
Enforcing Verifiable Object Abstractions for
Automated Compositional Security Analysis of a Hypervisor

Amit Vasudevan (CyLab-CMU), Sagar Chaki (SEI-CMU), Petros
Maniatis (Google Inc.), Limin Jia, Anupam Datta (ECE/CSD-CMU)

ϋber park

http://uberspark.org

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Problem
• raise significant security concerns

• Number of bugs goes up with code size

• Number of bugs goes up with frequency of updates

• Number of bugs goes up with logical complexity

• Number of bugs goes up with control-flow complexity

• Both complex VMMs and micro-hypervisors are prone to bugs
• E.g., VMware [VMSA-2009-006,Cloudburst], Xen [CVE-2008-3687],
SecVisor [Franklin et. Al,2010]

• Verified hypervisor is accompanied by proof of desirable
(security) properties

2

Extensible Hypervisors

 Motivating. Ex. Arch. Impl. Verif. Results Perf. Concl. Introduction

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Why aren’t we already doing this?

3

• Cost of verification grows with
• The size of the code-base

• The number of separate components

• The number of configurations

• The rate of revisions

• Benefit of verification shrinks with
• Steep learning curve of developer-unwieldy programming

• Lack of commodity hardware integration

• Magnitude of the runtime overhead

Commodity Compatibility

Performance

Compositionality

 Motivating. Ex. Arch. Impl. Verif. Results Perf. Concl. Introduction

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Why do this now?
• Formal C static analysis tools are very practical [Frama-C]

• Certifiable compilation tools [Compcert] are practical for
moderate module sizes

• It’s trendy! [seL4, IronClad, IronFleet, FSCQ, mCertiKOS]

4

 Motivating. Ex. Arch. Impl. Verif. Results Perf. Concl. Introduction

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

An extensible hypervisor

5

Guest

Hardware

Hypervisor

MMU Network

VMX MSRs

hyperdep sysclog

aprvexec ropdet

C + Assembly

 Intro. Arch. Impl. Verif. Results Perf. Concl. Motivating Example

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Challenge-1: Code size vs. HW de-privileging

6

Guest

Hardware

Hypervisor

MMU

Network

VMX MSRs

hyperdep sysclog

aprvexec ropdet

Guest

Hardware

Hypervisor

MMU Network

VMX MSRs

hyperdep sysclog

aprvexec ropdet

Performance

 Intro. Arch. Impl. Verif. Results Perf. Concl. Motivating Example

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Challenge-2: Continuous Development

7

Guest

Hardware

Hypervisor

MSRs

sysclog
hyperdephyperdephyperdephyperdep

aprvexecaprvexec
ropdetropdetropdet

MMUMMUMMU
NetworkNetwork

VMXVMX

 Intro. Arch. Impl. Verif. Results Perf. Concl. Motivating Example

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Challenge-3: Shared Resources

8

Guest

Hardware

Hypervisor

MMU Network

VMX MSRs

hyperdep sysclog

aprvexec ropdet

 Intro. Arch. Impl. Verif. Results Perf. Concl. Motivating Example

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Challenge-4: Different Configurations

9

Guest

Hardware

Hypervisor

MMU Network

VMX MSRs

hyperdep sysclog

aprvexec ropdet

Guest

Hardware

Hypervisor

MMU Network

VMX MSRs

hyperdep sysclog

aprvexec ropdet

Guest

Hardware

Hypervisor

MMU Network

VMX MSRs

hyperdep sysclog

aprvexec ropdet

 Intro. Arch. Impl. Verif. Results Perf. Concl. Motivating Example

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Challenge-5: Verification vs. Programming Paradigm

10

• Programming Paradigm
• C + Assembly is de-facto

• C + Assembly can clobber stuff! [stack,
registers, MSRs etc.]

• HW access and ops. with multi-core

• State-of-the-art Verification Tools
• Often impose use of “developer-unwieldy”
high-level languages with steep learning
curve [Coq, Haskell, Dafny]

• Largely lack support for Assembly

• Mainly target sequential code

• Largely lack support for HW integration

Guest

Hardware

Hypervisor

MMU Network

VMX MSRs

hyperdep sysclog

aprvexec ropdet

 Intro. Arch. Impl. Verif. Results Perf. Concl. Motivating Example

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

from above
• Goals

• Compositionality

• Commodity Compatibility

• Performance

• Verifiable Object
Abstraction (uberObject)
• Security invariants

• Commodity HW + Software
Verification

11

ϋber park

ϋBlueprint

Proofs

+

System Resources
[CPU (Privileged) Instructions, Memory,

Device Interfaces]

ϋberObjects
[C + Assembly + ACSL]

SW-VerifHW HW + SW-Verif

 Intro. Motivating. Ex. Impl. Verif. Results Perf. Concl. Architecture

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

The ϋberObject

12

Use Manifest
+

Behavior
Specifications

in C-like
language

Contract

System Resources
[CPU (Privileged) Instructions, Memory,

Device Interfaces]

Performance

 Intro. Motivating. Ex. Impl. Verif. Results Perf. Concl. Architecture

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

ϋberObject: Sentinel
• Sentinel

• Establishes “call-ret”
semantics

• Object to object control-
flow enforcer

• ϋberObjects verified not to
write on other stack frames

• Enables sound application
of sequential source code
verification to verify
invariants over sequential
ϋberobject invocations

13

call

ret

Shadow Stacks

ret, ret-async

call, call-async

ϋObject
Contracts

 Intro. Motivating. Ex. Impl. Verif. Results Perf. Concl. Architecture

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

ϋberBlueprint & Concurrency

Abstract hypervisor as a non-
deterministic sequential program

prove invariant properties of individual
ϋobjects and compose them

14

Phase1

Startup Phase2

Intercept
Phase3

Exception
Proofs

HW initiated concurrent execution

Concurrent execution

HW initiated sequential execution

Sequential execution

 Intro. Motivating. Ex. Impl. Verif. Results Perf. Concl. Architecture

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

ϋberObject: CASM Functions & HW Model
• CASM Functions

• C functions composed
solely of Assembly

• (Any) Assembly
instruction as macro

• HW model specifies
semantics

• Custom Frama-C
verification plugins
• Inline C99 semantics to
verify

• Inline Assembly to
compile down

15

void gp_setup_vhmempgtbl(void){
u32 i, spatype, slabid=XMHF_SLAB_PRIME;
u64 flags; ...
...
for(i=0; I < (SZ_PDPT*SZ_PDT*SZ_PT); ++i){
spatype=_gp_getspatype(slabid,

(u32)(i*SZB_4K));
flags=_gp_getptflags(slabid,

(u32)(i*SZB_4K),spatype);
vhpgtbl1t[i] = pae_make_pte((i*SZB_4K),flags);

} ...
casm_writecr3(vhsmpgtbl4t[0]);

}
CASM Function

void casm_writecr3(u32 value){
ci_movl_mesp_eax(0x4);
ci_movl_eax_cr3();
ci_ret();

}

CASM Instructions

 Intro. Motivating. Ex. Impl. Verif. Results Perf. Concl. Architecture

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

ϋberObject: Coding and Behavior Specification

• C99 + CASM (principled
Assembly)

• ANSI C Specification
Language (ACSL)
• requires/assigns/ensures

• Hoare triple proven
automatically via
Frama-C
• deductive verification
plugins

• ensemble of SMT solvers

16

//@ghost u64 gflags[SZ_PDPT*SZ_PDT*SZ_PT];
/*@ ...
requires \valid(vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1]); ...
assigns vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1]; ...
ensures (\forall u32 x; 0 <= x < SZ_PDPT*SZ_PDT*SZ_PT ==>

((u64)vhpgtbl1t[x] == (((u64)(x*SZB_4K)
& 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[x]))));

@*/
void gp_setup_vhmempgtbl(void){

u32 i, spatype, slabid=XMHF_SLAB_PRIME;
u64 flags; ...
/*@ loop invariant 0 <= i <= (SZ_PDPT*SZ_PDT*SZ_PT); ... @*/
for(i=0; I < (SZ_PDPT*SZ_PDT*SZ_PT); ++i){

spatype=_gp_getspatype(slabid, (u32)(i*SZB_4K));
flags=_gp_getptflags(slabid, (u32)(i*SZB_4K),spatype);
//@ghost gflags[i] = flags;
vhpgtbl1t[i] = pae_make_pte((i*SZB_4K),flags);
/*@assert vhpgtbl1t[i] == (((u64)(i*SZB_4K)

& 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[i])))); @*/
} ...
casm_writecr3(vhsmpgtbl4t[0]);

}
CASM function

 Intro. Motivating. Ex. Impl. Verif. Results Perf. Concl. Architecture

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

ϋberObject: Resource Interface Confinement
• ϋberAPI ϋberobjects

• Wrap a reference monitor around (shared) resource

• MMU, IOMMU, CRs, MSRs, Devices

• Client object manifests how it will use a (shared) resource
• Verified on client via assertions

• During integration
• Use manifests combined into one formula

• SMT solvers check composability

17

 Intro. Motivating. Ex. Impl. Verif. Results Perf. Concl. Architecture

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

• C99 + CASM + ACSL behavior specifications and behavior
restrictions

• Object invariants including basic memory safety and control-
flow integrity and other properties that can be formulated
as invariants

• Architecture ensures invariant composition

• Mind-Blow #1: Only need to worry about object behavior now –
not implementation

• Mind-Blow #2: A compositionally verifiable C + Assembly
system without hardware de-privileging

ϋberObject: Summary

18

 Intro. Motivating. Ex. Impl. Verif. Results Perf. Concl. Architecture

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

An ϋber Micro-Hypervisor (ϋXMHF)
• XMHF micro-hypervisor (http://xmhf.org)

• Core hypervisor + single extension (hypapp)

• Ubuntu 12.04 32-bit SMP on Intel VT-x/AMD

• Various hypapps
• tracing, attestation, app-level integrity, trusted path etc.

• ϋXMHF
• Multiple extensions

• Ubuntu 12.04 32-bit SMP on Intel VT-x

• 11 ϋberobjects, 7001 SLoC including prime and sentinel

• Took ~3 person months for refactoring

19

 Intro. Motiv. Ex. Arch. Verif. Results Perf. Concl. Implementation

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

ϋXMHF Verification Results
• Verification Tools TCB

• Frama-C, uberSpark Plugins (1021 SLoC), SMT Solvers (Z3, CVC3,
Alt-ergo), HW Model (2079 SLoC)

• Security Invariants in core Hypervisor and Extensions
• memory-safety, control-flow integrity, no direct writes to
hypervisor memory by guest, DEP, guest syscalls n/w logging etc.

• Verification Metrics
• 11 ϋberobjects, 5544 SLoC total ACSL annotations

• Annotation to code ratio 0.2:1 to 1.6:1

• ϋberobject verification times from 48s to 23 min; cumulative ~1hr

• Took ~9 person months

20

 Intro. Motiv. Ex. Arch. Impl. Perf. Concl. Verification Results

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

ϋXMHF: Micro & Application Benchmarks
• Sentinel transfer cost

• ϋXMHF vs. vanilla XMHF
• Verified hypapps (2% avg. overhead)

• Unverified hypapps (10% avg. overhead)

• I/O and normal Guest performance unaffected!

21

Verified-
Verified

Verified-Unverified / Uverified-Verified

SEG CR3 TSK HVM

2x 37x 48x 70x 278x

 Intro. Motivating Ex. Arch. Impl. Verif. Results Concl. Performance

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

• Can prove behavior one object at a time (trace properties)

• Can compose modules and behaviors cheaply

• Can write system code in “basically” C and Assembly and
behavior specifications in C-like specification language

• Can integrate HW accesses and states into verification

• Can execute with good runtime performance

So, what do we have here?

22

Goals
 Compositionality
 Commodity Compatibility
 Performance

 Intro. Motivating Ex. Arch. Impl. Verification Results Perf. Conclusion

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

So, what don’t we have, yet?
• Not “exactly” C99 + Assembly; no cowboy control flow craziness

• God forbid no C++

• Compcert + CASM proofs
• Semantic compatibility between Frama-C, Compcert and CASM

• HW Model to Assembly instructions refinement

• Full functional correctness

• Concurrent verification

• Broader applicability
• Other hypervisors (Xen, KVM), BIOS, Device firmware, OS Kernel and
Drivers, User-space Applications and Browser Extensions

23

 Intro. Motivating Ex. Arch. Impl. Verification Results Perf. Conclusion

Enforcing Verifiable Object Abstractions for Automated
Compositional Security Analysis of a Hypervisor

/ 24Vasudevan et. al. ϋber park

Questions?

24

http://uberspark.org

Amit Vasudevan
(amitvasudevan@acm.org)

ϋber park

 Intro. Motivating Ex. Arch. Impl. Verification Results Perf. Conclusion

