
Parallel Assignments in Software Model

Checking

Murray Stokely1

Google

Sagar Chaki2

Carnegie Mellon University, Software Engineering Institute, Pittsburgh, USA

Joël Ouaknine3

Oxford University Computing Laboratory, UK

Abstract

In this paper we investigate how formal software verification systems can be improved by utilising
parallel assignment in weakest precondition computations.
We begin with an introduction to modern software verification systems. Specifically, we review the
method in which software abstractions are built using counterexample-guided abstraction refine-
ment (CEGAR). The classical NP-complete parallel assignment problem is first posed, and then
an additional restriction is added to create a special case in which the problem is tractable with
an O(n2) algorithm. The parallel assignment problem is then discussed in the context of weakest
precondition computations. In this special situation where statements can be assumed to execute
truly concurrently, we show that any sequence of simple assignment statements without function
calls can be transformed into an equivalent parallel assignment block.
Results of compressing assignment statements into a parallel form with this algorithm are presented
for a wide variety of software applications. The proposed algorithms were implemented in the
ComFoRT reasoning framework [12] and used to measure the improvement in the verification of
real software systems. This improvement in time proved to be significant for many classes of
software.

Keywords: static analysis, software model checking, predicate abstraction, parallel assignment.

1
Email: mstokely@google.com

2
Email: chaki@sei.cmu.edu

3
Email: joel@comlab.ox.ac.uk

Electronic Notes in Theoretical Computer Science 157 (2006) 77–94

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.01.024

mailto:mstokely@google.com
mailto:chaki@sei.cmu.edu
mailto:joel@comlab.ox.ac.uk
http://www.elsevier.com/locate/entcs

1 Introduction

In this paper we investigate how formal software verification systems can be
improved by utilising parallel assignment statements. Specifically, we are
interested in performing this static transformation on programs written in
general-purpose programming languages such as C or Java. The modified
program is then verified with an extended model checking tool which inter-
acts with theorem provers and decision procedures to reason about software
abstractions.

Verification tools such as MAGIC (Modular Analysis of proGrams In C)
[14,4] employ a framework known as CounterExample-Guided Abstraction
Refinement (CEGAR) [8,5] to iteratively create more precise abstractions of
the program until the desired properties can be proven or a real counterexam-
ple is generated.

MAGIC provides a compositional framework that can be used to verify con-
current C programs against a range of safety and liveness specifications [5,6,7].
In this context each atomic assignment is represented as a state in the soft-
ware model and the cartesian product of this model is then taken with the
specification Büchi automaton.

Our approach is to analyze the control-flow graph (CFG) and combine
sequential assignments into parallel assignment blocks. Since the iterated CE-
GAR framework can result in a large number of passes over the same parts of
the CFG, the cumulative savings obtained by this compression procedure can
lead to significant speed-ups. Algorithmically, weakest precondition computa-
tions, which typically involve interacting with theorem provers, become more
efficient. Moreover, in the context of concurrent C programs, the reduction in
the number of states in individual components has a multiplicative effect on
the number of states of the whole system.

1.1 Outline

In Section 2, parallel assignment statements are introduced. The classical
NP-complete parallel assignment problem is first considered, and then an ad-
ditional restriction is added to create a special case in which the problem is
tractable. The parallel assignment problem is then discussed in the context
of weakest precondition computations. In this special situation where state-
ments can be assumed to execute truly concurrently, we find an even better
algorithm for compressing multiple sequential assignment statements into a
single parallel assignment.

In Section 3, experiments are presented which show the level of assignment
compression which can be achieved from a broad class of software. The algo-

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9478

rithms from Section 2 have also been implemented in the ComFoRT reasoning
framework, and results are presented showing the time and memory space im-
provements for model checking a selection of applications. Finally, we discuss
future research directions in Section 4.

2 Parallel Assignment

Sequences of assignment instructions are called straight line programs or linear
blocks. Parallel assignment is a construct that permits the updating of multiple
variables as a single atomic operation. For the purpose of verification, we
are interested in identifying sequential assignment statements in straight line
code that can be replaced with equivalent parallel assignment statements.
This operation compresses multiple control points for sequential assignment
statements into a single parallel assignment control point. The new parallel
assignment control point consists of a list of assignment statements.

In this section we consider a number of possible approaches to finding
sequences of assignments suitable for parallel assignment.

• In Section 2.1, we require that each assignment in a parallel assignment
block may be executed in any order without affecting the other assignment
statements in that parallel block. In this scenario, the example x, y := y, x
would not be a valid parallel assignment because x := y; y := x is different
from y := x; x := y whenever x �= y.

• In Section 2.2, we add an additional restriction to the classical parallel
assignment problem by disallowing reordering of the assignment statements.
This produces a tractable problem for which efficient algorithms can be
obtained.

• In Section 2.3, we see that we have additional flexibility in the context of
weakest precondition computations. We can assume that the assignments
in a parallel assignment block must all be executed concurrently.

2.1 Classical Parallel Assignment

The classical parallel assignment problem is stated by Garey and Johnson [11]
as follows.

Instance: Set V = {v1, v2, . . . , vn} of variables, set A = {A1, A2, . . . , An}
of assignments, each Ai of the form “vi ← op(Bi)” for some subset Bi ⊆ V ,
and a positive integer K.

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–94 79

A1 : v1 := op(B1)

A2 : v2 := op(B2)

A3 : v3 := op(B3)
...

An : vn := op(Bn)

Question: Is there an ordering vπ(1), vπ(2), . . . , vπ(n) of V such that there
are at most K values of i, 1 ≤ i ≤ n, for which vπ(i) ∈ Bπ(j) for some j > i?

 . . .
Assignment #N

Assignment #1
Assignment #2
Assignment #3

Parallel Assignment Block #3

Parallel Assignment Block #2

Parallel Assignment Block #1

Assignment #4
Assignment #5

Fig. 1. Sequential Assignments transformed to Parallel Assignments

Thus our problem of compressing the sequential assignment statements
into as few parallel assignment statements as possible would be equivalent to
the optimisation problem of finding the minimum satisfying K.

Unfortunately, Sethi [16] showed that this problem is NP-Hard via a re-
duction from the feedback node set problem. In the next section we consider
a greedy algorithm which identifies parallel assignments with the additional
restriction that the sequential assignments must be adjacent. That is to say,
no reordering of the assignments is allowed even if this would not disrupt
the data dependencies. In Section 2.3 we consider the special circumstances
of statements in weakest precondition computations to perform even better
compression of single assignment statements.

2.2 Tractable General Parallel Assignment

Consider now a modified version of the classical parallel assignment problem
where reordering of the assignment statements is not allowed. The instance
introduced in the previous section is still used, but the question becomes:

Question: Are there at most K values of i, 1 ≤ i ≤ n, for which vi ∈ Bj

for some j > i?

Figure 1 illustrates a transformation from sequential to parallel assignment
statements involving reordering that would be allowed in the classical paral-
lel assignment problem. Figure 2 shows a similar transformation with the
additional condition preventing reordering.

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9480

 . . .
Assignment #N

Assignment #1
Assignment #2
Assignment #3
Assignment #4
Assignment #5

Parallel Assignment Block #2

Parallel Assignment Block #3

Parallel Assignment Block #1

Parallel Assignment Block #4

Fig. 2. Sequential Assignments transformed to Parallel Assignments without reordering.

2.2.1 Analysis

For each of the n assignments Ai, and for each j, i < j ≤ n, we must test if

vi ∈ Bj. Therefore, we will need (n−1)+(n−2)+(n−3)+. . .+3+2+1 = (n−1)2

2

set inclusion operations. If each ‖Bj‖ < C for some constant C, then set
inclusion can be determined in constant time, yielding an O(n2) algorithm.

Recall that n will not be the number of control locations in the entire
program. Instead, n is the number of assignments in a sequential list of
assignment statements in one node of the control flow graph. As such, n is
never a very large number.

2.2.2 Implementation

In order to reason about the variables on the right-hand side of assignment
statements, we need more information than what is provided by the control
flow graph. The parse tree [1] provides the expression-level syntactic informa-
tion we need to reason about individual assignments. We are not interested in
a parse tree for the entire program source code, however. Instead, we expect
the control flow graph to maintain a pointer to a parse tree for each individ-
ual assignment statement. Given such a parse tree, one can easily build up
lists of variables on the left-hand side (LHS) and right-hand side (RHS) of an
assignment statement.

With these two lists as input, the process of creating a new CFG that
utilises parallel assignment statements is described in Algorithm 1. This al-
gorithm visits each node in the control flow graph and then follows a greedy
strategy to build up lists of parallel assignment statements.

Each assignment statement in the CFG node is compared to the running
list of assignments in the parallel assignment block. If the assignment state-
ment is not suitable for parallel assignment with all of the other assignments
in the current parallel assignment block, then that assignment block is finished
and a new one is started.

This algorithm relies on another algorithm to determine whether an as-

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–94 81

signment statement s1 can be included in the block of parallel assignments
P1. Algorithm 2, canParallelise, illustrates the decision procedure in the sim-
pler case of just two assignment statements.

Algorithm 1 Atomise accepts a CFG and loops over the assignment state-
ments combining adjacent assignments into parallel assignment blocks when-
ever possible.

Input: A CFG
Output: A CFG in which assignment statements have been parallelised
for all N ∈ CFG do

if N contains a statement list S then

Let parallel list = first s ∈ S.
for all statement s ∈ S with successor statement s′. do

if canParallelise(parallel list, s′) then

append s′ to parallel list .
else

Append parallel list to new list
Initialise parallel list with s′.

end if

end for

Append parallel list to new list
Replace statement list S in CFG node N with new list.

end if

end for

2.3 Concurrent Parallel Assignment

The algorithms described in the two previous sections are based on two as-
sumptions. The first assumption is that we cannot change the form of the
individual assignment statements. The second assumption is that we must
guarantee that the assignments in a parallel block can be executed in any
order without affecting the result. In fact neither of these assumptions is nec-
essary in the context of building parallel assignments for weakest precondition
computations.

Consider the following example:

x := y

z := x

Algorithm 1 would not be able to combine these two assignment statements
because the left-hand side of one is present in the right-hand side of the other.
However, it is possible to change the second assignment without altering the

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9482

Algorithm 2 CanParallelise accepts a list of assignments suitable for par-
allel assignment and an additional assignment and determines if the new as-
signment can be safely added to the existing parallel assignment block.

Input: Assignment list l and an assignment statement s1.
Output: A boolean answer as to whether the statements may be executed
in parallel.
Let LHS (s) be a function returning the variable on the left-hand side of
single assignment s.
Let LHS List(l) be a function returning the variables on the left-hand side
of the assignments in assignment list l.
Let RHS (s) be a function returning the list of variables on the right-hand
side of assignment s.
Let RHS List(l) be a function returning the variables on the right-hand
side of the assignments in assignment list l.
if LHS (s1) ∈ RHS List(l) or RHS (s1) ∩ LHS List(l) �= ∅ then

return false
else

return true
end if

result of the block.

x := y

z := y

With this modification, our existing algorithm would be able to combine
these two assignments into a single parallel assignment block. It is also clear
that the result is exactly the same as the original sequence of assignments.

In general, we can define a function that accepts a sequence of simple as-
signment statements S without pointers and without function calls and returns
an equivalent parallel assignment statement.

Proof by Induction:

The base case of a single assignment, S = {s1}, is vacuously true. f(S) = S
is the function.

Now, let S be a sequence of n sequential assignment statements and let
S+ denote the the sequence S and the successor of the last assignment in S,
s′. Suppose a function g exists to transform the sequence S of assignments
into an equivalent parallel assignment, g(S). (Inductive hypothesis)

We build a new function h(S+) as follows:

for all v ∈ RHS (s′) do

if v = LHS (s̃) for some s̃ ∈ g(S) then

Replace v in s′ with RHS (s̃)

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–94 83

end if

end for

Output (g(S), s′)

By the replacement construction on s′ we guarantee that it can be
combined with g(S) in a parallel block, thus proving our result inductively. �

With concurrent parallel assignment, the left-hand side of all assignment
statements are updated simultaneously. This means that instances of all vari-
ables in the parallel assignment block refer to the valuations before the parallel
block is entered. If an assignment statement needs to utilise the valuation of
a variable after another assignment statement, then that assignment must be
rewritten with the procedure outlined in the previous proof.

As one final illustration, consider the following assignment list:

x = 1;

y = x;

u = 2;

v = u;

The classical parallel assignment problem seeks to find the optimal ordering
of the assignment statements so as to find a minimal set of parallel assignment
statements, such as:

x = 1 ||| u = 2;

y = x ||| v = u;

In the context of weakest precondition computations, however, we can
modify the assignment statements as necessary to ensure that all can be com-
bined into one parallel assignment block:

x = 1 ||| y = 1; ||| u = 2 ||| v = 2;

2.3.1 Implementation

The ConcurrentAtomise algorithm described in the previous section is pre-
sented in Algorithm 3.

2.4 Parallel Assignment and Weakest Preconditions

For an assignment statement s and predicate φ, the weakest precondition
WP(s, φ) is obtained by replacing all occurrences of the left-hand side of
s with the right-hand side of the assignment. This can be represented in
replacement notation by φ[LHS/RHS].

This replacement operation extends naturally when s is a parallel assign-

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9484

Algorithm 3 ConcurrentAtomise accepts a CFG and loops over the as-
signment statements modifying adjacent assignments as necessary to allow
them to be combined into a single parallel assignment block.

Input: A CFG
Output: A CFG in which assignment statements have been parallelised
for all N ∈ CFG do

if N contains a statement list S then

Let parallel list = first s ∈ S.
for all statement s ∈ S with successor statement s′. do

for all v ∈ RHS (s′) do

if v = LHS (s̃) for some s̃ ∈ parallel list then

Replace v in s′ with RHS (s̃)
end if

end for

append s′ to parallel list .
end for

Replace statement list S in CFG node N with parallel list.
end if

end for

ment block. Each variable in φ that occurs on the left-hand side of an assign-
ment in s is replaced with the corresponding right-hand side. For example, the
weakest precondition of parallel assignment a, c := b, a and the same predicate
φ would be denoted φ[a/b, c/a].

3 Experimental Evaluation

We implemented the atomiser algorithm inside both the ComFoRT reason-
ing framework from Carnegie Mellon and the Berkeley CIL [15] tool. The
goals of this experimentation were as follows. The first goal was to determine
how much compression of assignment statements could be obtained for real
programs in several different application domains. The second goal was to de-
termine if this compression would in fact speed up the model checking process.
The final goal was to characterise the class of software where model checking
could benefit the most from utilisation of parallel assignment statements.

3.1 Assignment Compression Results

In this section we describe our results in the context of the first goal mentioned
above, i.e., checking the effectiveness of the Atomiser and ConcurrentAtomiser
algorithms at compressing the assignment control locations in real software

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–94 85

x := y

a := b

y := z

c := b

(a)

WP(c := b, Φ)

WP(y := z, Φ)

WP(a := b, Φ)

WP(x := y, Φ)

x, a := y, b

y, c := z, b

(b)

WP(y, c := z, b, Φ)

WP(x, a := y, b, Φ)

Fig. 3. (a) A sequence of four simple assignment statements and the associated weakest precondition
computations that would be calculated in a CEGAR loop. (b) A shorter sequence of parallel
assignment statements with fewer associated weakest precondition computations.

source code.

The results in this section were obtained with the Berkeley CIL parser
and our parallel assignment compressor. The relative length and frequency
of sequences of simple assignment statements varies with different software
application domains. The experiments that follow were chosen because they
represent a broad spectrum of relevant software applications.

3.1.1 Unix System Software

The first benchmark set includes Unix system software from the FreeBSD
6.0 operating system. The utilities chosen include the file system consistency
check utility (fsck), ifconfig, mount, ping, bdes, gzip, and grep.

Table 1 illustrates the results. The first column, Utility, provides the name
of the utility. The second column, Source File, provides the name of the source
file. The third column, LOC, lists the number of lines of code in the source

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9486

Utility Source File LOC Loc1 Loc2 Loc3

fsck fsck.c 1208 102 72 62

ifconfig ifconfig.c 2335 174 140 122

ifconfig af inet6.c 1436 76 61 56

mount mount ufs.c 227 10 6 5

ping ping.c 3242 312 200 181

bdes bdes.c 2357 284 253 220

gzip trees.c 1221 299 192 147

gzip deflate.c 477 103 65 59

gzip inflate.c 1491 377 254 169

grep search.c 2033 239 191 181

totals 16027 1976 1434 1202

average compression 72.6% 60.8%

Table 1
Assignment Compression of Unix System Software

file. Specifically, this means the lines of code after the C pre-processor has
been run and the CIL transformations performed but without counting any
#line directives inserted by the pre-processor. The fourth column, Loc1,
lists the number of simple assignment statements in the source file. The
fifth column, Loc2, lists the number of assignment statements in the new
source file generated with the Atomiser algorithm. The sixth column, Loc3,
lists the number of assignments in the new source file generated with the
ConcurrentAtomiser algorithm.

3.1.2 Graphics Libraries

The second benchmark set includes the popular PNG and JPEG libraries used
by most commercial and open source software to read and write those popular
graphics file formats. Table 2 illustrates the assignment compression results
for the largest source files of libpng v1.2.8 and libjpeg v6b.

3.1.3 Results Summary

On the body of software tested in this section, the Atomiser algorithm reduces
the number of assignment statement control points to 63% of the original total.
The ConcurrentAtomiser algorithm provides another 10% reduction in control
points.

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–94 87

Library Source File LOC Loc1 Loc2 Loc3

png png.c 1108 87 60 57

png pnggccrd.c 2835 511 262 229

png pngrtan.c 6221 1859 930 629

jpeg jmemmgr.c 1232 252 174 160

jpeg jquant1.c 1361 257 125 96

jpeg jquant2.c 1803 466 264 176

jpeg transupp.c 3826 637 414 345

totals 18386 4069 2229 1692

average compression 54.8% 41.6%

Table 2
Assignment Compression of Graphics Libraries

3.2 Model Checking Results

The ComFoRT reasoning framework [12] uses model checking to predict
whether software will meet specific safety and reliability requirements. The
model checking engine is derived from MAGIC [5], a tool developed by the
model checking group at Carnegie Mellon University. We integrated the atom-
iser algorithms into ComFoRT and ran it on a collection of Windows device
drivers, OpenSSL, and Micro-C OS benchmarks. These benchmarks show the
improvement in time and memory space that is provided by the assignment
compression.

3.2.1 OpenSSL

The first set of benchmarks was run on the OpenSSL source code. The
OpenSSL library implements the Secure Sockets Layer (SSL v2/v3) and Trans-
port Layer Security (TLS v1) protocols. It is widely used by web browsers, ssh
clients, and other secure network applications on many different computing
platforms.

Table 3 provides model checking results for the OpenSSL benchmarks.
The Server test is the geometric mean of four benchmarks with same source
code but different specifications. The Client test is the geometric mean of two
benchmarks with same source code but different specifications. The Srvr-Clnt
test is the geometric mean of sixteen benchmarks with same source code but
different specifications.

Each test was run under three different model checking conditions:

(i) no assignment parallelisation;

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9488

Name LOC Loc1 Loc2 Loc3 Time1 Time2 Time3 Mem1 Mem2 Mem3

Server 2483 207 172 171 9.8 8.8 8.4 135.3 136.2 133.8

Client 2484 175 145 144 17.5 11.7 12.4 128.9 128.1 127.7

Srvr-Clnt locations are as above 165.8 136.7 128.4 201.1 194.7 192.3

Table 3
OpenSSL benchmarks with ComFoRT model checker + Atomise

Name LOC Loc1 Loc2 Loc3 Time1 Time2 Time3 Mem1 Mem2 Mem3

cdaudio 10171 2613 1447 1298 52.6 52.7 53.0 272.6 264.0 269.6

diskperf 4824 1187 719 617 15.9 15.8 15.7 176.3 176.3 175.0

floppy 9579 3478 1957 1845 130.4 130.5 129.3 468.8 468.8 470.4

kbfiltr 3905 560 331 286 1.9 1.9 1.8 129.1 128.7 126.3

parclass 26623 2840 1649 1450 74.5 73.7 72.3 335.5 335.5 340.0

parport 12431 4634 2935 2409 384.5 381.1 375.6 1102.3 1102.3 1127.2

Table 4
Windows device driver benchmarks ComFoRT model checker + Atomise

(ii) parallelisation with the Atomiser algorithm (individual assignments not
changed)

(iii) parallelisation with with ConcurrentAtomiser algorithm (individual as-
signments changed as necessary)

For each condition above, the number of assignments is listed (Loc) as well
as the the time in seconds (Time), and the number of megabytes of memory
(Mem) required for model checking.

3.2.2 Windows Device Drivers

The second set of ComFoRT benchmarks was run on a collection of Windows
device drivers. The results are presented in Table 4 in the same format as
the last section. Note that although significant assignment compression is
achieved, the model checking time is not improved substantially.

3.2.3 Micro-C OS

The final set of ComFoRT benchmarks was run on Micro-C OS. The results
are presented in Table 5. The same source code was used against two different
specifications. One describing a Safety property and the other a Liveness
property. The most striking result in this table is perhaps the fact that model
checking of the Safety property is not improved with assignment compression,
but the speed of Liveness property verification is significantly improved.

3.2.4 Results Summary

There is certainly a compression in terms of the number of control locations
using either of the two atomiser algorithms. In general, the difference between

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–94 89

Name LOC Loc1 Loc2 Loc3 Time1 Time2 Time3 Mem1 Mem2 Mem3

Safety 6279 2699 1789 1589 35.5 35.7 36.0 229.2 229.2 223.5

Liveness locations are as above 182.2 144.4 134.4 272.3 260.6 260.4

Table 5
Micro-C OS benchmarks ComFoRT model checker + Atomise

no compression and the Atomiser algorithm is more significant than that be-
tween the Atomiser and ConcurrentAtomiser algorithms. Actual performance
of the model checker does improve in many cases, in particular for SSL and
Micro-C OS. The improvement is marked for time, but somewhat marginal for
space. The lack of improvement for the device drivers may be because of the
relatively small number of predicates necessary to complete the verification.
This means that the number of states does not decrease as dramatically with
the reduction in the number of control locations as for the other benchmarks.
More experiments with other examples may provide additional support for
these observations.

3.3 Observations

After examining the data, two scenarios can be seen as contributing to the
observed speedup in model checking times with the Atomiser algorithms.

• Compositionality and Partial Order Reduction

• Property size

3.3.1 Compositionality and Partial Order Reduction

Asynchronous systems such as the OpenSSL Srvr-Clnt benchmark are often
described using an interleaving model of computation [10]. Concurrent events
are modelled by allowing their execution in all possible orders relative to each
other. Figure 4 shows 3 transitions (assignment statements) on each of two
separate components. We assume here that the variables in each thread are not
shared. The transitions are labelled between 1 and 3 for the first component
and between 4 and 6 for the second component. The sequence of control along
each component is fixed, but there is no guarantee about the relative order,
or interleaving, of the transitions of the two components. The model checker
does not know that the interleavings do not matter, and so it will try all
possible interleavings of the two for model checking. The lattice representing
all possible transition interleavings is represented in Figure 5.

With parallel assignment statements, the 6 transitions of Figure 4 would
be reduced to two transitions as in Figure 6. The much simpler associated lat-
tice with parallel assignments is shown in Figure 7. The ConcurrentAtomiser
algorithm allows for a special case of partial order reduction to eliminate the

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9490

z’:=9z:=5

4

5

6

1

2

3

x:=3

y:=4

x’:=2

y’:=7

Fig. 4. Assignment states in two components of a compositional model

2

4

3

36

2

3

1

4

4 1

5 1

6 1

2

5 6 2

4 3 5

6

5

Fig. 5. Lattice of possible paths from transitions in two components without parallel assignment.

different equivalent interleaving orderings [9]. This has the effect of dramat-
ically reducing the number of required calls to the theorem prover to reason
about the predicates as part of the weakest precondition computations.

3.3.2 Property Size

The Micro-C OS benchmarks in Table 5 provide another important illustration
of situations in which the algorithms presented in this paper can be especially
beneficial.

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–94 91

x’,y’,z’:=2,7,91 x,y,z:=3,4,5 2

Fig. 6. Parallel Assignment states in two components of a compositional model

2

2 1

1

Fig. 7. Lattice of possible paths from transitions in two components with parallel assignment.

Both the Safety and Liveness properties are sequential one-component sys-
tems here, so there is no benefit from reducing the interleaving paths as de-
scribed in the previous section.

In the process of model checking a Büchi automaton for the negation of
the property is constructed. This automaton is then synchronised with the
abstract model of the software to obtain a new product automaton on which
emptiness analysis is performed.

Consider the safety property M |= “locks & unlocks alternate” and the
event alphabet Σ = {a, b, c, lock, unlock}:

unlock

unlock lock

a,b,c

a,b,c,lock,unlock

S1 S2

S3

lock

a,b,c

Suppose we also have an abstract model for our system:

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9492

U2

U3U4

b

 a
U1

unlock lock

We can then take the cartesian product to define a new modified Kripke
structure:

...

S1,U1

S1,U2

a

lock

In this way our LTL property is translated to emptiness testing with the
cartesian product. With this cartesian product construction one finds that
the size of the Büchi automaton of the property acts as a scaling factor for
the size of the product automaton.

For the Micro-C OS safety property, the Büchi automaton is relatively
simple with just 4 states. For the liveness property, however, the automaton
has 51 states. Therefore any small reduction in the abstract software model
size will be improved further by this factor. This explains why the same level
of assignment compression has a significant effect for the liveness benchmark
but not for the safety benchmark.

It would be interesting to see what improvements in time and memory
could be obtained by implementing these algorithms into other model checking
tools such as BLAST [3] and SLAM [2].

4 Future Work

This work focussed on a single transformation of the control flow graph of
the software before the abstraction and modelling steps took place. However,
this is part of a much broader class of possible improvements to the software

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–94 93

model checking process. Other static transformations may enable the further
reduction of the number of necessary states. For example, recent work on
pathslicing [13] illustrates how static analysis of the control flow graph can
remove a large number of unnecessary states from the abstract model.

There may also be more fruitful applications of partial order reduction in
modern software verification tools.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[2] T. Ball and S. Rajamani. The SLAM project: Debugging system software via static analysis.
In POPL. ACM Press, 2002.

[3] Blast website. http://www-cad.eecs.berkeley.edu/rupak/blast.

[4] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software
components in C. In ICSE. IEEE Computer Society, 2003.

[5] S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient verification
of sequential and concurrent C programs. Formal Methods in System Design, 25(2-3):129–166,
2004.

[6] S. Chaki, E. M. Clarke, O. Grumberg, J. Ouaknine, N. Sharygina, T. Touili, and H. Veith.
State/event software verification for branching-time specifications. In IFM. Springer LNCS,
2005.

[7] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. Concurrent software
verification with states, events, and deadlocks. Formal Aspects of Computing (to appear),
2005.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

[9] E. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction using partial order
techniques. Int. J. on Soft. Tools for Tech. Transfer, 2:279–287, 1999.

[10] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[11] M. Garey and D. Johnson. Computers and Intractability. Bell Telephone Laboratories, 1979.

[12] J. Ivers and N. Sharygina. Overview of ComFoRT: A model checking reasoning framework.
Technical Report CMU/SEI-2004-TN-018, Carnegie Mellon Software Engineering Institute,
2004.

[13] R. Jhala and R. Majumdar. Path slicing. In PLDI. ACM Press, 2005.

[14] Magic website. http://www.cs.cmu.edu/∼\/chaki/magic.

[15] G. Necula, S.McPeak, S. Rahul, and W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In CC, volume 2304. Springer LNCS, 2002.

[16] R. Sethi. A note on implementing parallel assignment instructions. Information Processing
Letters, 2:91–95, 1973.

M. Stokely et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 77–9494

http://www-cad.eecs.berkeley.edu/rupak/blast
http://www.cs.cmu.edu/~/chaki/magic

	Introduction
	Outline

	Parallel Assignment
	Classical Parallel Assignment
	Tractable General Parallel Assignment
	Concurrent Parallel Assignment
	Parallel Assignment and Weakest Preconditions

	Experimental Evaluation
	Assignment Compression Results
	Model Checking Results
	Observations

	Future Work
	References

