
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Jeffery Hansen, Lutz Wrage, Sagar Chaki,
Dionisio de Niz, Mark Klein

April 15, 2015

Semantic Importance

Sampling for Statistical

Model Checking

2
Semantic Importance Sampling

© 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF

THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY

OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written

or electronic form without requesting formal permission. Permission is required for any other use.

Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

DM-0002317

3
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Statistical Model

Checker

Any system ℳ that

takes random inputs

Probabilistic

Temporal Logic

Formula 𝝓

Estimated

Probability that

ℳ ⊨ 𝝓 with relative

error 𝑹𝑬

Statistical Model Checking (SMC)

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑬𝒓𝒓𝒐𝒓 =
𝑺𝒕𝒅.𝑫𝒆𝒗.

𝑴𝒆𝒂𝒏

• System properties described in formal language (UTSL, BLTL, etc.)

• Property is tested on “sample trajectories” (sequence of states)

• Each outcome can be treated as a Bernoulli random variable (i.e., coin flip)

Based on Monte-Carlo

Simulation

4
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Statistical Model Checking

Goal: Calculate the probability 𝑝 that some property holds:

𝑝 = 𝐸[𝐼ℳ⊨Φ(𝑥)]

Where:

• 𝑥 = vector of random variables

– Represents all of the inputs or all random samples

• 𝐼ℳ⊨Φ(𝑥) = indicator function that returns 1 iff ℳ ⊨ Φ

– Composition of system under test and property being tested

 total = 0;
for (i = 1;i <= 10;i++)

 total += rand();

assert(total <= 8);

𝐼ℳ⊨Φ 𝑥 = 1 𝑖𝑓 𝑥𝑖 > 8
10

𝑖=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We consider the property Φ to be a “failure” condition

5
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Statistical Model Checking with Crude Monte-Carlo

The probability that condition Φ holds in
model ℳ when the input 𝑥 is distributed
according to joint pdf 𝑓 𝑥 is the expected
value of that indictor function and can be
calculated as:

𝑝 = 𝐸[𝐼ℳ⊨Φ(𝑥)] = 𝐼ℳ⊨Φ(𝑥)𝑓 𝑥 𝑑𝑥

This can be estimated with Crude Monte-
Carlo simulation as:

𝑝 =
1

𝑁
 𝐼ℳ⊨Φ(𝑥 𝑖)

𝑁

𝑖=1

where each 𝑥 𝑖 is a sample vector drawn
from 𝑓 𝑥 . As 𝑁 gets large, 𝑝 will
converge to 𝑝.

𝑝 =
1

10
= 0.1

of samples in

fault region

total # of samples

Estimated Failure Probability

fault

region

6
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Relative Error: How
large should 𝑁 be?

Measure of accuracy for a prediction

Defined as ratio of standard deviation to
mean. For a probability estimate, the
estimated relative error is:

𝑹𝑬 =
𝝈

𝒑

Number of samples to achieve a target
relative error increases

• as target relative error decreases, or

• as estimated probability decreases

0.0005 0.00075 0.001 0.00125 0.0015

0.0005 0.00075 0.001 0.00125 0.0015

RE=0.01

𝑵 ≈
𝟏

𝒑(𝑹𝑬)𝟐

𝒑

𝒑
p
d
f

p
d
f

𝒑 = 𝟎. 𝟎𝟎𝟏

RE=0.1

𝒑 = 𝟎. 𝟎𝟎𝟏

Tight bound

with low relative

error

Looser bound

with modest

relative error

Distribution of actual 𝒑 given estimated 𝒑

and target relative error

𝑵 ≈ 𝟏𝟎𝟓

𝑵 ≈ 𝟏𝟎𝟕

7
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Importance Sampling: Same 𝑹𝑬 with smaller 𝑁

Problem:

Estimating probabilities of rare events with
low 𝑅𝐸 requires many samples

• To estimate failure probability of 𝑝 = 10−5 with
relative error of 0.01 would require one billion
simulation runs

Solution:

Use Importance Sampling to sample
“important” area of a distribution

• Sample with an “modified” distribution

– Often by “tilting” the distribution parameters

• Map back to original distribution

• Can dramatically reduce number of
experiments needed to verify “rare” events

Original Distribution

p
d
f

Modified

Distribution

Failure

Threshold

Fraction Failed

Number of samples required to

estimate probability p event at

relative error RE:

𝑵 ≈
𝟏

𝒑(𝑹𝑬)𝟐

8
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Importance Sampling

Recall probability of failure is:

𝑝 = 𝐼ℳ⊨Φ(𝑥)𝑓 𝑥 𝑑𝑥

We can introduce an arbitrary
density function 𝑔 𝑥 and rewrite as:

𝑝 = 𝐼ℳ⊨Φ(𝑥)
𝑓 𝑥

𝑔 𝑥
𝑔 𝑥 𝑑𝑥

Now if we define 𝑊 𝑥 =
𝑓 𝑥

𝑔 𝑥
 we get:

𝑝 = 𝐼ℳ⊨Φ(𝑥)𝑊 𝑥 𝑔 𝑥 𝑑𝑥

which is just the expected value of
𝐼ℳ⊨Φ(𝑥)𝑊 𝑥 sampled with 𝑔 𝑥 .

𝑓 𝑥

𝑔 𝑥

𝑊 𝑥

Fault

region

Increased

visibility of

fault region

Weight

function

helps map

back to

original distr.

9
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Importance Sampling

Basic SMC

• Indicator function 𝐼 𝑥 = 1 iff property holds for input 𝑥 .

• Relative Error 𝑅𝐸 𝑝 =
𝑣𝑎𝑟(𝑝)

𝐸[𝑝]
 is measure of accuracy.

• Draw random samples from input distribution 𝑓(𝑥) until target

Relative Error is met.

• Estimated probability that property holds is:

𝑝 =
1

𝑁
 𝐼(𝑥 𝑖)

𝑁

𝑖=1

=
1

10
= 0.1

𝑅𝐸(𝑝) =
0.32

0.1
= 3.2

SMC with Importance Sampling

• Modify input distribution to make rare properties more visible.

• Goal is variance reduction.

• Weighting function 𝑊(𝑥) maps solution to original problem.

• Reduced relative error with same number of samples.

𝑝 =
1

𝑁
 𝐼 𝑥 𝑖 𝑊(𝑥 𝑖)

𝑁

𝑖=1

=
0.2 + 0.5 + 0.3

10
= 0.1

𝑅𝐸(𝑝) =
0.18

0.1
= 1.8

10
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Disjoint Fault Regions

Problem

• Real software is complex with
many paths.

• Inputs leading to fault may be
disjoint in the input space.

• Importance sampling based on
“tilting” distribution parameters
may be limited in ability to cover
fault regions.

Solution

• Need a method to do Importance
Sampling that can better target
the fault regions.

𝑓 𝑥

Disjoint

Fault

Regions

11
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Optimal Importance Sampling (IS) Distribution

A well known result from Importance Sampling is that the optimal IS
distribution (in the context of statistical model checking) is given by:

𝑔 𝑥 =
𝐼 𝑥 𝑓(𝑥)

𝑝

where 𝐼 𝑥 is the indicator function for the system, 𝑓 𝑥 is the original
input distribution, and 𝑝 is the probability a sample falls in the indicator
function. This results in a weight function of:

𝑊 𝑥 =
𝑓(𝑥)

𝑔(𝑥)
=

𝑝

𝐼 𝑥

And so the estimator becomes:

𝑝 =
1

𝑁
 𝐼 𝑥

𝑝

𝐼 𝑥
= 𝑝

𝑁

𝑖=1

This means no samples are needed, but this optimal distribution can only
be found if your already know the solution.

12
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Semantic Approximation

Instead of using 𝐼 𝑥 directly, we can use
abstraction on the original model (typically
source code) to generate a semantic
approximation 𝐼∗ 𝑥 .

We seek to find 𝐼∗ 𝑥 such that:

• Any inputs that satisfy 𝐼(𝑥) also satisfy 𝐼∗ 𝑥 .
That is 𝐼 𝑥 ⊆ 𝐼∗(𝑥)

• 𝐼∗(𝑥) rejects as much of 𝑥 as possible

• It is easy to generate vectors satisfying 𝐼∗(𝑥)

• It is easy to calculate 𝑝∗ = 𝐸[𝐼∗(𝑥)]

We refer to 𝐼∗ 𝑥 as the Abstract Indicator
Function (AIF).

𝑰(𝑥)

𝑰∗(𝑥)

𝒙

13
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Semantic Importance Sampling (1)

Using the same construction as the “optimal” IS distribution, we can
construct an importance sampling distribution:

𝑔∗ 𝑥 =
𝐼∗ 𝑥 𝑓(𝑥)

𝑝∗

where 𝐼∗ 𝑥 is the AIF for the approximate system, 𝑓 𝑥 is the original
input distribution, and 𝑝∗ is the probability a sample falls in the indicator
function for the approximate system. This results in a weight function of:

𝑊∗ 𝑥 =
𝑓(𝑥)

𝑔∗(𝑥)
=

𝑓 𝑥 𝑝∗

𝐼∗ 𝑥 𝑓(𝑥)
=

𝑝∗

𝐼∗ 𝑥

14
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Semantic Importance Sampling (2)

Applying IS, we can write the following estimator for 𝑝 = E[𝐼 𝑥]:

𝑝 =
1

𝑁
 𝐼 𝑥 𝑖 𝑊

∗(𝑥 𝑖)

𝑁

𝑖=1

=
1

𝑁
 𝐼 𝑥 𝑖

𝑝∗

𝐼∗ 𝑥 𝑖

𝑁

𝑖=1

where the 𝑥 are drawn from g∗(𝑥). Since 𝑔∗ 𝑥 =
𝐼∗ 𝑥 𝑓(𝑥)

𝑝∗
, for any 𝑥

drawn from this distribution 𝐼∗ 𝑥 = 1. This allows us to further reduce
this estimator as:

𝑝 =
𝑝∗

𝑁
 𝐼(𝑥 𝑖)

𝑁

𝑖=1

15
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Osmosis SMC Tool

Osmosis is a tool for Statistical
Model Checking (SMC) with
Semantic Importance Sampling.

• Input model is written in subset of C.

• ASSERT() statements in model
indicate conditions that must hold.

• Input probability distributions defined
by the user.

• Osmosis returns the probability that
at least one of the ASSERT()
statements does not hold.

• Uses dReal1 solver to build 𝐼∗(𝑥).

• Simulation halt condition based on:

– Target relative error, or

– Set number of simulations

Osmosis Main Algorithm

1 http://dreal.cs.cmu.edu/

𝒙
𝑰(𝑥): Indicator Function

defines fault region

1. Generate approximation of fault region

𝑰∗(𝑥): Abstract Indicator

Function defines over-

approximation

Input space

2. Conduct SMC and calc. failure prob.

𝒙
a) 𝑝 𝑟𝑎𝑤 =

5

20

in Fault

Total #

𝑝 = 𝑝 𝑟𝑎𝑤𝑝
∗ = 0.0023

c) Failure prob. estimate

is product of two values

b) 𝑝∗ =
6

64

Fraction of

input 𝑰∗(𝑥)
covers

16
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Osmosis Structure

SIS Pre-processing

• C model analyzed to generate
SMT2 and input probabilities.

• dReal used to generate 𝐼∗(𝑥).

• 𝐼∗(𝑥) used to calculate 𝑝∗.

Statistical Model Checking

• C model is compiled with gcc to
dynamically loadable executable
(.so file).

• Dynamic executable loaded into
osmosis.

• Random inputs generated with 𝐼∗ 𝑥
and applied to dynamically loaded
function.

• Result is scaled by 𝑝∗ to obtain final
probability estimate.

.c model

SMT2
Prob.

dists

Dynamic

Exec (.so)

gcc
Verification

Cond. Gen.

Syntactic

Extraction

𝑰∗(𝑥)

dReal

+ Refinement

𝒑∗

𝒌

𝟐𝒏
 𝒑 𝒓𝒂𝒘, 𝑹𝑬

Monte-Carlo

𝒑 ,𝑹𝑬

𝒑 = 𝒑 𝒓𝒂𝒘𝒑
∗

17
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Osmosis Input Example

Input is subset of C

• No arrays, or pointers

• Supports: if/while/for

– With loop limits

Probabilistic inputs

• Use//@dist declaration for

each probabilistic input.

– Uniform, exponential, normal

• Access in C model using
INPUT_D(“name”).

Assertions

• Use ASSERT() to indicate

conditions that should be true.

• Osmosis will compute probability
that at least one ASSERT() has

failed.

#include "osmosis_client.h"

//@dist a=uniform(min=0,max=5)

//@dist b=normal(mean=3,std=1,min=0,max=5)

void simple()

{

 double a = INPUT_D(“a");

 double b = INPUT_D(“b");

 double c = a + b;

 double d = (a – b)/2.0;

 ASSERT(sin(c)*cos(d) < 0.995);

}

“Fault Box” example

18
Semantic Importance Sampling

© 2015 Carnegie Mellon University

SMT2 Generation

C Input translated to SMT2 for use
by dReal.

• Assignments translated to assertions.

– Assignments to same variable
increment “generation number”

• Loops unrolled and translated to
conditionals.

• Implication assertions used for
assignments inside conditionals.

• Input “cube” represented by bounding
assertions on each input variable.

– Varied over multiple dReal calls.

• ASSERT() condition from C is
negated in SMT2, since we wish to
search for failures.

– A dReal “SAT” means failure of
ASSERT() in C model.

(set-logic QF_NRA)

(declare-fun a () Real)

(declare-fun b () Real)

(declare-fun a_1 () Real)

(declare-fun b_1 () Real)

(declare-fun c_1 () Real)

(declare-fun d_1 () Real)

(assert (>= a 0))

(assert (<= a 5))

(assert (>= b 0))

(assert (<= b 5))

(assert (= a_1 a))

(assert (= b_1 b))

(assert (= c_1 (+ a_1 b_1)))

(assert (= d_1 (/ (- a_1 b_1) 2.0)))

(assert (not (< (* (sin c_1)

 (cos d_1))

 0.995)))

(check-sat)

(exit)

Input

Cube

ASSERT()

19
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Input Cubes

Cubes

• Cubes defined on CDF (Cumulative
Distribution Function) of each input
variable.

• Sub-cubes formed by splitting input
domain into equal probability halves
around an input variable.

• Cube values can be mapped to input
values using inverse CDF.

Level

• Level of a cube is number of splits.

• Full input domain is “level-0”.

• All cubes at same level have equal
probability of containing input drawn
from input distribution.

• There are 2𝑛 cubes at level-𝑛.

𝒂
𝟎. 𝟎 𝟎. 𝟐𝟓 𝟎. 𝟓 𝟎. 𝟕𝟓 𝟏. 𝟎

𝟎. 𝟎

𝟎. 𝟐𝟓

𝟎. 𝟓

𝟎. 𝟕𝟓

𝟏. 𝟎

𝒃

(assert (>= a 2.5))

(assert (<= a 3.125))

(assert (>= b 1.20013))

(assert (<= b 1.80517))

Inverse CDF

Level-5

cube

20
Semantic Importance Sampling

© 2015 Carnegie Mellon University

𝑰∗(𝑥) Generation Algorithm

SAT SAT SAT

SAT

SAT

UNSAT

UNSAT

SAT

SAT

UNSAT

UNSAT

UNSAT

UNSAT

SAT

SAT

UNSAT

UNSAT

UNSAT

UNSAT

UNSAT

UNSAT

SAT

U
N

S
A

T

SAT

UNSAT

UNSAT

UNSAT

U
N

S
A

T

UNSAT

UNSAT

UNSAT

SAT U
N

S
A

T

SAT

UNSAT

UNSAT

UNSAT

US

U
N

S
A

T

UNSAT

UNSAT

US

UNSAT

S S U
N

S
A

T

S

UNSAT

UNSAT

UNSAT

US

U
S

U
N

S
A

T

UNSAT

UNSAT

US

UNSAT

S

U S

S S

U
N

S
A

T

S

UNSAT

UNSAT

UNSAT

US

U
S

U
N

S
A

T

UNSAT

UNSAT

US

UNSAT

Algorithm:

1. Set the current “cube” as the
full range of all inputs.

2. Apply dReal to the current
cube.

3. If the result is “SAT”, split
cube into two equal
probability cubes on one
variable, and recursively
apply at Step 2.

Considerations:

• Maximum recursion depth is
tunable parameter.

• By default, we use “round
robin” for variable splits.

𝟎. 𝟐𝟓 𝟎. 𝟓 𝟎. 𝟕𝟓 𝟏. 𝟎 𝟎. 𝟎

𝟎. 𝟐𝟓

𝟎. 𝟓

𝟎. 𝟕𝟓

𝟏. 𝟎

𝒂 Quantile

𝒃
 Q

u
a
n
ti
le

Fault

Region

21
Semantic Importance Sampling

© 2015 Carnegie Mellon University

𝑰∗(𝑥) Generation Algorithm – Optimization 1

Some calls to dReal are
redundant and can be eliminated.

• If recursive call on first sub-cube
returns the empty set (i.e., it is
UNSAT), the second recursive call
must be SAT since the parent is
SAT.

• In this case, we pass a flag
indicating dReal call can be
skipped.

• Can significantly reduce the
number of calls to dReal needed.

• This optimization cannot be used
when dReal fails on a cube.

SAT

unsat (SAT)

1) dReal returns a SAT

result on parent cube.

2) dReal returns

unsat on first of the

two child cubes.

3) 2nd child cube

must be SAT, so we

can skip dReal test.

22
Semantic Importance Sampling

© 2015 Carnegie Mellon University

𝑰∗(𝑥) Generation Algorithm – Optimization 2

Counter-Example returned by
dReal can be used.

• On SAT outcome, dReal returns a
box in which the counter-example
is contained.

• If this box is completely contained
in a child cube, then that child
cube must also be SAT, and no
dReal test is required.

• CAVEAT

– if the counter-example cube
straddles the boundary
between the child cubes, we
cannot use this optimization.

– Optimization 1 may still apply in
this case.

SAT

unsat (SAT)

1) dReal returns a SAT

result on parent cube,

including counter

example.

2) Skip dReal test if

counter example

contained in child.

3) Must use dReal to

test other child.

23
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Calculation of p*

Since

• All cubes at a given level have same
probability of containing a sample
drawn from the input distribution 𝑓 𝑥 .

• Our 𝐼∗(𝑥) generation algorithm returns
a set of cubes at a specified level.

Then

• The probability an input 𝑥 is in 𝐼∗(𝑥) is:

𝑝∗ =
𝑘

2𝑛

where 𝑘 is the number of cubes in our
representation of 𝐼∗(𝑥) , and 𝑛 is the
maximum number of levels we used.

𝒂
𝟎. 𝟎 𝟎. 𝟐𝟓 𝟎. 𝟓 𝟎. 𝟕𝟓 𝟏. 𝟎

𝟎. 𝟎

𝟎. 𝟐𝟓

𝟎. 𝟓

𝟎. 𝟕𝟓

𝟏. 𝟎

𝒃

𝐼∗(𝑥)

𝑝∗ =
5

26
= 0.078125

24
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Random Input Generation

Cube Selection

• Since all cubes cover equal probability,
we pick a cube at random with uniform
probability.

Point Selection

• Within a cube, we pick a point at
random with uniform probability on each
dimension.

• We apply the inverse CDF of each input
variable to obtain the values for each
input variable.

𝐼∗ 𝑥 =

0.5 0.375 𝒂

𝒃

0.375

0.25

Randomly Pick

Cube from 𝐼∗ 𝑥

𝒙𝒊 = 𝒂, 𝒃 = (𝟐. 𝟏𝟏𝟓, 𝟐. 𝟓𝟎𝟑)

(0.423,0.316)

Randomly Pick

Point in Cube

Apply inverse CDF on

each input variable.

25
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Monte-Carlo Simulation

Dynamic Executable Generation

• Use gcc to compile input .c file into
a dynamic executable (.so file)

• Use dlopen() to load executable into
Osmosis.

Monte-Carlo Simulation

• Generate random inputs using 𝐼∗ 𝑥
and input distributions and place
into an array.

• C code for model directly executed.

• INPUT_D(“name”) function calls in
source model extract values from
that array.

• ASSERT() macro sets global
variable if assertion fails.

a b

 double a = INPUT_D(“a");

 double b = INPUT_D(“b");

 double c = a + b;

 double d = (a – b)/2.0;

 ASSERT(sin(c)*cos(d) < 0.995);

Prob.

dists
𝐼∗ 𝑥

Input Vector Generation

input_vector[]=

failure_result
Global variable with

failure status read after

execution is complete.

26
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Final Probability Estimation

Probability estimate 𝑝 of 𝑝 = E[𝐼(𝑥)] is product of:

• Raw probability 𝑝 𝑟𝑎𝑤 from Monte-Carlo simulation using AIF.

• Scale factor 𝑝∗ calculated from cube set.

𝑝 = 𝑝∗𝑝 𝑟𝑎𝑤

Relative error is preserved. i.e, 𝑅𝐸(𝑝) = 𝑅𝐸(𝑝 𝑟𝑎𝑤)

• Preserved because scale factor 𝑝∗ applies equally to mean and
standard deviation of 𝑝 𝑟𝑎𝑤.

• Implies number of samples need to estimate 𝑝 to a specific
relative error is same a number needed to estimate 𝑝 𝑟𝑎𝑤.

27
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Example: Air Hockey Problem

Air Hockey Problem

• Table with a moving puck and a
fixed target.

• Puck rebounds without friction.

Inputs

• Angle – Initial angle at which puck
is hit.

• Distance – Total distance of travel
for puck.

Failure Condition

• Puck stops on target (red dot).

Challenges

• Multiple failure areas in input space.

• Complex structure of failure area.

angle
distance

OK

FAIL

28
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Fault Map for Air Hockey Problem

Fault map shows area of input
space where faults are located.

• Plotted in CDF space.

• Green area indicates input space
included in 𝐼∗(𝑥).

• Red area indicates input space
include in 𝐼(𝑥).

Recursion Depth: 12

29
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Sample Size vs Recursion Depth (Air Hockey)

1.E+05

1.E+06

1.E+07

1.E+08

0 2 4 6 8 10 12

N
um

be
r

of
 S

am
pl

es

Recursion Depth

Simulation effort with SIS decreases exponentially with recursion depth.

Target 𝑅𝐸: 0.01

30
Semantic Importance Sampling

© 2015 Carnegie Mellon University

𝒑∗ vs Recursion Depth (Air Hockey)

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12

P
*

P
ro

b
ab

ili
ty

Recursion Depth

Actual SMC Fault Probability Estimate

Upper-bound 𝑝∗ becomes more accurate as recursion depth increases.

𝒑
∗

31
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Effect of SIS Optimizations

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

d
R

e
al

 C
al

ls

Recusion Depth

No Optimization

Opt. 1

Opt. 2

Opt. 1&2

Optimization 2 results in greatest benefit with factor of two reduction in number of

calls to dReal. Small additional benefit by combining both methods.

SAT

unsat (SAT)

Optimization 1

No call to dReal if first

child call is unsat.

SAT

unsat (SAT)

Optimization 2

Use counter-example

from parent to avoid

dReal calls on children.

32
Semantic Importance Sampling

© 2015 Carnegie Mellon University

Conclusion

Semantic Importance Sampling

• Create approximation of fault region using abstraction.

• Create an alternate input distribution for importance sampling.

• Level of approximation (recursion depth) is user tunable.

• Can reduce SMC sample size by orders of magnitude.

Osmosis tool

• Applies semantic importance sampling on a C-like specification.

• Uses the dReal SMT solver to build approximate fault region model.

• Can be applied when there are multiple fault regions.

• Optimization techniques can nearly halve number of dReal tests required.

