM shown
in Fig. 3. Notably, NUMPREDDOM has two types of vari-
ables: numeric,VN , and propositional (or predicate),VP . Fur-
thermore, the domain is extended implicitly with “primed”
propositional variables

V ′
P , {p′ | p ∈ VP } .

The meaning of each predicatep in VP is given by the con-
cretization functionγ. Conceptually, each element of NUMPRED-
DOM is a quantifier free first-order propositional formula over
predicatesVP and numeric constraints over variablesVN .

Example 4.Consider NUMPREDDOM(VN , VP )whereVN =
{x, y}, andVP = {p}. A possible element is

(p ∧ (x ≥ 0) ∧ (y ≥ 0)) ∨ (¬p ∧ x < 0) .

Note that predicates can be interpreted as constraints overnu-
meric variables. For instance, it is possible thatγ(p) = (x ≥
0). In this case, the value ofx is represented both in predicate
and numeric parts of the abstract value. ⊓⊔

The functions provided by NUMPREDDOM in addition to
ABSDOM are:

1. abstraction function,αN , is a restriction of the abstraction
functionα to conjunctions of linear constraints overVN ;
That is, ifαN (e) = a, thena is a conjunction of numeric
constraints over variables inVN ande ⇒ γ(a).

2. abstraction function,αP , is a restriction of the abstraction
functionα to minterms overVP ; That is, ifαP (e) = a,
thena is a propositional formula over predicates inVP

ande ⇒ γ(a).

3. existential quantification,exists, over-approximates ex-
istential quantification ofpropositionalvariables from an
abstract value. It must satisfy the over-approximation con-
dition:

(∃V · γ(a)) ⇒ γ(exists(V, a)) ;

4. variable renaming,unprime, renames all “primed” propo-
sitional variables into the corresponding unprimed ones;

5. abstract numeric transformer,αPostN , lifts an abstract
numeric only transformer to the combined domain; Given
a numeric transformerτ and a NUMPREDDOM valueap∧
an, whereap is a conjunction over predicates inVP and
an is a conjunction over numeric constraints overVN ,

αPostN (τ)(ap ∧ an) , ap ∧ αPostN (τ)(an) .

Moreover, it must distribute over disjunction. That is,

αPostN (τ)(a1 ∨ a2) ,

join(αPostN (τ)(a1), αPostN (τ)(a2)) .

6. the reduction function,reduce, is a special operation that
refines an abstract value by sharing information between
propositional and numeric parts of the value. It must sat-
isfy an over-approximation condition:

γ(a) ⇒ γ(reduce(a)) .

During analysis,reduce is applicable before or after any
abstract operation to increase the precision of the final
result. However, calls toreduce are expensive. By fac-
toring it out in the interface, we allow its judicious use to
target a suitable precision versus efficiency tradeoff.

4.1 Projection

To define the abstraction functionα of NUMPREDDOM, we
first introduce projection functions. These are used to break
apart an expression that combines numeric and predicate terms.
Let VP be a set of predicates,VN a set of numeric vari-
ables, ande be a conjunction of numeric terms, predicates,
and negations of predicates.

1. The propositional projectionof e onto VP , denoted by
projP (VP , e), is a minterm overVP that is implied by
(i.e., over-approximates)e.

2. Thenumeric projectionof e ontoVN , denoted by
projN (VN , e), is a conjunction of numeric constraints over
VN that is implied bye.

Example 5.The following are some sample applications of
the projection functions:

projP ({p}, p ∧ (x ≥ 0) ∧ (y ≥ 0)) ≡ p

projP ({x ≥ 0}, p ∧ (x ≥ 0) ∧ (y ≥ 0)) ≡ (x ≥ 0)

projN ({y}, p ∧ (x ≥ 0) ∧ (y ≥ 0)) ≡ y ≥ 0

⊓⊔
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1: int x, y, *p;
2: ...
3: if (*p > 0) {
4: *p = x; ...
5: } else {
6: *p = 3; ...
7: }
8: ...

Fig. 5.A fragment of a C program.

Note that we have only partially specified the projection
functions. The exact definitions ofprojP andprojN are left
to the implementation. In our implementation, they are done
via approximations based on syntactic reasoning. More pre-
cise semantic constructions via the use of theorem provers
are possible as well. Such implementation choices, as long as
they satisfy the over-approximation conditions above, affect
the efficiency vs. precision trade off, but not the soundnessof
the abstract domain.

4.2 Abstraction

Let e be a quantifier free formula in negation normal form.
The abstraction functionα(e) is defined recursively usingαP

andαN as follows:

– if e is a term, then

α(e) , meet(αP (projP (VP∪V
′
P , e)), αN (projN (VN , e)))

– else ife = e1 ∧ e2, then

α(e) , meet(α(e1), α(e2))

– else ife = e1 ∨ e2, then

α(e) , join(α(e1), α(e2))

4.3 Abstract Transformers

NUMPREDDOM supports a rich set of abstract transformers
(shown in a BNF grammar in Fig. 6). In this section, we de-
scribe the syntax and semantics of each type of transformer,
illustrate in what situations it is required, and, when applica-
ble, provide a common implementation.

Numeric. The “numeric” abstract transformer’s syntax is

x1 := e1 ∧ · · · ∧ xk := ek ,

where the variables inxi andei are inVN . Its semantics is
defined in terms of theαPostN of each implementation of
NUMPREDDOM as follows:

λX · αPostN (x1 := e1 ∧ · · · ∧ xl := ek)(X) .

It is a basic building block for abstracting arithmetic transfor-
mations.

Assume.The “assume” abstract transformer’s syntax is

assume(e) ,

wheree is an arbitrary expression. It semantics is

λX · meet(α(e), X) .

It is used to approximate program conditionals with a combi-
nation of predicate and numeric conditions.

Example 6.For example, consider a fragment of a C pro-
gram shown in Fig. 5. In the program,x andy are two in-
teger variables, andp is a pointer to an integer. Ellipsis in-
dicate that part of the program is not shown. Let the pred-
icatesVP = {p = &x, p = &y} and numeric variables
VN = {x, y}. Then, the conditional of the then-branch of
the if-statement on line 3,

assume(∗p > 0) ,

can be approximated by the assume transformer

assume((p = &x ∧ x > 0) ∨ (p = &y ∧ y > 0) ∨

(p 6= &y ∧ p 6= &x))

Informally, the abstract transformer says that either (a)p points
to x andx is positive, or (b)p points toy andy is positive, or
(c) p does not point to eitherx or y. ⊓⊔

Conditional. The “conditional” abstract transformer’s syn-
tax ise?τ , wheree is an arbitrary expression, andτ is a purely
numeric transformer. Its semantics is

λX · αPostN (τ)(αPost(assume(e))(X)) .

The conditional transformer is most useful in a combina-
tion with other transformers.

Example 7.Again, consider the program fragment in Fig. 5,
and recall thatVP = {p = &x, p = &y} andVN = {x, y}.
The assignment∗p := 3 on line 6 can be abstracted by a con-
ditional transformer:

(p = &x ? x := e) ∨ (p = &y ? y := e) ,

Informally, the above transformer means that eitherp points
to x andx gets3, or p points toy andy gets3, or p does not
point to eitherx or y, andx andy are unchanged. ⊓⊔

Predicate. The “predicate” abstract transformer’s syntax is

p1 := choice(t1, f1) ∧ · · · ∧ pn := choice(tn, fn) ,

where eachpi is in VP and eachti andfi is an expression
overVP andVN . Its semantics is defined using conjunction
and existential quantification as follows:

let R = α(
∧

i
(p′i ∧ ¬fi) ∨ (¬p′i ∧ ¬ti)) in

λX · unprime(exists({p1, . . . , pn},meet(X,R))) .

The predicate transformer is the basic building block for
predicate abstraction. It depends on both predicate and nu-
meric information.
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τ ::= τN | τa | τc | τP | τNP | (base case)
τ ; τ | (sequence)
τ ∨ τ (non-det.)

τNP ::= (e?τN ) ∧ τP (numeric + predicate)
τP ::= p := choice(e, e) | (predicate)

τP ∧ τP
τc ::= e?τN (conditional)
τa ::= assume(e) (assume)
τN ::= x := v | (numeric)

τN ∧ τN

Fig. 6. BNF grammar for abstract transformers supported by
NUMPREDDOM; p is a predicate;x a numeric variable;e an expres-
sion over predicates and numeric terms;v a numeric expression.

Example 8.Again, consider the program fragment in Fig. 5.
Let the predicates

VP = {y > 0, p = &x, p = &y}

and numeric variablesVN = {x}. Then, the assignment∗p:=
x on line 4 can be abstracted as:

(y > 0):=

choice((p = &x) ∧ (y > 0) ∨ (p = &y) ∧ (x > 0),

(p = &x) ∧ (y ≤ 0) ∨ (p = &y) ∧ (x ≤ 0)) .

Intuitively, this abstract transformer means thaty becomes
positive ifp points tox andy was positive, or ifp points toy
andx was positive. Moreover,y becomes non-positive (i.e.,
≤ 0) if either p points tox andy was non-positive, or ifp
points toy andx was non-positive. ⊓⊔

Numeric and Predicate.The “numeric and predicate” ab-
stract transformer’s syntax involves a parallel composition of
conditional numeric and predicate transformers as follows:

(e?τN ) ∧ τP ,

wheree is an arbitrary expression,τN is a purely numeric
transformer, andτP is a predicate transformer. Its semantics
is defined using the equivalence

(e?τN ) ∧ τP ≡ assume(e); τP ; τN .

That is, since the purely numeric transformerτP does not de-
pend on the predicates, this parallel composition is reduced
to a sequential one. This transformer is used to abstract state-
ments that influence both predicates and numeric constraints
simultaneously. Even thoughτN does not involve predicates,
it is influenced by predicates in the conditione.

Example 9.Let VP = {y = 1} andVN = {x, v, w}. Then,
the parallel statement

y := x ∧ x := (y = 1)?v : w

is abstracted as

((y = 1)?x = v : x = w) ∧

(y = 1) := choice(x = 1, x 6= 1) .

The above abstract transformer means thaty becomes 1 iffx
was 1, andx getsv or w depending on whethery was equal
to 1 before. Note that the predicatey = 1 is influenced by
numeric constraints onx, and influences the next value ofx.

⊓⊔

Sequential and Non-Deterministic.The syntax of “sequen-
tial” and “non-deterministic” abstract transformers is given
by τ1; τ2 andτ1 ∨ τ2, respectively. Their semantics is defined
using function composition andjoin operator, respectively:

αPost(τ1; τ2) = λX · αPost(τ2)(αPost(τ1)(X))

αPost(τ1 ∨ τ2) = λX · join(αPost(τ1)(X), αPost(τ2)(X))

Example 10.A complete example of the combined predicate
and numeric abstraction is shown in Fig. 2. Part (a) of the
figure shows a fragment of a program. Part (b) of the figure
shows the abstraction of Part (a) with predicatesVP = {p, q},
wherep , ((A[y1 + y2] = 3), andq , (A[x1 + x2] = 3),
and numeric variablesVN = {x1, x2, y1, y2}. Note that the
two parts of Fig. 2 are formatted to align their correspond-
ing statements. Moreover,assumeand disjuction are used in
Fig. 2(b) to modelif-then-else statements in Fig. 2(a).

The abstraction is precise enough to establish that the pro-
gram is safe (i.e., the assertions are not violated). The predi-
catesp andq are necessary to separate different paths through
the control flow. A transfer function for predicateq must de-
pend on a combination of numeric constraints and the value
of the predicatep. In this example, the tight combination of
predicate and numeric abstraction is crucial: an abstraction
of Part (a) using only numeric domain overVN is not precise
enough to establish safety; discovering the predicates fora
precise predicate abstraction is non-trivial. ⊓⊔

From Concrete to Abstract Programs.The transformers pre-
sented in this section are abstract in the sense that their se-
mantics is defined using the transformers of the underlying
predicate and numeric abstract domains and the basic opera-
tions (i.e,meet, join, etc.) of NUMPREDDOM.

Using NUMPREDDOM to abstract and reason about a con-
crete program requires an additional abstraction function,ατ ,
that maps concrete statements to abstract transformers. An
implementation ofατ must be sound: for any concrete pro-
gram statements, the semantics ofατ (s)must “over-approximate”
the semantics ofs. However, an implementation is free to
make its own trade-off between precision and efficiency. We
describe our implementation ofατ in Section 6.

In summary, the critical operations in the NUMPRED-
DOM interface areexists, unprime, projN , projP , αN , αP ,
γ, leq, meet, join, widen,αPostN andreduce. In the rest of
the article, we present four different implementations of these
operations and evaluate them empirically.
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5 NUMPREDDOM: Implementations

In this section, we describe four different implementations
of NUMPREDDOM. We useN to denote the set of abstract
values of the underlying numeric domain overVN , andP to
denote the set of propositional formulas overVP . In other
words,P = 22

VP . We writeN.op andP.op to mean the
abstract operationop over numerics and predicates respec-
tively. We write⊑, ⊓, ⊔ and∇ to meanleq, meet, join and
widen when the abstract domain is clear from context. We
write X.top, X.bot to meanX.α(true) andX.α(false), re-
spectively, representing the top and the bottom elements of
the domainX. All four implementations of NUMPREDDOM

share the definitions ofprojN andprojP , which are based on
syntactic simplification of expressions to a normal form.

5.1 NEXPOINT: Numeric Explicit Points

NEXPOINT domain is the simplest of our combinations. The
set of abstract values of NEXPOINT isP×N . A NEXPOINT

value is represented by a pair(p, n) wherep is a BDD andn
is a numeric abstract value. Intuitively, a pair(p, n) represents
the expressionP.γ(p)∧N.γ(n). The top and bottom elements
of NEXPOINT are defined as follows:

NEXPOINT.top , (P.top, N.top)

NEXPOINT.bot , (P.bot, N.bot)

The exists and unprime operations are performed on the
BDD part of the tuple:

exists(S, (p, n)) , (bddExists(S, p), n)

unprime(S, (p, n)) , (bddPermute(S′, S, p), n) ,

whereS ⊆ VP is a set of propositional variables, andS′ =
{s′ | s ∈ S}. Most of the remaining operations are performed
pointwise. Specifically,

αN (e) , (P.top, N.α(e))

αP (e) , (P.α(e), N.top)

γ(p, n) , P.γ(p) ∧N.γ(n)

op((p, n), (p′, n′)) , (P.op(p, p′), N.op(n, n′))

leq((p, n), (p′, n′)) , p ⊑ p′ ∧ n ⊑ n′

αPostN (s) , λ(p, n) � (p,N.αPost(s)(n)) ,

whereop ∈ {meet, join,widen}. Note that our definition
of leq above is sound, i.e., satisfies the requirements ofleq
shown in Fig. 3. However, it is not the strongest (most pre-
cise) possible one. In particular, it does not ensure the preci-
sion condition:

leq((p, n), (p′, n′)) ⇔ (γ(p, n) ⇒ γ(p′, n′)) . (⋆)

The advantage of our definition is that it admits an efficient
implementation on top of theleq operators of the underlying
numeric and predicate domains. A more preciseleq, ensuring

the condition (⋆), would be much more expensive to imple-
ment. Thereduce operation is defined as follows:

reduce(v) , α(γ(v)) .

Example 11.Consider NEXPOINT domain withVP = {q, r},
VN = {x, y}, and predicatesq andr interpreted asq , (x =
0) andr , (y = 0). Then,

reduce(q ∨ r, x = 3 ∧ y ≥ 0) = (¬q ∧ r, x = 3 ∧ y = 0) .

Note that the output ofreduce is equivalent to its input in the
concrete world, since

γ(q ∨ r, x = 3 ∧ y ≥ 0) ≡ γ(¬q ∧ r, x = 3 ∧ y = 0) .

However, the output is strictly more precise than the input in
the abstract world since

leq((¬q ∧ r, x = 3 ∧ y = 0), (q ∨ r, x = 3 ∧ y ≥ 0))
∧

¬leq((q ∨ r, x = 3 ∧ y ≥ 0), (¬q ∧ r, x = 3 ∧ y = 0)) .

This means that applyingreduce during abstract analysis has
the potential of yielding more precise results. Similarly,

reduce(q ∨ r, x = 3 ∧ y < 0) = NEXPOINT.bot .

Once again, the output ofreduce is equivalent to its input in
the concrete world, since

γ(q ∨ r, x = 3 ∧ y < 0) ≡ false .

However, the output is strictly more precise than the input in
the abstract world, since

leq(NEXPOINT.bot, (q ∨ r, x = 3 ∧ y < 0))
∧

¬leq((q ∨ r, x = 3 ∧ y < 0),NEXPOINT.bot) .

⊓⊔

The abstract domains NEX and MTNDD, presented in
the next two sections, share the above definition ofreduce
with NEXPOINT. Therefore, we only definereduce specif-
ically for our fourth abstract domain NDD. The following
theorem summarizes the correctness of NEXPOINT.

Theorem 1. NEXPOINT implementsNUMPREDDOM.

Proof. We know that NEXPOINT exports all operations re-
quired by NUMPREDDOM. We prove that the operations sat-
isfy the required properties.

For the meet operation, let(p, n) and (p′, n′) be two
NEXPOINT abstract values. We know that:

P.γ(p) ∧ P.γ(p′) ⇒ P.γ(p ⊓ p′)
∧

N.γ(n) ∧N.γ(n′) ⇒ N.γ(n ⊓ n′)

which implies

(P.γ(p) ∧N.γ(n))
∧
(P.γ(p′) ∧N.γ(n′)) ⇒

P.γ(p ⊓ p′) ∧N.γ(n ⊓ n′)
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which implies

γ(p, n) ∧ γ(p′, n′) ⇒ γ(p ⊓ p′, n ⊓ n′) .

For thejoin operation, let(p, n) and(p′, n′) be two NEXPOINT

abstract values. We know that:

P.γ(p) ∨ P.γ(p′) ⇒ P.γ(p ⊔ p′)
∧

N.γ(n) ∨N.γ(n′) ⇒ N.γ(n ⊔ n′)

which implies

(P.γ(p) ∧N.γ(n))
∨
(P.γ(p′) ∧N.γ(n′)) ⇒

P.γ(p ⊔ p′) ∧N.γ(n ⊔ n′)

which implies

γ(p, n) ∨ γ(p′, n′) ⇒ γ(p ⊔ p′, n ⊔ n′) .

The proof forwiden is similar to that ofjoin. For isTop, let
(p, n) be an abstract NEXPOINT value such thatisTop(p, n).
Thereforep = P.top andn = N.top, and hence,P.γ(p) =
true andN.γ(n) = true. That is,γ(p, n) = true, which is
what we want.

For isBot, let(p, n) be an abstract NEXPOINT value such
that isBot(p, n). Thereforep = P.bot andn = N.bot, and
hence,P.γ(p) = false andN.γ(n) = false. That is,γ(p, n) =
false, which is what we want.

For leq, let(p, n) and(p′, n′) be two NEXPOINT abstract
values such that(p, n) ⊑ (p′, n′). Therefore,

p ⊑ p′ ∧ n ⊑ n′

which implies

P.γ(p) ⇒ P.γ(p′) ∧N.γ(n) ⇒ N.γ(n′)

which implies

P.γ(p) ∧N.γ(n) ⇒ P.γ(p′) ∧N.γ(n′)

which is what we want. To prove thate ⇒ γ(α(e)) for any
expressione, we induct on the structure ofe and consider
three cases:

– Case 1.e is a term. In this case,

α(e) , meet(αP (projP (VP ∪ V ′
P , e)), αN (projN (VN , e)))

Let us writeeP to meanprojP (VP ∪ V ′
P , e) andeN to mean

projN (VN , e). Therefore,

α(e) = (P.α(eP ), N.top) ⊓ (P.top, N.α(eN )) =
(P.α(eP ) ⊓ P.top, N.top ⊓N.α(eN ))

Hence, from the definitions ofmeet andγ, and the fact that
P.γ(P.top) = true andN.γ(N.top) = true, we know that

P.γ(P.α(eP )) ∧N.γ(N.α(eN )) ⇒ γ(α(e))

Now, we know that

eP ⇒ P.γ(P.α(eP ))
∧

eN ⇒ N.γ(N.α(eN ))

Therefore,eP ∧ eN ⇒ γ(α(e)). Finally, from the definitions
of projP and projN , we know thate ⇒ eP ande ⇒ eN .
Therefore,e ⇒ eP ∧ eN ⇒ γ(α(e)), which is what we want.

– Case 2.e = e1 ∧ e2. In this case,

α(e) , meet(α(e1), α(e2))

By inductive application, we know that

e1 ⇒ γ(α(e1))
∧

e2 ⇒ γ(α(e2))

Therefore,

e ≡ e1 ∧ e2 ⇒ γ(α(e1)) ∧ γ(α(e2))

Also, by the definition ofmeet, we know that:

γ(α(e1)) ∧ γ(α(e2)) ⇒ γ(meet(α(e1), α(e2))) ≡ γ(α(e))

Hence,e ⇒ γ(α(e)), which is what we want.
– Case 3.e = e1 ∨ e2. In this case,

α(e) , join(α(e1), α(e2))

By inductive application, we know that

e1 ⇒ γ(α(e1))
∧

e2 ⇒ γ(α(e2))

Therefore,

e ≡ e1 ∨ e2 ⇒ γ(α(e1)) ∨ γ(α(e2))

Also, by the definition ofjoin, we know that

γ(α(e1)) ∨ γ(α(e2)) ⇒ γ(join(α(e1), α(e2))) ≡ γ(α(e))

Hence,e ⇒ γ(α(e)), which is what we want.
Finally, the requirement onαPost is satisfied by combin-

ing the semantics of NUMPREDDOM abstract transformers
with the requirement onατ . This completes the proof. ⊓⊔

5.2 NEX: Numeric Explicit Sets

The NEX domain extends the expressive power of NEXPOINT

by allowing different predicate valuations to map to different
numeric constraints. Each abstract value of the NEX domain
is a function2VP 7→ N and is represented as a set of pairs

{(p1, n1), . . . , (pk, nk)} ⊆ P ×N ,

where eachpi is a BDD, eachni is a numeric abstract value.
To ensure that each NEX value is indeed a function, the set
must satisfy the following well-formedness conditions:

∀1 ≤ i ≤ k � pi 6= P.bot ∧ ni 6= N.bot (C1)

∀1 ≤ i < j ≤ k � ni 6= nj (C2)

∀1 ≤ i < j ≤ k � pi ⊓ pj = P.bot (C3)

ConditionsC1–C3 above ensure that the data structures are
as “tight” as possible:C1 guarantees that the representation
of any abstract value does not include any “empty” compo-
nents,C2 ensures that any two elements(p1, n1) and(p2, n2)
are distinguished by their numeric components, andC3 en-
sures that the elements of a NEX value are “mutually dis-
joint”. Intuitively, a NEX value is a “union” of NEXPOINT

values that are distinguished by their numeric components.
Thus, NEX improves upon the precision of NEXPOINT by
replacing imprecise numericjoin with union.
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1: NEX norm (2P×N u)
2: while (∃(p, n) ∈ u � p = P.bot ∨ n = N.bot) do
3: u := u \ {(p, n)}
4: while (∃(p, n) ∈ u ∧ ∃(p′, n) ∈ u) do
5: u := u \ {(p, n), (p′, n)} ∪ {(p ⊔ p′, n)}
6: returnu

Fig. 7. Implementation ofnorm.

Example 12.Suppose thatVN = {x, y} andVP = {p, q}.
Then the expression

e , (p ∧ ¬q ∧ x < 0) ∨ (¬p ∧ q ∧ y < 0)

is represented precisely by the NEX abstract value

{(p ∧ ¬q, x < 0), (¬p ∧ q, y < 0)} .

Note thate has no precise representation in terms of NEXPOINT

abstract values. ⊓⊔

The top and bottom elements of NEX are defined as

NEX.top , {(P.top, N.top)}

NEX.bot , ∅ .

To explain the other NEX operations, we introduce a nor-
malizing procedure callednorm. The implementation ofnorm
is given in Fig. 7. Given a setu ⊆ P × N satisfyingC3,
norm(u) returns a NEX valuev, i.e., v ⊆ P × N satisfies
C1–C3. The following theorem summarizes the key proper-
ties ofnorm.

Theorem 2. Let u be an element of2P×N satisfying con-
dition C3. Then, (a)norm(u) is a NEX value that is se-
mantically equivalent tou; (b) the complexity ofnorm is in
O(|u|2).

Proof. Proof of Part(a) follows from the fact that every step
of norm maintains the semantic value of its inputu, and that
norm(u) is a legal NEX abstract value. Proof of Part(b) fol-
lows from the fact thatnorm looks at all pairs of elements in
u. Note that it is also possible to implementnorm in linear
time by using a hashtable. ⊓⊔

The operationsexists andunprime are performed on the
BDDs, and are then joined together. Specifically,

exists(S, {(pi, ni)}i=1,..k) ,
k⊔

i=1

{(bddExists(S, pi), ni)} ,

and

unprime({(pi, ni)}i=1,..k) ,

k⊔

i=1

{(bddPermute(VP , V
′
P , pi), ni)} ,

where
⊔

is the join operator of NEX that is defined later in
this section.

1: 2P×N NEXJoin (NEX u, NEX v)
2: if (u = ∅) returnv
3: if (v = ∅) returnu
4: let u be{(p, n)} ∪X andv be{(p′, n′)} ∪X ′

5: x := {(p ⊓ p′, n ⊔ n′)}
6: y := NEXJoin({(p ⊓ ¬p′, n)}, X ′)
7: z := NEXJoin({(p′ ⊓ ¬p, n′)}, X)
8: returnx ∪ y ∪ z ∪ NEXJoin(X,X ′)

Fig. 8. Implementation ofNEXJoin.

The abstraction and concretization operations for NEX
are defined as follows:

αN (e) , {(P.top, N.α(e))}

αP (e) , {(P.α(e), N.top)}

γ({(pi, ni)}i=1,..k) ,
∨

1≤i≤k

P.γ(pi) ∧N.γ(ni)

We define theleq operation for NEX in two stages. First
we defineleq between a NEXPOINT and a NEX value. Let
v = (p, n) be a NEXPOINT value and

v′ = {(p′i, n
′
i)}i=1,..k

be a NEX value. Then, we say thatv ⊑ v′ iff

p ⊑
⊔

{i|n⊑n′

i
}

p′i .

Finally, for any two NEX values

v = {(pi, ni)}i=1,..k

andv′, we say thatleq(v, v′) iff

∀1 ≤ i ≤ k � (pi, ni) ⊑ v′ .

We now define the operationsmeet, join, andwiden.

meet(u, v) , norm

({(p ⊓ p′, n ⊓ n′) | (p, n) ∈ u ∧ (p′, n′) ∈ v})

join(u, v) , norm(NEXJoin(u, v))

widen(u, v) , norm(NEXWiden(u, v))

The functionNEXJoin used to definejoin above is described
in Fig. 8. The key idea behindNEXJoin is to ensure that its
output satisfiesC3 by splittingp⊔ p′ into three mutually dis-
joint fragments:p ⊓ p′, p ⊓ ¬p′ andp′ ⊓ ¬p. The algorithm
NEXWiden is identical toNEXJoin except that it uses∇ in-
stead of⊔ at Line 5. Note thatmeet is defined differently
because, unlikejoin andwiden, it distributes over union. The
complexity ofmeet(u, v), join(u, v) andwiden(u, v) opera-
tions is inO(|u| · |v|). Finally, the operationαPostN is de-
fined as follows:

αPostN (s) , λv�norm({(p,N.αPost(s)(n)) | (p, n) ∈ v}) .

Theorem 3. NEX implementsNUMPREDDOM.

Proof. Follows from the above definitions. ⊓⊔
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(a) (b)

p1

p2

(x > 0) ∧ (x = y)

p1

p2

(x > 0)

(x = y)

Fig. 9.A value from MTNDD domain: shown as an MTDD (a), and a BDD
(b). 1-edges are solid, 0-edges are dashed. Edges to0 are omitted for brevity.

5.3 MTNDD: Multi-Terminal Numeric Decision Diagrams

MTNDD is a symbolic alternative to NEX. The values of
MTNDD are also functions of type2VP 7→ N . Unlike in
NEX, in MTNDD a value is represented as a BDD over
predicate and numeric terms. This symbolic representation
automatically maintains the partitioning conditionsC1–C3 of
NEX.

Conceptually, an MTNDD value is a Multi-Terminal
BDD [1], whose terminals are numeric abstract values from
N . In our implementation, we simulate MTBDDs with BDDs
by (a) associating a BDD variable with each predicate and
numeric term, and (b) restricting variable ordering to ensure
that predicate variables always precede numeric ones. For any
term t that is both predicate and numeric (i.e.,projP (t) =
t = projN (t)), we allocate two distinct BDD variables: one
representing the predicate, and one representing the numeric
term. Note that although there are infinitely many numeric
terms, only finitely many are used in any analysis. Thus, we
allocate variables for numeric terms dynamically.

Example 13.Let VP = {p1, p2}, p1 ≡ (x > 0), p2 ≡ (z <
y), andVN = {x, y}. Consider an expression

(x > 0) ∧ (z ≥ y) ∧ (x = y) .

Its representation by an MTBDD and by a BDD are shown in
Fig. 9(a) and Fig. 9(b), respectively. ⊓⊔

We assume existence of the functionstoBdd andtoExpr
to convert between BDDs and expressions in the usual way.
That is, ife is an expression, thentoBdd(e) is the BDD cor-
responding toe, and if u is a BDD thentoExpr(u) is an
expression represented byu. Note that similar conversions
for NEXPOINT and NEX were done viaP.α andP.γ of the
predicate abstraction domain. Furthermore, we assume exis-
tence of the functionisNum(v) that for a BDDv determines
whether the root variable ofv is a numeric term.

The top and bottom values of MTNDD, MTNDD.top
and MTNDD.bot, are represented by BDDs1 and0, respec-
tively. Abstraction and concretization functions simply con-

1: BDD MJoinOp (BDD u, BDD v)
2: if (u = 1 ∨ v = 1) return1
3: if (u = 0) returnv
4: if (v = 0) returnu
5: if (isNum(u) ∧ isNum(v))
6: nu :=N.α(toExpr(u))
7: nv :=N.α(toExpr(v))
8: returntoBdd(N.γ(nu ⊔ nv))
9: returnnull

Fig. 10.Implementation ofMJoinOp.

1: BDD ctxApply (BDD u, Opg, N c, SetV )
2: r := g(u, c)
3: if (r 6= null) returnr
4: b := varOf(u); e := term(u)
5: tt = ctxApply(bddT(u), g, e ⊓ c, V )
6: ff = ctxApply(bddE(u), g,¬e ⊓ c, V )
7: if (b ∈ V )
8: returnbddOr(tt, ff)
9: else

10: returnbddIte(b, tt, ff)

Fig. 11.Implementation ofctxApply.

vert between expressions and BDDs. Formally,

MTNDD.top , 1

MTNDD.bot , 0

αP (t) , toBdd(P.γ(P.α(t)))

αN (t) , toBdd(N.γ(N.α(t)))

γ(v) , toExpr(v)

Note that in the definition ofαP andαN , the correspond-
ing predicate and numeric domains are used to normalize the
expressiont before it is stored as a BDD. Theunprime oper-
ation is done usingbddPermute. The MTNDD.exists op-
eration is implemented identically tobddExists, with the ex-
ception that MTNDD.join is used instead ofbddOr. We omit
the explicit definition of MTNDD.exists for brevity.

The operationsmeet, join, widen, leq, andαPostN are
implemented usingbddApply. They work by (a) usingbddApply
to recursively traverse the input BDD(s) until the inputs are
reduced to BDDs over only numeric terms; (b) converting nu-
meric BDDs to abstract values and applying the correspond-
ing numeric operation; and (c) encoding the result back as a
BDD. To illustrate, MTNDD.join is defined as:

MTNDD.join(u, v) , bddApply(MJoinOp, u, v) ,

where the code forMJoinOp is shown in Fig. 10. Note that
we require that all BDD variables corresponding to predicates
precede all BDD variables that correspond to numeric terms.
Thus, whenever a root of a BDDv is numeric, the rest ofv
is numeric as well. The implementations of operationsmeet,
widen, leq, andαPostN follow the same pattern. We omit
their explicit definitions for brevity.

Theorem 4. MTNDD implementsNUMPREDDOM.
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Proof. Follows from the above definitions. ⊓⊔

MTNDD operations are implemented using genericbddApply.
Thus, their complexity is linear in the size of their inputs.

5.4 NDD: Numeric Decision Diagrams

NDD is our most expressive domain. Its elements are in2P×N .
An NDD value is represented by a BDD encoding a proposi-
tional formula over predicate and numeric terms.

Each termt is assigned a unique BDD variable. This as-
signment takes negation into account: any two complemen-
tary termst1 andt2, i.e., t1 = ¬t2, are associated with the
opposite phases of the same BDD variable. For example, if
x > 0 is mapped to a BDD variablev, thenx ≤ 0 is mapped
to ¬v. We write term(v) to denote the term corresponding
to v. We extend the notation to BDDs and writeterm(u) to
mean the term of the root variable of BDDu.

The BDD variable allocated to a termt is independent of
whethert is a predicate, a numeric term, or both: each term
gets just one variable. Thus, an expressione that is propo-
sitionally inconsistent is always represented by the special
BDD 0. Note that this is not true of the other three imple-
mentations. For example, letVP = {p}, p ≡ (x > 0), and
VN = {x}. Then,p ∧ (x ≤ 0) is reduced to0.

Almost all of NDD operations are done using correspond-
ing BDD operations. The NDD.top and NDD.bot are repre-
sented by BDDs1 and0, respectively. Abstraction and con-
cretization functionsαP , αN , andγ are exactly the same as
in MTNDD — they simply convert between expressions and
BDDs. Functionsunprime, exists, meet, andjoin are imple-
mented asbddPermute, bddExists, bddAnd, andbddOr,
respectively. Thewiden operation is implemented by conver-
sion to MTNDD.

All of these operations work on propositional structure of
the abstract value. They treat numeric constraints as uninter-
preted propositional symbols. Their complexity is linear in
the size of the input.

The operationsreduce, leq, andαPost are different since
they must take into account the semantics of the numeric
terms. To implement them, we introduce a functionctxApply,
whose implementation is shown in Fig. 11. The function
ctxApply(u, g, c, V ) recursively traverses a BDDu, collect-
ing the context of the current path inc, applying operation
g at the subtrees, and and existentially eliminating variables
in V . The complexity ofctxApply is linear in the number of
paths inu.

The reduce operation is implemented by removing all
unsatisfiable paths from a BDD. It is implemented using
ctxApply as follows:

ctxApply(u, reduceOp, N.top, ∅) ,

where the code forreduceOp is shown in Fig. 12. The opera-
tor reduceOp checks for satisfiability of the current context,
and replaces unsatisfiable context with0. The rules for BDD
simplification ensure that a path with unsatisfiable contextis

1: BDD reduceOp(BDD u, N c)
2: if N.isBot(c) return0
3: if (u = 0) return0
4: if (u == 1) return1
5: returnnull

Fig. 12.Implementation ofreduceOp.

1: BDD NDDPost(s)(BDDu, N c)
2: if N.isBot(c) return0
3: if (u = 0) return0
4: if (u == 1) returnα(N.αPost(s)(c))
5: returnnull

Fig. 13.Implementation ofNDDPost(s); s is a numeric statement.

removed. An important observation is that if a BDDv is se-
mantically unsatisfiable, thenreduce(v) reducesv to 0.

To implementleq, we use the fact that for any two for-
mulasu, andv, u impliesv (i.e.,u is less thanv) iff u ∧ ¬v
is unsatisfiable. We usebddNot for the negation, andreduce
to check unsatisfiability. Formally,

leq(u, v) , reduce(meet(u,bddNot(v))) = 0 .

The implementation ofαPostN (s) is similar toreduce.
It usesctxApply to apply the numeric transformer ofs to
every path of a BDD. For a purely numeric statements, we
define a functionNDDPost(s)(u, c) as shown in Fig. 13. As-
suming thatNumV is the set of all numeric BDD variables,
αPostN is defined as follows:

αPostN (s)(u) , ctxApply(u,NDDPost(s), N.top, NumV ) .

Note that in this case,ctxApply existentially quantifies all
numeric terms, andNDDPost adds the result of transforming
them.

Recall that in NDD predicate and numeric terms share
BDD variables. This complicates the implementation of the
“numeric and predicate” abstract transformer. Specifically, it
is not possible to reduce(e?τN ) ∧ τP to a sequential compo-
sition (as in Section 4). Part of the BDD that is affected by
τP may be needed for application ofτN . We solve this prob-
lem by adding special “shadow” BDD variables to represent
predicate terms during the computation of the transformer.
The transformer is implemented in three steps: first,τP is
applied with its result stored in “shadow” variables, second
τN is applied eliminating variables changed byτP , third the
state is restored from the shadow variables. LetτP be a pred-
icate transformer of the form

∧
i pi := choice(ti, fi). Let R

be the relational semantics ofτP (as defined in Section 4).
Let V = NumV ∪ {pi}i be the set of all numeric variables
and all variables changed byτP . Then,αPost(τN ∧ τP )(u)
is defined as:

unprime(ctxApply(u ⊓R,NDDPost(τN ), N.top, V ))

We further elaborate on the definition: theu ⊓ R part cor-
responds to partial application ofτP , ctxApply appliesτN
and eliminates all current-state variables inV , andunprime
copies shadow variables into current state.
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Example 14.For example, letVP be {(x = 3), (x = 4)} ,
VN be{x}, τN bex:=x+1, andτP be(x = 4):=choice(x =
3, f). Assume thatu is (x = 3)∧ (x ≥ 3). Then, applyingτP
partially results in(x = 3) ∧ (x ≥ 3) ∧ (x = 4)′; applying
τN and eliminating(x = 3) produces(x ≥ 4) ∧ (x = 4)′,
and renaming yields(x ≥ 4) ∧ (x = 4). ⊓⊔

Theorem 5. NDD implementsNUMPREDDOM.

Proof. Follows from the above definitions. ⊓⊔

5.5 Summary

In summary, we (informally) compare our four implementa-
tions with respect to six criteria: precision, i.e., ability to rep-
resent different abstract values; succinctness, i.e., conciseness
of representation; performance of the data structure when used
solely for predicate (PA) or numeric abstraction (NA); and
efficiency of propositional (i.e., meet, join), and numericop-
erations. The results are shown in Table 3.

NDD is the most precise domain. Furthermore, since it
uses BDDs to encode the propositional structure of the value,
it is more succinct than NEX and MTNDD that do not share
storage between predicate and numeric parts of the abstract
value. Succinctness of NEXPOINT is a side-effect of its im-
precision.

All of the data-structures reduce to BDDs when there are
no numeric terms present. Thus, they are all equally well
suited for predicate abstraction. NEXPOINT and NEX rep-
resent numeric abstract value explicitly and, therefore, are
efficient for numeric abstraction. Both MTNDD and NDD
encode numeric values symbolically and introduce additional
overhead.

NDD is the best data structure for propositional opera-
tions since those are implemented directly using BDDs. At
the same time, it is the worst for numerical operations —
those usectxApply, whose complexity is linear in the number
of paths in a diagram. Again, the efficiency of NEXPOINT is
a by-product of its imprecision.

As shown by our informal comparison, there is no clear
winner between the four choices. In the next section, we eval-
uate the data structures empirically in the context of software
model checking.

6 Empirical Evaluation

To evaluate our data-structures, we have build a general reach-
ability analysis engine for C programs. The engine is imple-
mented in JAVA . In addition to the four NUMPREDDOM im-
plementations described in Section 5, we have also imple-
mented a traditional abstract interpreter, referred to as “Nu-
meric”, and traditional predicate abstraction, referred to as
“Predicate”. Note that both “Numeric” and “Predicate” do-
mains are implemented as instances of NUMPREDDOM. More-
over, our NEXPOINT domain corresponds to the typical com-
bination of PA and NA as suggested in [12,4,5]. Thus, our

experiments compare our new technique against the standard
abstraction interpretation-based approach, the standardpredi-
cate abstraction approach, and standard combination of pred-
icate and numeric domains.

All experiments were done on a 2.4GHz machine with
4GB of RAM. In the rest of this section, we describe our
implementation and experimental results.

6.1 Implementation

For our experiments, we implemented a tool that checks for
the reachability of a control flow locationERROR in a pro-
gramProg by using the following general strategy.

1. Initially, one of our six implementations of NUMPRED-
DOM is selected withVP = VN = ∅. Let us denote this
implementation byNPD.

2. Each statements in Prog is converted to the abstract
transformerατ (s). This yields an abstract program̂Prog.
For an expressione, let Approx(e) denote the weakest
formula overVP whose interpretation impliese. We im-
plementedατ as follows, whereApprox(e) is computed
using a theorem prover, using the same algorithm as in
theSLAM tool [3]:
– ατ (assume(e)) , assume(e ∧ ¬Approx(¬e)). Note

that: (i) we overapproximatee in terms ofVP by first
underapproximating¬e, and then negating the result,
and (ii) the abstract transformer obtained by applying
ατ to assume(e) is of the formassume(e′) wheree′ is
a Boolean expression overVN ∪ VP .

– ατ (v := e) , τN ∧ τP where:

(a) τN ,
∧

vi∈VN
vi = ei whereei = e if vi = v

andei = vi otherwise, and
(b) τP ,

∧
pi∈PN

pi := choice(ti, fi) such that:

ti , Approx(WP i) ∧WP i , and
fi , Approx(¬WP i) ∧ ¬WP i

whereWP i is the weakest precondition [3] of
γ(pi) with respect tov := e. Note thatti andfi
are Boolean expressions overVN ∪ VP .

– Let s , s1; s2. Thenατ (s) , ατ (s1);α
τ (s2).

– Let s , s1 ∨ s2. Thenατ (s) , ατ (s1) ∨ ατ (s2).

3. An inductive invariant is computed for̂Prog using stan-
dard abstract interpretation withNPD, and iterative fixed
point computation. If the invariant atERROR is found
to beNPD.bot, thenERROR is declared to be unreach-
able and the procedure terminates.

4. A traceCE exhibiting the reachability ofERROR in
P̂rog is constructed by replaying the abstract interpreter
backwards, using a method analogous to that of Gula-
vani et al. [14]. Next, the satisfiability of the weakest-
precondition ofCE is checked. If the weakest precon-
dition is found to be satisfiable, thenCE corresponds to
a concrete execution ofProg. In this case,ERROR is
declared to be reachable, and the procedure terminates.
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Precision Succinct PA NA Prop Op Num Op

NEXPOINT - + + + + ++ + +
NEX + - + + - + +
MTNDD + - + - + -
NDD + + + + - ++ - -

Table 3. Summary of the implementations;Precision = precision of abstract values;Succinct = succinctness of the representation;PA = applicability to
predicate abstraction;NA = applicability to numeric abstraction;Prop Op = complexity of propositional operations (meet, join, etc.);Num Op = complexity
of numeric operations.

int x = 0;
while (x < C) ++x;
assert(x == C);

n = 1;
if(x0 < 0) n = 0; ...
else if(xC < 0) n = 0;
if(x0 < 0) assert(n == 0); ...
else if(xC < 0) assert(n = 0);

(a)

(b)

Fig. 14.Two templates for synthetic examples.

5. Otherwise,NPD is “refined” by adding new numeric
variables or predicates via the following simple scheme.

– Construct an UNSAT-core of the weakest precondi-
tion ofCE.

– If a numeric variable in the UNSAT core is not present
in VN , add it toVN and repeat from Step 1.

– Else, if a boolean expression in the UNSAT core is
absent inVP , add it toVP and repeat from Step 1.

– Else, the overall procedure terminates with failure.

We used theAPRON package for numeric reasoning (in
our experiments we used the Polyhedra domain), a JAVA im-
plementation of BDDs, and CVCLITE for building the PA
part of the abstraction and for analyzing counterexamples.

6.2 Synthetic Examples

NEX and MTNDD join numeric constraints, but NDD main-
tains an exact union. Thus, we conjecture that NDD performs
poorly when numeric joins are exact. To validate this hypoth-
esis we experimented with the template shown in Fig. 14(a).
Our experiments support this hypothesis. NEX and MTNDD
scale beyondC = 10000 (NEX performs better than MTNDD
since it does not have the extra overhead of manipulating
BDDs). NDD blows up even forC = 400.

Our second conjecture was that when a problem requires
a propositionally complex invariant, the sharing capability of
NDD will place it at an advantage to NEX and MTNDD.
To test this conjecture we experimented with the template in
Fig. 14(b). Our experiments support this hypothesis as well.
NDD requires seconds forC = 10while NEX and MTNDD
both require several minutes with NEX being the slowest.

6.3 Realistic Examples

For a more realistic evaluation, we used a set of 22 bench-
marks (3 from a suite by Zitser et al. [23], 2 from OpenSSL
version 0.9.6c, 9 based on a controller for a metal casting
plant, 2 based on the Micro-C OS version 2.72, and 6 based
on Windows device drivers). We analysed them using our
four implementations of NUMPREDDOM and also with PA
and NA separately.

Fig. 15 shows the total time taken by each individual ex-
periment. Since the goal of the experiments is to explore the
difference between our data structures, we only report the
time taken by the last iteration of abstraction-refinement and
do not include the time needed to find a suitable abstraction.
Each run was limited to 60 seconds. In the figure, a time of 18
seconds indicates failure, either due to memory exhaustion, or
because our simple abstraction-refinement scheme failed to
add new variables or predicates. Fig. 15 shows exactly which
examples could be analyzed by each domain. In particular,
only 9 could be analyzed numerically, and 17 using predi-
cates. In the case of PA, the maximum number of predicates
was 10; in the case of NA, the maximum number of numeric
variables was 17; in the combined domains, these were at 8
(with 6 for NDD) and 17, respectively. Thus, combining PA
and NA requires fewer predicates, with fewest predicates re-
quired for the most expressive combination.

In Table 4, we show the number of examples analyzed and
the time used by basic abstract operations. The total time in-
cludesall of the analysis, including predicate abstraction with
CVCLITE. Note that the last 4 columns of the table corre-
spond to operations inside the reachability computation (they
do not add up to total time). The experiments indicate that
a combination of PA and NA is more expressive, and more
importantly, more efficient, than either one in isolation. In
particular, all of the combined domains could not only solve
more problems than PA, but were 6-7 times faster. For this
evaluation, NDD performs the best (NEXPOINT solves only
21/22 problems), which is probably explained by lack of deep
loops in the benchmarks. The two extremes are NEX and
NDD: NEX transformers are efficient to apply, but itsjoin is
rather slow, while the opposite is true for NDD.

7 Conclusion

In this article, we have presented an approach to couple PA
and NA tightly into a unified analysis framework via a sin-
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[t]

Fig. 15.Bar-chart showing total time taken by each experiment.
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Domain Num Total γ join αPost Apply
Numeric 9 2.52 0.43 0.41 0.44 0.38
Predicate 17 333.38 0.05 0.03 0.20 0.06

NEXPOINT 21 42.30 0.38 1.13 4.04 8.50
NEX 22 45.17 0.59 2.22 3.99 7.20

MTNDD 22 94.05 0.02 3.71 2.11 56.10
NDD 22 42.15 0.03 0.02 1.96 17.81

Table 4. Time requirements for various operations on realistic examples.
Numeric = purely numeric analysis; Predicate = purely predicate analysis;
Num = no. of examples analysed;Apply = applying abstract transformers.
All times are in seconds.

gle abstract domain called NUMPREDDOM. We develop and
evaluate four data structures that implement NUMPREDDOM

but differ in their expressivity and internal representation and
algorithms. We have implemented a general framework for
reachability analysis of C programs on top of our four data
structures. Our experiments on non-trivial examples show that
our proposed combination of PA and NA is more powerful
and more efficient than either technique alone. Employing
these data structures in an industrial setting requires extend-
ing automated abstraction-refinement to them. We used a sim-
ple refinement strategy for our preliminary experiments. In
the future, we plan to further explore the spectrum of possi-
bilities in this area.
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