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Problem
• raise significant security concerns

• Number of bugs goes up with code size

• Number of bugs goes up with frequency of updates

• Number of bugs goes up with logical complexity

• Number of bugs goes up with control-flow complexity

• Both complex VMMs and micro-hypervisors are prone to bugs
• E.g., VMware [VMSA-2009-006,Cloudburst], Xen [CVE-2008-3687], 
SecVisor [Franklin et. Al,2010]

• Verified hypervisor is accompanied by proof of desirable 
(security) properties
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Extensible Hypervisors
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Why aren’t we already doing this?
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• Cost of verification grows with
• The size of the code-base

• The number of separate components

• The number of configurations

• The rate of revisions

• Benefit of verification shrinks with
• Steep learning curve of developer-unwieldy programming 

• Lack of commodity hardware integration

• Magnitude of the runtime overhead

Commodity Compatibility

Performance

Compositionality
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Why do this now?
• Formal C static analysis tools are very practical [Frama-C]

• Certifiable compilation tools [Compcert] are practical for 
moderate module sizes

• It’s trendy! [seL4, IronClad, IronFleet, FSCQ, mCertiKOS]
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An extensible hypervisor
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Challenge-1: Code size vs. HW de-privileging
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Challenge-2: Continuous Development
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Challenge-3: Shared Resources
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Challenge-4: Different Configurations
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Challenge-5: Verification vs. Programming Paradigm
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• Programming Paradigm
• C + Assembly is de-facto

• C + Assembly can clobber stuff! [stack, 
registers, MSRs etc.]

• HW access and ops. with multi-core

• State-of-the-art Verification Tools
• Often impose use of “developer-unwieldy” 
high-level languages with steep learning 
curve [Coq, Haskell, Dafny]

• Largely lack support for Assembly

• Mainly target sequential code

• Largely lack support for HW integration
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from above
• Goals

• Compositionality 

• Commodity Compatibility 

• Performance

• Verifiable Object 
Abstraction (uberObject)
• Security invariants

• Commodity HW + Software 
Verification
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ϋber park

ϋBlueprint

Proofs

+

System Resources
[CPU (Privileged) Instructions, Memory, 

Device Interfaces]

ϋberObjects
[C + Assembly + ACSL]

SW-VerifHW HW + SW-Verif
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The ϋberObject
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Contract
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ϋberObject: Sentinel
• Sentinel

• Establishes “call-ret” 
semantics

• Object to object control-
flow enforcer

• ϋberObjects verified not to 
write on other stack frames

• Enables sound application 
of sequential source code 
verification to verify 
invariants over sequential 
ϋberobject invocations
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ϋberBlueprint & Concurrency

Abstract hypervisor as a non-
deterministic sequential program 

prove invariant properties of individual 
ϋobjects and compose them
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Phase1

Startup Phase2

Intercept
Phase3

Exception
Proofs

HW initiated concurrent execution

Concurrent execution

HW initiated sequential execution

Sequential execution
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ϋberObject: CASM Functions & HW Model
• CASM Functions

• C functions composed 
solely of Assembly

• (Any) Assembly 
instruction as macro

• HW model specifies 
semantics

• Custom Frama-C 
verification plugins
• Inline C99 semantics to 
verify

• Inline Assembly to 
compile down
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void gp_setup_vhmempgtbl(void){
u32 i, spatype, slabid=XMHF_SLAB_PRIME;
u64 flags; ...
...
for(i=0; I < (SZ_PDPT*SZ_PDT*SZ_PT); ++i){
spatype=_gp_getspatype(slabid, 

(u32)(i*SZB_4K));
flags=_gp_getptflags(slabid, 

(u32)(i*SZB_4K),spatype);
vhpgtbl1t[i] = pae_make_pte((i*SZB_4K),flags);

} ...
casm_writecr3(vhsmpgtbl4t[0]);  

}
CASM Function

void casm_writecr3(u32 value){
ci_movl_mesp_eax(0x4);
ci_movl_eax_cr3();
ci_ret();

}

CASM Instructions
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ϋberObject: Coding and Behavior Specification

• C99 + CASM (principled 
Assembly)

• ANSI C Specification 
Language (ACSL)
• requires/assigns/ensures

• Hoare triple proven 
automatically via 
Frama-C
• deductive verification 
plugins

• ensemble of SMT solvers
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//@ghost u64 gflags[SZ_PDPT*SZ_PDT*SZ_PT];
/*@ ...
requires \valid(vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1]); ...
assigns vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1]; ...
ensures (\forall u32 x;  0 <= x < SZ_PDPT*SZ_PDT*SZ_PT ==>

((u64)vhpgtbl1t[x] == (((u64)(x*SZB_4K)
&  0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[x]))));

@*/
void gp_setup_vhmempgtbl(void){

u32 i, spatype, slabid=XMHF_SLAB_PRIME;
u64 flags; ...
/*@ loop invariant 0 <= i <= (SZ_PDPT*SZ_PDT*SZ_PT); ... @*/
for(i=0; I < (SZ_PDPT*SZ_PDT*SZ_PT); ++i){

spatype=_gp_getspatype(slabid, (u32)(i*SZB_4K));
flags=_gp_getptflags(slabid, (u32)(i*SZB_4K),spatype);
//@ghost gflags[i] = flags;
vhpgtbl1t[i] = pae_make_pte((i*SZB_4K),flags);
/*@assert vhpgtbl1t[i] == (((u64)(i*SZB_4K)

& 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[i])))); @*/
} ...
casm_writecr3(vhsmpgtbl4t[0]);  

}
CASM function
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ϋberObject: Resource Interface Confinement
• ϋberAPI ϋberobjects

• Wrap a reference monitor around (shared) resource

• MMU, IOMMU, CRs, MSRs, Devices

• Client object manifests how it will use a (shared) resource
• Verified on client via assertions

• During integration
• Use manifests combined into one formula

• SMT solvers check composability
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• C99 + CASM + ACSL behavior specifications and behavior 
restrictions

• Object invariants including basic memory safety and control-
flow integrity and other properties that can be formulated 
as invariants

• Architecture ensures invariant composition

• Mind-Blow #1: Only need to worry about object behavior now –
not implementation

• Mind-Blow #2: A compositionally verifiable C + Assembly 
system without hardware de-privileging

ϋberObject: Summary
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An ϋber Micro-Hypervisor (ϋXMHF)
• XMHF micro-hypervisor (http://xmhf.org)

• Core hypervisor + single extension (hypapp)

• Ubuntu 12.04 32-bit SMP on Intel VT-x/AMD

• Various hypapps
• tracing, attestation, app-level integrity, trusted path etc.

• ϋXMHF
• Multiple extensions

• Ubuntu 12.04 32-bit SMP on Intel VT-x

• 11 ϋberobjects, 7001 SLoC including prime and sentinel

• Took ~3 person months for refactoring
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ϋXMHF Verification Results
• Verification Tools TCB

• Frama-C, uberSpark Plugins (1021 SLoC), SMT Solvers (Z3, CVC3, 
Alt-ergo), HW Model (2079 SLoC)

• Security Invariants in core Hypervisor and Extensions
• memory-safety, control-flow integrity, no direct writes to 
hypervisor memory by guest, DEP, guest syscalls n/w logging etc.

• Verification Metrics
• 11 ϋberobjects, 5544 SLoC total ACSL annotations

• Annotation to code ratio 0.2:1 to 1.6:1

• ϋberobject verification times from 48s to 23 min; cumulative ~1hr

• Took ~9 person months
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ϋXMHF: Micro & Application Benchmarks
• Sentinel transfer cost

• ϋXMHF vs. vanilla XMHF
• Verified hypapps (2% avg. overhead)

• Unverified hypapps (10% avg. overhead)

• I/O and normal Guest performance unaffected!
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Verified-
Verified

Verified-Unverified / Uverified-Verified

SEG CR3 TSK HVM

2x 37x 48x 70x 278x
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• Can prove behavior one object at a time (trace properties)

• Can compose modules and behaviors cheaply

• Can write system code in “basically” C and Assembly and 
behavior specifications in C-like specification language

• Can integrate HW accesses and states into verification

• Can execute with good runtime performance

So, what do we have here?
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Goals
 Compositionality 
 Commodity Compatibility 
 Performance
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So, what don’t we have, yet?
• Not “exactly” C99 + Assembly; no cowboy control flow craziness

• God forbid no C++

• Compcert + CASM proofs
• Semantic compatibility between Frama-C, Compcert and CASM

• HW Model to Assembly instructions refinement

• Full functional correctness

• Concurrent verification

• Broader applicability
• Other hypervisors (Xen, KVM), BIOS, Device firmware, OS Kernel and 
Drivers, User-space Applications and Browser Extensions
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Questions?
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