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Statistical Model 

Checker 

Any system ℳ that 

takes random inputs 

Probabilistic 

Temporal Logic 

Formula 𝝓 

Estimated 

Probability that 

ℳ ⊨ 𝝓 with relative 

error 𝑹𝑬 

Statistical Model Checking (SMC) 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑬𝒓𝒓𝒐𝒓 =  
𝑺𝒕𝒅.𝑫𝒆𝒗.

𝑴𝒆𝒂𝒏
 

• System properties described in formal language (UTSL, BLTL, etc.) 

• Property is tested on “sample trajectories” (sequence of states) 

• Each outcome can be treated as a Bernoulli random variable (i.e., coin flip) 

Based on Monte-Carlo 

Simulation 
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Statistical Model Checking 

Goal: Calculate the probability 𝑝 that some property holds: 

𝑝 = 𝐸[𝐼ℳ⊨Φ(𝑥 )] 

Where: 

• 𝑥  = vector of random variables 

– Represents all of the inputs or all random samples 

• 𝐼ℳ⊨Φ(𝑥 ) = indicator function that returns 1 iff ℳ ⊨ Φ 

– Composition of system under test and property being tested 

 

 total = 0; 
for (i = 1;i <= 10;i++) 

    total += rand(); 

assert(total <= 8); 

𝐼ℳ⊨Φ 𝑥 =  1 𝑖𝑓  𝑥𝑖 > 8
10

𝑖=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We consider the property Φ to be a “failure” condition 
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Statistical Model Checking with Crude Monte-Carlo 

The probability that condition Φ holds in 
model ℳ when the input 𝑥  is distributed 
according to joint pdf 𝑓 𝑥  is the expected 
value of that indictor function and can be 
calculated as: 

𝑝 = 𝐸[𝐼ℳ⊨Φ(𝑥 )] =  𝐼ℳ⊨Φ(𝑥 )𝑓 𝑥 𝑑𝑥  

This can be estimated with Crude Monte-
Carlo simulation as: 

𝑝 =
1

𝑁
 𝐼ℳ⊨Φ(𝑥 𝑖)

𝑁

𝑖=1

 

where each 𝑥 𝑖 is a sample vector drawn 
from 𝑓 𝑥 .  As 𝑁 gets large, 𝑝  will 
converge to 𝑝. 

𝑝 =
1

10
= 0.1 

# of samples in 

fault region 

total # of samples 

Estimated Failure Probability 

fault 

region 
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Relative Error: How 
large should 𝑁 be? 

Measure of accuracy for a prediction 

 

Defined as ratio of standard deviation to 
mean.  For a probability estimate, the 
estimated relative error is: 

𝑹𝑬 =
𝝈 

𝒑 
 

Number of samples to achieve a target 
relative error increases 

• as target relative error decreases, or 

• as estimated probability decreases 

 

  

 

0.0005 0.00075 0.001 0.00125 0.0015

0.0005 0.00075 0.001 0.00125 0.0015

RE=0.01 

𝑵 ≈
𝟏

𝒑(𝑹𝑬)𝟐
 

𝒑 

𝒑 
p
d
f 

p
d
f 

𝒑 = 𝟎. 𝟎𝟎𝟏 

RE=0.1 

𝒑 = 𝟎. 𝟎𝟎𝟏 

Tight bound 

with low relative 

error 

Looser bound 

with modest 

relative error 

Distribution of actual 𝒑 given estimated 𝒑  

and target relative error 

𝑵 ≈ 𝟏𝟎𝟓 

𝑵 ≈ 𝟏𝟎𝟕 
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Importance Sampling: Same 𝑹𝑬 with smaller 𝑁 

Problem: 

Estimating probabilities of rare events with 
low 𝑅𝐸 requires many samples 

• To estimate failure probability of 𝑝 = 10−5 with 
relative error of 0.01 would require one billion 
simulation runs 

 

Solution: 

Use Importance Sampling to sample 
“important” area of a distribution 

• Sample with an “modified” distribution 

– Often by “tilting” the distribution parameters 

• Map back to original distribution 

• Can dramatically reduce number of 
experiments needed to verify “rare” events 

 

Original Distribution 

p
d
f 

Modified 

Distribution 

Failure 

Threshold 

Fraction Failed 

Number of samples required to 

estimate probability p event at 

relative error RE: 

 

𝑵 ≈
𝟏

𝒑(𝑹𝑬)𝟐
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Importance Sampling 

Recall probability of failure is: 

𝑝 =  𝐼ℳ⊨Φ(𝑥 )𝑓 𝑥 𝑑𝑥 

We can introduce an arbitrary 
density function 𝑔 𝑥   and rewrite as: 

𝑝 =  𝐼ℳ⊨Φ(𝑥 )
𝑓 𝑥 

𝑔 𝑥 
𝑔 𝑥 𝑑𝑥 

Now if we define 𝑊 𝑥 =
𝑓 𝑥 

𝑔 𝑥 
 we get: 

𝑝 =  𝐼ℳ⊨Φ(𝑥 )𝑊 𝑥 𝑔 𝑥 𝑑𝑥 

which is just the expected value of 
𝐼ℳ⊨Φ(𝑥 )𝑊 𝑥  sampled with 𝑔 𝑥 . 

𝑓 𝑥  

𝑔 𝑥  

𝑊 𝑥  

Fault 

region 

Increased 

visibility of 

fault region 

Weight 

function 

helps map 

back to 

original distr. 
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Importance Sampling 

Basic SMC 

• Indicator function 𝐼 𝑥 = 1 iff property holds for input 𝑥 . 

• Relative Error 𝑅𝐸 𝑝 =
𝑣𝑎𝑟(𝑝 )

𝐸[𝑝 ]
 is measure of accuracy. 

• Draw random samples from input distribution 𝑓(𝑥 ) until target 

Relative Error is met. 

• Estimated probability that property holds is: 

𝑝 =
1

𝑁
 𝐼(𝑥 𝑖)

𝑁

𝑖=1

=
1

10
= 0.1 

𝑅𝐸(𝑝 ) =
0.32

0.1
= 3.2 

SMC with Importance Sampling 

• Modify input distribution to make rare properties more visible. 

• Goal is variance reduction. 

• Weighting function 𝑊(𝑥 ) maps solution to original problem. 

• Reduced relative error with same number of samples. 

𝑝 =
1

𝑁
 𝐼 𝑥 𝑖 𝑊(𝑥 𝑖)

𝑁

𝑖=1

=
0.2 + 0.5 + 0.3

10
= 0.1 

𝑅𝐸(𝑝 ) =
0.18

0.1
= 1.8 
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Disjoint Fault Regions 

Problem 

• Real software is complex with 
many paths. 

• Inputs leading to fault may be 
disjoint in the input space. 

• Importance sampling based on 
“tilting” distribution parameters 
may be limited in ability to cover 
fault regions. 

Solution 

• Need a method to do Importance 
Sampling that can better target 
the fault regions. 

 

𝑓 𝑥  

Disjoint 

Fault 

Regions 
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Optimal Importance Sampling (IS) Distribution 

A well known result from Importance Sampling is that the optimal IS 
distribution (in the context of statistical model checking) is given by: 

𝑔 𝑥 =
𝐼 𝑥 𝑓(𝑥 )

𝑝
 

where 𝐼 𝑥  is the indicator function for the system, 𝑓 𝑥  is the original 
input distribution, and 𝑝 is the probability a sample falls in the indicator 
function.  This results in a weight function of: 

𝑊 𝑥 =
𝑓(𝑥 )

𝑔(𝑥 )
=

𝑝

𝐼 𝑥 
 

And so the estimator becomes: 

𝑝 =
1

𝑁
 𝐼 𝑥 

𝑝

𝐼 𝑥 
= 𝑝

𝑁

𝑖=1

 

This means no samples are needed, but this optimal distribution can only 
be found if your already know the solution. 
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Semantic Approximation 

Instead of using 𝐼 𝑥  directly, we can use 
abstraction on the original model (typically 
source code) to generate a semantic 
approximation 𝐼∗ 𝑥 . 

 

We seek to find 𝐼∗ 𝑥  such that: 

• Any inputs that satisfy 𝐼(𝑥 ) also satisfy 𝐼∗ 𝑥 .  
That is 𝐼 𝑥 ⊆ 𝐼∗(𝑥 ) 

• 𝐼∗(𝑥 ) rejects as much of 𝑥  as possible 

• It is easy to generate vectors satisfying 𝐼∗(𝑥 )  

• It is easy to calculate 𝑝∗ = 𝐸[𝐼∗(𝑥 )]  

 

We refer to 𝐼∗ 𝑥  as the Abstract Indicator 
Function (AIF). 

 

 

 

 

  

𝑰(𝑥 ) 

𝑰∗(𝑥 ) 

𝒙 
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Semantic Importance Sampling (1) 

Using the same construction as the “optimal” IS distribution, we can 
construct an importance sampling distribution: 

 

𝑔∗ 𝑥 =
𝐼∗ 𝑥 𝑓(𝑥 )

𝑝∗
 

 

where 𝐼∗ 𝑥  is the AIF for the approximate system, 𝑓 𝑥  is the original 
input distribution, and 𝑝∗ is the probability a sample falls in the indicator 
function for the approximate system.  This results in a weight function of: 

 

𝑊∗ 𝑥 =
𝑓(𝑥 )

𝑔∗(𝑥 )
=

𝑓 𝑥 𝑝∗

𝐼∗ 𝑥 𝑓(𝑥 )
=

𝑝∗

𝐼∗ 𝑥 
 

 

 

 

 

 

 



14 
Semantic Importance Sampling 

© 2015 Carnegie Mellon University 

Semantic Importance Sampling (2) 

Applying IS, we can write the following estimator for 𝑝 = E[𝐼 𝑥 ]: 

 

𝑝 =
1

𝑁
 𝐼 𝑥 𝑖 𝑊

∗(𝑥 𝑖)

𝑁

𝑖=1

=
1

𝑁
 𝐼 𝑥 𝑖

𝑝∗

𝐼∗ 𝑥 𝑖

𝑁

𝑖=1

 

 

where the 𝑥  are drawn from g∗(𝑥 ).  Since 𝑔∗ 𝑥 =
𝐼∗ 𝑥 𝑓(𝑥 )

𝑝∗
, for any 𝑥 

drawn from this distribution 𝐼∗ 𝑥 = 1.  This allows us to further reduce 
this estimator as: 

 

𝑝 =
𝑝∗

𝑁
 𝐼(𝑥 𝑖)

𝑁

𝑖=1
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Osmosis SMC Tool 

Osmosis is a tool for Statistical 
Model Checking (SMC) with 
Semantic Importance Sampling. 

• Input model is written in subset of C. 

• ASSERT() statements in model 
indicate conditions that must hold. 

• Input probability distributions defined 
by the user. 

• Osmosis returns the probability that 
at least one of the ASSERT() 
statements does not hold. 

• Uses dReal1 solver to build 𝐼∗(𝑥 ). 

• Simulation halt condition based on: 

– Target relative error, or 

– Set number of simulations 

Osmosis Main Algorithm 

1 http://dreal.cs.cmu.edu/ 

𝒙 
𝑰(𝑥 ): Indicator Function 

defines fault region 

1. Generate approximation of fault region  

𝑰∗(𝑥 ): Abstract Indicator 

Function defines over-

approximation  

Input space 

2. Conduct SMC and calc. failure prob. 

𝒙 
a) 𝑝 𝑟𝑎𝑤 =

5

20
 

# in Fault 

Total # 

𝑝 = 𝑝 𝑟𝑎𝑤𝑝
∗ = 0.0023 

c) Failure prob. estimate 

is product of two values 

b) 𝑝∗ =
6

64
 

Fraction of 

input 𝑰∗(𝑥 ) 
covers  
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Osmosis Structure 

SIS Pre-processing 

• C model analyzed to generate 
SMT2 and input probabilities. 

• dReal used to generate 𝐼∗(𝑥 ). 

• 𝐼∗(𝑥 ) used to calculate 𝑝∗. 

Statistical Model Checking 

• C model is compiled with gcc to 
dynamically loadable executable 
(.so file). 

• Dynamic executable loaded into 
osmosis. 

• Random inputs generated with 𝐼∗ 𝑥  
and applied to dynamically loaded 
function. 

• Result is scaled by 𝑝∗ to obtain final 
probability estimate. 

 

.c model 

SMT2 
Prob. 

dists 

Dynamic 

Exec (.so) 

gcc 
Verification 

Cond. Gen. 

Syntactic 

Extraction 

𝑰∗(𝑥) 

dReal 

+ Refinement 

𝒑∗ 

𝒌

𝟐𝒏
 𝒑 𝒓𝒂𝒘, 𝑹𝑬  

Monte-Carlo 

𝒑 ,𝑹𝑬  

𝒑 = 𝒑 𝒓𝒂𝒘𝒑
∗ 
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Osmosis Input Example 

Input is subset of C 

• No arrays, or pointers 

• Supports: if/while/for 

– With loop limits 

Probabilistic inputs 

• Use//@dist declaration for 

each probabilistic input. 

– Uniform, exponential, normal 

• Access in C model using 
INPUT_D(“name”). 

Assertions 

• Use ASSERT() to indicate 

conditions that should be true. 

• Osmosis will compute probability 
that at least one ASSERT() has 

failed. 

#include "osmosis_client.h" 

 

//@dist a=uniform(min=0,max=5) 

//@dist b=normal(mean=3,std=1,min=0,max=5) 

void simple() 

{ 

  double a = INPUT_D(“a"); 

  double b = INPUT_D(“b"); 

  double c = a + b; 

  double d = (a – b)/2.0; 

 

  ASSERT(sin(c)*cos(d) < 0.995); 

} 

“Fault Box” example 
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SMT2 Generation 

C Input translated to SMT2 for use 
by dReal. 

• Assignments translated to assertions. 

– Assignments to same variable 
increment “generation number”  

• Loops unrolled and translated to 
conditionals. 

• Implication assertions used for 
assignments inside conditionals. 

• Input “cube” represented by bounding 
assertions on each input variable. 

– Varied over multiple dReal calls. 

• ASSERT() condition from C is 
negated in SMT2, since we wish to 
search for failures. 

– A dReal “SAT” means failure of 
ASSERT() in C model. 

 

(set-logic QF_NRA) 

(declare-fun a () Real) 

(declare-fun b () Real) 

(declare-fun a_1 () Real) 

(declare-fun b_1 () Real) 

(declare-fun c_1 () Real) 

(declare-fun d_1 () Real) 

(assert (>= a 0)) 

(assert (<= a 5)) 

(assert (>= b 0)) 

(assert (<= b 5)) 

(assert (= a_1 a)) 

(assert (= b_1 b)) 

(assert (= c_1 (+ a_1 b_1))) 

(assert (= d_1 (/ (- a_1 b_1) 2.0))) 

(assert (not (< (* (sin c_1) 

                   (cos d_1)) 

                0.995))) 

(check-sat) 

(exit) 

 

Input 

Cube 

ASSERT() 
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Input Cubes 

Cubes 

• Cubes defined on CDF (Cumulative 
Distribution Function) of each input 
variable. 

• Sub-cubes formed by splitting input 
domain into equal probability halves 
around an input variable. 

• Cube values can be mapped to input 
values using inverse CDF. 

Level 

• Level of a cube is number of splits. 

• Full input domain is “level-0”. 

• All cubes at same level have equal 
probability of containing input drawn 
from input distribution. 

• There are 2𝑛 cubes at level-𝑛. 

𝒂 
𝟎. 𝟎 𝟎. 𝟐𝟓 𝟎. 𝟓 𝟎. 𝟕𝟓 𝟏. 𝟎 

𝟎. 𝟎 

𝟎. 𝟐𝟓 

𝟎. 𝟓 

𝟎. 𝟕𝟓 

𝟏. 𝟎 

𝒃 

(assert (>= a 2.5)) 

(assert (<= a 3.125)) 

(assert (>= b 1.20013)) 

(assert (<= b 1.80517)) 

Inverse CDF 

Level-5 

cube 
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𝑰∗(𝑥 ) Generation Algorithm 

SAT SAT SAT 

SAT 

SAT 

UNSAT 

UNSAT 

SAT 

SAT 

UNSAT 

UNSAT 

UNSAT 

UNSAT 

SAT 

SAT 

UNSAT 

UNSAT 

UNSAT 

UNSAT 

UNSAT 

UNSAT 

SAT 

U
N

S
A

T
 

SAT 

UNSAT 

UNSAT 

UNSAT 

U
N

S
A

T
 

UNSAT 

UNSAT 

UNSAT 

SAT U
N

S
A

T
 

SAT 

UNSAT 

UNSAT 

UNSAT 

US 

U
N

S
A

T
 

UNSAT 

UNSAT 

US 

UNSAT 

S S U
N

S
A

T
 

S 

UNSAT 

UNSAT 

UNSAT 

US 

U
S

 

U
N

S
A

T
 

UNSAT 

UNSAT 

US 

UNSAT 

S 

U S 

S S 

U
N

S
A

T
 

S 

UNSAT 

UNSAT 

UNSAT 

US 

U
S

 

U
N

S
A

T
 

UNSAT 

UNSAT 

US 

UNSAT 

Algorithm: 

1. Set the current “cube” as the 
full range of all inputs.  

2. Apply dReal to the current 
cube. 

3. If the result is “SAT”, split 
cube into two equal 
probability cubes on one 
variable, and recursively 
apply at Step 2. 

Considerations: 

• Maximum recursion depth is 
tunable parameter. 

• By default, we use “round 
robin” for variable splits. 

 

 

𝟎. 𝟐𝟓 𝟎. 𝟓 𝟎. 𝟕𝟓 𝟏. 𝟎 𝟎. 𝟎 

𝟎. 𝟐𝟓 

𝟎. 𝟓 

𝟎. 𝟕𝟓 

𝟏. 𝟎 

𝒂 Quantile 

𝒃
 Q

u
a
n
ti
le

 

Fault 

Region 
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𝑰∗(𝑥 ) Generation Algorithm – Optimization 1  

Some calls to dReal are 
redundant and can be eliminated. 

• If recursive call on first sub-cube 
returns the empty set (i.e., it is 
UNSAT), the second recursive call 
must be SAT since the parent is 
SAT. 

• In this case, we pass a flag 
indicating dReal call can be 
skipped. 

• Can significantly reduce the 
number of calls to dReal needed. 

• This optimization cannot be used 
when dReal fails on a cube. 

SAT 

unsat (SAT) 

1) dReal returns a SAT 

result on parent cube. 

2) dReal returns 

unsat on first of the 

two child cubes. 

3) 2nd child cube 

must be SAT, so we 

can skip dReal test. 
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𝑰∗(𝑥 ) Generation Algorithm – Optimization 2  

Counter-Example returned by 
dReal can be used. 

• On SAT outcome, dReal returns a 
box in which the counter-example 
is contained. 

• If this box is completely contained 
in a child cube, then that child 
cube must also be SAT, and no 
dReal test is required. 

• CAVEAT 

– if the counter-example cube 
straddles the boundary 
between the child cubes, we 
cannot use this optimization. 

– Optimization 1 may still apply in 
this case. 

SAT 

unsat (SAT) 

1) dReal returns a SAT 

result on parent cube, 

including counter 

example. 

2) Skip dReal test if 

counter example 

contained in child. 

3) Must use dReal to 

test other child. 
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Calculation of p* 

Since 

• All cubes at a given level have same 
probability of containing a sample 
drawn from the input distribution 𝑓 𝑥 . 

• Our 𝐼∗(𝑥 ) generation algorithm returns 
a set of cubes at a specified level. 

Then 

• The probability an input 𝑥  is in 𝐼∗(𝑥 ) is: 

𝑝∗ =
𝑘

2𝑛
 

where 𝑘 is the number of cubes in our 
representation of 𝐼∗(𝑥 ) , and 𝑛 is the 
maximum number of levels we used. 

𝒂 
𝟎. 𝟎 𝟎. 𝟐𝟓 𝟎. 𝟓 𝟎. 𝟕𝟓 𝟏. 𝟎 

𝟎. 𝟎 

𝟎. 𝟐𝟓 

𝟎. 𝟓 

𝟎. 𝟕𝟓 

𝟏. 𝟎 

𝒃 

𝐼∗(𝑥 )  

𝑝∗ =
5

26
= 0.078125 
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Random Input Generation 

Cube Selection 

• Since all cubes cover equal probability, 
we pick a cube at random with uniform 
probability. 

Point Selection 

• Within  a cube, we pick a point at 
random with uniform probability on each 
dimension. 

• We apply the inverse CDF of each input 
variable to obtain the values for each 
input variable. 

𝐼∗ 𝑥 =                                              

0.5 0.375 𝒂 

𝒃 

0.375 

0.25 

Randomly Pick 

Cube from  𝐼∗ 𝑥  

𝒙𝒊 = 𝒂, 𝒃 = (𝟐. 𝟏𝟏𝟓, 𝟐. 𝟓𝟎𝟑)  

(0.423,0.316) 

Randomly Pick 

Point in Cube 

Apply inverse CDF on 

each input variable. 



25 
Semantic Importance Sampling 

© 2015 Carnegie Mellon University 

Monte-Carlo Simulation 

Dynamic Executable Generation 

• Use gcc to compile input .c file into 
a dynamic executable (.so file) 

• Use dlopen() to load executable into 
Osmosis. 

Monte-Carlo Simulation 

• Generate random inputs using 𝐼∗ 𝑥   
and input distributions and place 
into an array. 

• C code for model directly executed. 

• INPUT_D(“name”) function calls in 
source model extract values from 
that array. 

• ASSERT() macro sets global 
variable if assertion fails.   

a b 

  double a = INPUT_D(“a"); 

  double b = INPUT_D(“b"); 

  double c = a + b; 

  double d = (a – b)/2.0; 

 

  ASSERT(sin(c)*cos(d) < 0.995); 

Prob. 

dists 
𝐼∗ 𝑥  

Input Vector Generation 

input_vector[]= 

failure_result 
Global variable with 

failure status read after 

execution is complete. 
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Final Probability Estimation 

Probability estimate 𝑝  of 𝑝 = E[𝐼(𝑥 )] is product of: 

• Raw probability 𝑝 𝑟𝑎𝑤 from Monte-Carlo simulation using AIF. 

• Scale factor 𝑝∗ calculated from cube set. 

 

𝑝 = 𝑝∗𝑝 𝑟𝑎𝑤 

 

Relative error is preserved. i.e, 𝑅𝐸(𝑝 ) = 𝑅𝐸(𝑝 𝑟𝑎𝑤) 

• Preserved because scale factor 𝑝∗ applies equally to mean and 
standard deviation of 𝑝 𝑟𝑎𝑤. 

• Implies number of samples need to estimate 𝑝  to a specific 
relative error is same a number needed to estimate 𝑝 𝑟𝑎𝑤. 
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Example: Air Hockey Problem 

Air Hockey Problem 

• Table with a moving puck and a 
fixed target. 

• Puck rebounds without friction. 

Inputs 

• Angle – Initial angle at which puck 
is hit. 

• Distance – Total distance of travel 
for puck. 

Failure Condition 

• Puck stops on target (red dot). 

Challenges 

• Multiple failure areas in input space. 

• Complex structure of failure area. 

angle 
distance 

OK 

FAIL 
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Fault Map for Air Hockey Problem 

Fault map shows area of input 
space where faults are located. 

• Plotted in CDF space. 

• Green area indicates input space 
included in 𝐼∗(𝑥). 

• Red area indicates input space 
include in 𝐼(𝑥). 

 

Recursion Depth: 12 
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Sample Size vs Recursion Depth (Air Hockey) 
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Simulation effort with SIS decreases exponentially with recursion depth. 

Target 𝑅𝐸:  0.01 
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𝒑∗ vs Recursion Depth (Air Hockey) 
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Upper-bound 𝑝∗ becomes more accurate as recursion depth increases. 
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Effect of SIS Optimizations 
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Opt. 1&2

Optimization 2 results in greatest benefit with factor of two reduction in number of 

calls to dReal.  Small additional benefit by combining both methods. 

SAT 

unsat (SAT) 

Optimization 1 

No call to dReal if first 

child call is unsat. 

 

SAT 

unsat (SAT) 

Optimization 2 

Use counter-example 

from parent to avoid 

dReal calls on children. 
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Conclusion 

Semantic Importance Sampling 

• Create approximation of fault region using abstraction. 

• Create an alternate input distribution for importance sampling. 

• Level of approximation (recursion depth) is user tunable. 

• Can reduce SMC sample size by orders of magnitude. 

Osmosis tool 

• Applies semantic importance sampling on a C-like specification. 

• Uses the dReal SMT solver to build approximate fault region model. 

• Can be applied when there are multiple fault regions. 

• Optimization techniques can nearly halve number of dReal tests required. 

 

 


