
Regression Verification for Multi-Threaded

Programs

Sagar Chaki1 Arie Gurfinkel1 Ofer Strichman1,2

1 SEI/CMU, Pittsburgh, USA
2 Technion, Haifa, Israel

chaki@sei.cmu.edu arie@cmu.edu ofers@ie.technion.ac.il

Abstract. Regression verification is the problem of deciding whether
two similar programs are equivalent under an arbitrary yet equal con-
text, given some definition of equivalence. So far this problem has only
been studied for the case of single-threaded deterministic programs. We
present a method for regression verification to establish partial equiva-
lence (i.e., input/output equivalence of terminating executions) of multi-
threaded programs. Specifically, we develop two proof-rules that decom-
pose the regression verification between concurrent programs to that
of regression verification between sequential functions, a more tractable
problem. This ability to avoid composing threads altogether when dis-
charging premises, in a fully automatic way and for general programs,
uniquely distinguishes our proof rules from others used for classical ver-
ification of concurrent programs.

1 Introduction

Regression verification [4, 5] is the problem of deciding whether two similar pro-
grams are equivalent under an arbitrary yet equal context. The problem is pa-
rameterized by a notion of equivalence. In this paper, we focus on partial equiv-
alence [4], i.e., input/output equivalence of terminating executions. Regression
verification under partial equivalence – which we refer to simply as regression
verification – is undecidable in general. However, in practice it can be solved in
many cases fully automatically for deterministic single-threaded programs, even
in the presence of loops, recursion and dynamic memory allocation. For exam-
ple, the algorithm suggested in [5] progresses bottom-up on the call graphs of
the two programs, and attempts to prove equivalence of pairs of functions while
abstracting descendants that were already proved equivalent with uninterpreted
functions. This algorithm is implemented in two tools – RVT [5] and SymDiff [9]
– both of which output a list of provably equivalent function pairs.

The ability to perform regression verification adds several elements to the
developer’s toolbox: checking that no change has propagated to the interface
after refactoring or performance optimization; checking backward compatibility;
performing impact analysis (checking which functions may possibly be affected
by a change, in order to know which tests should be repeated), and more.

Multithreaded (MT) programs are widely deployed, which makes the exten-
sion of regression verification to such programs an important problem. This task

is challenging for at least two reasons. First — since MT programs are inher-
ently nondeterministic due to the scheduler, we need an appropriate notion of
equivalence for nondeterministic programs. The standard definition of partial
equivalence mentioned above is inadequate, since it implies that a nondetermin-
istic program is not even equivalent to itself: given the same input, the program
may produce different outputs.1

Second — while regression verification of sequential programs is broken down
to proofs of I/O equivalence of pairs of functions, in the case of MT programs
the behavior of functions is affected by other threads, which makes a similar
decomposition to the level of functions much harder. Compositional verification
methodologies [11, 7] and tools [6, 2] for MT programs target reachability prop-
erties of a single program, and decompose only to the level of individual threads.
They are therefore not directly applicable to our problem.

In this paper we propose theoretical foundations for regression verification of
multi-threaded recursive programs and address the above two challenges. First,
we extend the definition of partial equivalence to non-deterministic programs.
Second, assuming a bijective correspondence mapping between the functions and
global variables of the two programs, we present two proof rules whose premises
only require verification of sequential programs, at the granularity of individual
functions. We prove that these rules are sound under our extended notion of
partial equivalence. For the first rule, each premise verifies that a pair of cor-
responding functions generate the same observable behavior under an arbitrary
yet equal environment. The second rule has premises that are weaker, but also
computationally harder to discharge. Specifically, each premise verifies that a
pair of corresponding functions generate the same observable behavior under an
arbitrary yet equal environment that is consistent with some overapproximation
of the other threads in the program. For both rules, each premise is discharged
by verifying a sequential program. A key feature of our proof rules therefore is
that they enable decomposition to the level of both threads and functions.

The rest of the article is structured as follows. In the next section we present
our extended notion of partial equivalence. In Sec. 3 we list our assumptions
about the input programs, and describe how they should be preprocessed for our
procedure to work. In Sec. 4 we describe our first rule and prove its soundness.
In Sec. 5 we present the second rule and prove its soundness. Finally, in Sec. 6,
we conclude and describe some directions for future work.

2 Equivalence of multi-threaded programs

Let P be a multi-threaded program. P defines a relation between inputs and
outputs, which we denote by R(P). Let Π(P) denote the set of terminating
computations of P . Then:

R(P) = {(in,out) | ∃π ∈ Π(P)� π begins in in and ends in out} .

1 An indication of the difficulty of this problem is given by Lee’s statement in [10],
that “with threads, there is no useful theory of equivalence”.

Definition 1 (Partial equivalence of nondeterministic programs). Two
nondeterministic programs P , P ′ are partially equivalent if R(P) = R(P ′).

We denote by p.e.(P, P ′) the fact that P and P ′ are partially equivalent. Note
that the definition refers to whole programs, and that by this definition every
program is equivalent to itself. If loops and recursion are bounded this problem
is decidable, as we show in the full version of this article [1]. Recall, however,
that here we are concerned with the unbounded case, and with the question of
how to decompose the verification problem to the granularity of threads and
functions. This is the subject of this article.

3 Assumptions, preprocessing and mapping

We assume C as the input languages, with few restrictions that will be mentioned
throughout this section. We generally refrain in this paper from discussing in de-
tail issues that are also relevant to regression verification of sequential programs
(e.g., issues concerning the heap, aliasing etc), because these are covered in ear-
lier publications [4, 9].

The input program P is assumed to consist of a finite and fixed set of threads,
i.e., no dynamic thread creation and deletion. A k-threaded program P is written
as f1 ‖ . . . ‖ fk where, for i ∈ [1..k], the i-th thread is rooted at fi. The call
graph of P is written as cg(P). The call graph of a function f in P , denoted
cg(f), is the subgraph of P that can be reached from f . We assume that threads
have disjoint call graphs.

We denote by ReadParam(f) and WriteParam(f) the set of parameters
and global variables that are read and written-to, respectively, by functions in
cg(f). In general computing this information precisely is impossible, but over-
approximations are easy to compute, while sacrificing completeness. For sim-
plicity we will assume that these sets are given to us. Note that the intersection
of these sets is not necessarily empty. A global variable is called shared if it is
accessed by more than one thread. For simplicity, but without losing generality,
we consider all outputs of each function as if they were shared, even if in practice
they are local to a thread.

By convention x, x1, x2 etc. denote variables that are (really) shared (i.e.,
not outputs), t, t1, t2 etc. denote local variables, and exp denotes an expression
over local variables. Primed symbols indicate that they refer to P ′. Function
names prefixed by UF denote uninterpreted functions. The signature and return
type of these functions are declared implicitly, by the actual parameters and the
variable at the left-hand side of the assignment, respectively. For example, if we
use a statement of the form t = UF x(t1, t2), where t,t1,t2 are integers, it
means that we also declare an uninterpreted function int UF x(int, int).

3.1 Global preprocessing

We assume that all programs are preprocessed as follows:

– Loops are outlined [3] to recursive functions.

– Mutually recursive functions are converted [8] to simple recursion.
– Non-recursive functions are inlined.
– Auxiliary local variables are introduced to load and store shared variables

explicitly such that: (i) a shared variable x only appears in statements of the
form t = x or x = exp, and (ii) every auxiliary variable is read once.

– If a function has a formal return value, it is replaced with an additional
parameter sent to it by reference.

3.2 Mapping

We assume that after preprocessing, the target programs P and P ′ have the
same number of threads and overall number of functions. Specifically, let P =
f1 ‖ . . . ‖ fk and P ′ = f ′

1 ‖ . . . ‖ f ′
k, and let the set of overall functions of P and

P ′ be {g1, . . . , gn} and {g′1, . . . , g
′
n}, respectively. We assume the following two

mappings:

– A bijection φF : {g1, . . . , gn} 7→ {g′1, . . . , g
′
n}, such that ∀i ∈ [1..k]� φF (fi) =

f ′
i and furthermore, if (g, g′) ∈ φF , then

• ∀i ∈ [1..k]� g ∈ cg(fi) ⇐⇒ g′ ∈ cg(f ′
i).

• g and g′ have the same prototype (list of formal parameter types).
• Let pi and p′i denote the i-th parameter of g and g′ respectively.

Then pi ∈ ReadParam(g) ⇐⇒ p′i ∈ ReadParam(g′) and pi ∈
WriteParam(f) ⇐⇒ p′i ∈ WriteParam(g′).

For convenience, we assume that ∀i ∈ [1..n]� φF (gi) = g′i.
– A bijection φG between the global variables of P and P ′, such that if (v, v′) ∈

φG, then

• v and v′ are of the same type,
• v is a shared variable iff v′ is a shared variable,
• ∀(g, g′) ∈ φF � v ∈ ReadParam(g) ⇐⇒ v′ ∈ ReadParam(g′) and
v ∈ WriteParam(g) ⇐⇒ v′ ∈ WriteParam(g′).

Failure in finding the above two mappings dooms the proof. Note that the
existence of φG implies that after preprocessing, P and P ′ also have the same
number of global variables.

4 First Proof Rule

We now present our first proof rule for regression verification of P and P ′. We
begin with a specific transformation of a function f to a new function f̂ , which
we use subsequently in the premise of our proof rule.

4.1 Function transformation: from f to f̂ .

Let ActualReadParam(f) be the actual parameters and global variables sent

respectively to the elements in ReadParam(f). We construct f̂ from f via the

– Introduce a global counter c initialized to 0, and a list out of tuples
〈Action, identifier, values . . .〉.

– Read : t := x; ⇒ t := UF x(c); out += (R, "x"); c++;

– Write: x := exp; ⇒ x := exp; out += (W, "x", exp); c++;

– Function call : foo(a1, . . . , am); ⇒
∀w ∈ WriteParam(foo)� w = UFfoo w(ActualReadParam(foo));
out += (C, "foo", ActualReadParam(foo));

Fig. 1. Constructing f̂ from f , for a function f in P . The operator “+=” appends an
element to the end of out. Functions in P ′ are translated slightly differently (see text).

f(int t1) {
int t2, t3 = 1;

x = t1 + 1;

t2 = x;

foo(t3, &t1, &t2);

}

g(int i1,int *o1) {
int t;

if (i1 ≤ 0) {
*o1 = 1;

} else {
g(i1 - 1, &t);

*o1 = (*t) * i1;

} }

f̂(int t1) {
int t2, t3 = 1, c = 0;

x = t1 + 1;

out+=(W,"x", t1 + 1); c++;

t2 = UF_x(c);

out+=(R, "x"); c++;

t1 = UF_foo_t1(t3);

t2 = UF_foo_t2(t3);

out+=(C, foo, t3);

}

ĝ(int t1,int *o1) {
int t, c = 0;

if (i1 ≤ 0) {
out+=(W, "o1", 1); c++;

} else {
t = UF_g_t(i1 - 1);

out+=(C, g, i1 - 1);

out+=(W, "o1", (*t) * i1); c++;

} }

Fig. 2. Example conversions of functions f and g to f̂ and ĝ.

transformation described in Fig. 1. In the figure, ⇒ indicates a specific transfor-
mation, with the left being the original code (in f) and the right being the new

code (in f̂). The transformation of a function f ′ in P ′ is the same except that
the elements in WriteParam(f ′) are renamed to their counterparts in f accord-
ing to the map φG, ensuring that f and φF (f) invoke the same uninterpreted
function.

Example 1. Fig. 2 shows functions f and g and their translations to f̂ and ĝ.
Function foo called in f has three parameters, the first of which is only in
ReadParam(foo) and the other two only in WriteParam(foo). The update of
x in f̂ is not necessary in this case because it is not used, but it would have been
used had x was an element of ReadParam(foo). Shifting our attention to g, this
function computes the factorial of its input. It has two parameters, which are in
ReadParam(g) and WriteParam(g), respectively. ⊓⊔

Intuition. Intuitively, the environment in which each thread operates is a
stream of read and write (RW) instructions to shared variables. Let f and f ′ be
two functions and let E and E′ be environments generated by the other threads
in their respective programs (P and P ′). To prove the equivalence of f, f ′, we
assume that E and E′ are identical but only if f and f ′’s interaction with them
so far has been equivalent. This assumption is checked as part of the premise
of our rule as follows. Consider two shared variables x, x′ in f, f ′, respectively.
To emulate a possible preemption of f just before it reads x, it is sound to
let it read a nondeterministic value. But since we want to assume that f and
f ′ operate in the same environment, we want to ensure that if they are read
at equal locations in their own RW stream, then they are assigned the same
nondeterministic value. To this end, we replace each read of x and x′ with the
uninterpreted function call UFx(c). Since c is the current location in the RW
stream and we use the same uninterpreted function UFx() for both x and x′, we
achieve the desired effect.

We prove that f and f ′ are observationally equivalent via the list out. For
simplicity, we refer to the list out introduced during the construction of f̂ as
f̂ .out. In essence, the equality of f̂ .out and f̂ ′.out implies that f and f ′ read
(and write) the same values from (and to) the shared variables, and call the
same functions with the same actual parameters, and in the same order. We
now present our first proof rule formally.

4.2 The Proof Rule

We define the predicate δ(f) to be true if and only if the sequential program
V Cδ(f), given below in pseudo-code, is valid (i.e., the assertion in V Cδ(f) is not
violated) for all input vectors in:

V Cδ(f) : f̂(in); f̂ ′(in); rename(f̂ ′.out); assert(f̂ .out = f̂ ′.out);

The function rename renames identifiers of functions and shared variables to
their counterparts according to φF and φG, respectively. We omit some details
on the construction (e.g., how in is generated when the signatures of f, f ′ include
pointers), and verification of V Cδ(f). These details are available elsewhere [3],
where similar programs are constructed for single-threaded programs. It should
be clear, though, that validity of V Cδ(f) is decidable because there are no loops

and (interpreted) function calls in f̂ and f̂ ′. Our first proof rule for partial
equivalence of two MT programs P, P ′ is:

∀i ∈ [1..n]� δ(fi)

p.e.(P, P ′)
. (1)

Example 2. Consider the programs P in Fig. 3. For a fixed positive value of the
shared variable x, f1 computes recursively the GCD of x and the input argument
t, if t > 0. The second thread f2 changes the value of x to a nondeterminis-
tic value. f1() is assumed to be called from another function that first sets x

void f1(int td, int *o) {
int t1, t2, t3;

if (td <= 0) t2 = x;

else {
t1 = x;

t3 = t1 % td;

x = td;

f1(t3, &t2);

}
*o = t2;

}

void f2() {
int t;

x = t;

}

P

void f1’(int td, int *o’) {
int t1, t2;

t2 = x’;

if (td > 0) {
t1 = x’;

x’ = td;

f1’(t1 % td, &t2);

}

*o’ = t2;

}

f2’() {
int t;

x’ = t;

}

P ′

Fig. 3. Two MT-programs for Example 2.

to some initial value (not shown here for simplicity). The program P ′ on the
right does the same in a different way. We wish to check whether these two
programs are partially equivalent. We assume that φF = {(f1,f1’), (f2,f2’)},
φG = {(x,x’), (o,o’)}. Note that in the construction we refer to o,o’ as
shared, although they are not, because of our convention that output variables
are considered as shared. Also, we have ActualReadParam(f1) = {t3, x},
WriteParam(f1) = {o, x}, ActualReadParam(f1’) = {t1 % td, x’} and
WriteParam(f1’) = {o, x’}. Fig. 4 presents pseudo-code for δ(f1). Note that
the input in sent to f̂1 and f̂1’ is nondeterministic. δ(f2) is trivial and not
shown here. Both programs are valid, and hence by (1), p.e.(P, P ′) holds. ⊓⊔

Note that when constructing f̂ , we record both reads and writes in f̂ .out. The
following example shows that ignoring the order of reads makes (1) unsound.

Example 3. Consider the 2-threaded programs P (left) and P ′ (right) shown in
Fig. 5. Assume that all variables are initialized to 0, and x3,x4 are the outputs.
P ′ is identical to P other than the fact that the first two lines in f1() are
swapped. Thus, if reads are not recorded in f̂ .out, then V Cδ(f1) and V Cδ(f2)
are both valid. Hence, our proof rule would imply that P and P ′ are partially
equivalent. But this is in fact wrong, as we now demonstrate.

If x4 = 1 at the end of P ’s execution, then the instruction t2 = x1 in f2()

must have happened after the instruction x1 = 1 in f1(). Therefore t1 reads
the value of x2 before it is updated by f2(), which means that t1, and hence
x3, are equal to 0. Hence, at the end of any execution of P , x4 = 1 ⇒ x3 = 0.

On the other hand, in P ′, after the computation x1 = 1; t2 = x1; x2 = 2;

t1 = x2; x3 = t1; x4 = t2; we have (x4 = 1, x3 = 2). Since this output is
impossible in P , then ¬p.e.(P, P ′). Hence, our proof rule would be unsound. ⊓⊔

void f̂1 (int td, int *o) {
int t1, t2, t3, c = 0;

if (td <= 0) {
//2 ⊲ t2 = x;

t2 = UF_x(c);

out1 += (R, "x"); c++;

} else {
//2 ⊲ t1 = x;

t1 = UF_x(c);

out1 += (R, "x"); c++;

//3 ⊲ x = td;

t3 = t1 % td;

x = td;

out1 += (W, "x", td); c++;

//3 ⊲ t2 = f1(t3, &t2);

t2 = UF_f1_o(t3, x);

x = UF_f1_x(t3, x);

out1 += (C, f1, t3, x);

}
//1 ⊲ *o = t2;

out1 += (W, "*o", t2); c++;

}

void f̂1′(int td, int *o’) {
int t1, t2, c = 0;

//2 ⊲ t2 = x’;

t2 = UF_x(c);

out2 += (R, "x’"); c++;

if (td > 0) {
//2 ⊲ t1 = x’;

t1 = UF_x(c);

out2 += (R, "x’"); c++;

//2 ⊲ x’ = td;

x’ = td;

out2 += (W, "x’", td); c++;

//3 ⊲ f1’(t1 % td, &t2);

t2 = UF_f1_o(t1 % td, x’);

x’ = UF_f1_x(t1 % td, x’);

out2 += (C, f1, t1 % td, x’);

}
//1 ⊲ *o’ = t2;

out2 += (W, "*o’", t2); c++;

}

main() {
int in;

f̂1(in); f̂1′(in);
rename(out2);

assert(out1 == out2);

}

Fig. 4. For Example 2: Pseudo-code for δ(f1), where n ⊲ X denotes that the next n

lines encode X.

The above example also demonstrates that even minor alterations in the
order of reads and writes in a thread – alterations that do have any effect in a
sequential program – lead to loss of partial equivalence. This leads us to believe
that there is little hope for a rule with a significantly weaker premise than (1).

4.3 Definitions

In this section we present definitions used later to prove the soundness of (1).

Definition 2 (Finite Read-Write trace). A finite Read-Write trace (or RW-
trace for short) is a sequence (A, var, val)∗, where A ∈ {R,W}, var is a shared
variable identifier and val is the value corresponding to the action A on var.

By ‘trace’ we mean a finite RW trace, and RW is the set of all RW traces.

Definition 3 (Function semantics). The semantics of a function f under
input in is the set of traces possible in f(in) under an arbitrary program envi-
ronment and input.

We denote by [f(in)] the semantics of f under input in.

f1() {
t1 = x2;

x1 = 1;

x3 = t1;

}

f2() {
t2 = x1;

x2 = 2;

x4 = t2;

}

f1’() {
x1 = 1;

t1 = x2;

x3 = t1;

}

f2’() {
t2 = x1;

x2 = 2;

x4 = t2;

}

Fig. 5. Example programs P (left) and P ′ (right). All variables are of integer type.

Definition 4 (Sequential consistency). An interleaving t of traces t1, . . . , tn
is sequentially consistent if when (W, var, v1) is the last write action to var

before a read action (R, var, v2) in t, then v1 = v2.

Let ⊲⊳ (t1, . . . , tn) denote the set of sequentially consistent interleavings of
t1, . . . , tn. The extension to sets of traces S1, . . . , Sn is given by:

⊲⊳ (S1, . . . , Sn) =
⋃

t∈S1×···×Sn

⊲⊳ (t) .

Definition 5 (Program semantics). Let P = f1 ‖ . . . ‖ fk be a program. The
semantics of P , denoted by [P], is the set of terminating traces defined by:

[P] =
⋃

in

⊲⊳ ([f1(in)], . . . , [fk(in)]) .

Example 4. Consider the functions f1() and f2() from Fig. 5. Let Z be the set
of all integers. We have:

[f1] =
⋃

z∈Z

{〈(R, x2, z), (W, x1, 1), (W, x3, z)〉}

[f2] =
⋃

z∈Z

{〈(R, x1, z), (W, x2, 2), (W, x4, z)〉}

Now consider the program P = f1 ‖ f2. Assume that all global variables are
initialized to 0 Then, we have:

[P] = { 〈(R, x2, 0), (W, x1, 1), (W, x3, 0), (R, x1, 1), (W, x2, 2), (W, x4, 1)〉,

〈(R, x1, 0), (W, x2, 2), (W, x4, 0), (R, x2, 2), (W, x1, 1), (W, x3, 2)〉,

〈(R, x2, 0), (R, x1, 0), (W, x1, 1), (W, x3, 0), (W, x2, 2), (W, x4, 0)〉, . . .}

⊓⊔

Let [f̂(in)] denote the possible values of f̂ .out under input in. We now show

how [f(in)] is obtained from [f̂(in)], by recursively expanding all function calls.

For conciseness from hereon we frequently omit in from the notations [f̂(in)]

and [f(in)], i.e., we write [f̂] and [f] instead.

Definition 6 (Finite Read-Write-Call trace). A finite Read-Write-Call
trace (or RWC trace for short) is a sequence {(A, var, val)∪ (C, f, a1, . . . , ak)}

∗,
where A, var and val are the same as RW traces, f is a function, and a1, . . . , ak
are values passed as arguments to f .

For an RWC trace t, we write CS(t) to mean the set of functions appearing
in t, i.e.,:

CS(t) = {f | (C, f, . . .) ∈ t} .

Expanding a function call requires to map it to the traces of the called function.
For this purpose we define a function µ : CS(t) 7→ 2RW (recall that RW is
the set of all traces). Then, inline(t, µ) ⊆ RW is defined as follows: a trace t′

belongs to inline(t, µ) iff t′ is obtained by replacing each element (C, f, . . .) in t

with an element of µ(f).

Definition 7 (Bounded semantics of a function). The bounded semantics
of a function f is its RW traces up to a given recursion depth. Formally:

[f]0 = [f̂] ∩RW

and for i > 0,

[f]i =
⋃

w∈[f̂]

inline(w, µi
f) ∩ [f], where

µi
f (f) = [f]i−1 and ∀g 6= f called by f � µi

f (g) = [g] .

Less formally, at a recursive call (i.e., when g = f), µi
f inlines a trace of f

that involves fewer than i recursive calls of f , and at a nonrecursive function call
(i.e., when g 6= f) it inlines an arbitrary trace of g. Observe that the semantics
of a function can be defined as a union of its bounded semantics:

[f] =
⋃

i≥0

[f]i . (2)

Example 5. Recall the factorial function g from Fig. 2. Then we have:

[ĝ] = {〈(W, o1, 0!)〉} ∪
⋃

z∈Z∧z>0

〈(C, g, z − 1), (W, o1, z!)〉

∀i ≥ 0� [g]i =
⋃

0≤z≤i

{〈(W, o1, 0!), (W, o1, 1!), . . . , (W, o1, z!)〉}

[g] =
⋃

z≥0

{〈(W, o1, 0!), (W, o1, 1!), . . . , (W, o1, z!)〉}

⊓⊔

4.4 Soundness

We now prove the soundness of (1) in three stages:

1. In Theorem 1 we prove that for any function f , the following inference is
sound:

∀g ∈ cg(f)� δ(g)

∀in� [f(in)] = [f ′(in)]
.

This establishes the connection between the premise of (1) and the equal
semantics of mapped threads.

2. Then, in Theorem 2 we prove that the following inference is sound:

∀i ∈ [1..k] ∀in� [fi(in)] = [f ′
i(in)]

[P] = [P ′]
.

This establishes the connection between the equivalence of semantics of in-
dividual threads, and the equal semantics of their composition.

3. Finally, in Theorem 3 we prove that [P] = [P ′] ⇒ p.e.(P, P ′), which is the
desired conclusion.

Theorem 1. For any function f , the following inference is sound:

∀g ∈ cg(f)� δ(g)(
∀i ≥ 0 ∀in� [f(in)]i = [f ′(in)]i

)
∧ ∀in� [f(in)] = [f ′(in)]

.

Proof. Note that, owing to (2), the left conjunct in the consequent implies the
right one. Hence it suffices to prove the former.

Let L(f) be the number of nodes in cg(f). The proof is by simultaneous
induction on i and L(f), for an arbitrary input in.

Base Case: Suppose i = 0 and L(f) = 1, which means that f and f ′ do
not have function calls. In this case the inference holds by construction of δ(f),

because the RW traces in f̂(in) are exactly those in [f(in)]0, and δ(f) implies

that f̂ and f̂ ′ generate the same RW trace given the same input.
Inductive step: Suppose i = n and L(f) = l and suppose that the theorem

holds for all i < n and for all L(f) < l. Consider any t ∈ [f(in)]i and let

t̂ ∈ [f̂(in)] such that t ∈ inline(t̂, µi
f). Now define:

µi
f ′(f ′(in)) = [f ′(in)]i−1 and ∀g′ 6= f ′called by f ′

� µi
f ′(g′(in)) = [g′(in)] .

By the inductive hypothesis, we know that ∀g ∈ cg(f)� µi
f (g(in)) = µi

f ′(g′(in)).

Therefore, t ∈ inline(t̂, µi
f ′). Using the same argument as in the base case, we

know that t̂ ∈ [f̂ ′(in)]. Therefore, from the definition of [f ′(in)]i, we know
that t ∈ [f ′(in)]i. Since t is an arbitrary element of [f(in)]i, we conclude that
[f(in)]i ⊆ [f ′(in)]i. The same argument applies if we swap f and f ′. Thus,
[f ′(in)]i ⊆ [f(in)]i and, therefore, [f(in)]i = [f ′(in)]i. This result holds for all
inputs, since we did not rely on any particular value of in. ⊓⊔

Theorem 2. The following inference is sound:

∀i ∈ [1..k] ∀in� [fi(in)] = [f ′
i(in)]

[P] = [P ′]
.

Proof. By definitions 3, 4, and 5, we know that:

[P] =
⋃

in

⊲⊳ ([f1(in)], . . . , [fk(in)]) =
⋃

in

⋃

t∈[f1(in)]×···×[fk(in)]

⊲⊳ (t) and,

[P ′] =
⋃

in

⊲⊳ ([f ′
1(in)], . . . , [f

′
k(in)]) =

⋃

in

⋃

t
′∈[f ′

1
(in)]×···×[f ′

k
(in)]

⊲⊳ (t′) .

But since for i ∈ [1..k] and for all input in [fi(in)] = [f ′
i(in)], t and t′ range

over the same sets of trace vectors. Hence [P] = [P ′]. ⊓⊔

We now prove the soundness of the first rule.

Theorem 3. Proof rule (1) is sound.

Proof. Let P = f1 ‖ . . . ‖ fk and P ′ = f ′
1 ‖ . . . ‖ f ′

k. From the premise of the
proof rule, and Theorem 1, we know that:

∀i ∈ [1..k] ∀in� [fi(in)] = [f ′
i(in)] .

Therefore, by Theorem 2, we know that [P] = [P ′]. Observe that for any input
in and output out, (in,out) ∈ R(P) iff ∃t ∈ [P] starting from in and ending
with out. Recall that all the outputs of P, P ′ are assumed to be through shared
variables. It is clear then, that if [P] = [P ′] then for a given input they have the
same set of outputs. Hence, we reach the desired conclusion. ⊓⊔

4.5 The value of partial success

Since (1) requires δ(f) to hold for all functions, it is interesting to see if anything
is gained by proving that it holds for only some of the functions. Recall that
Definition 1 referred to whole programs. We now define a similar notion for a
function f with respect to the program P to which it belongs. By R(f) we denote
the I/O relation of f with respect to P . Formally, R(f) is the set of all pairs
(in,out) such that there exists a computation of P (including infinite ones) in
which there is a call to f that begins with ReadParam(f) = in and ends with
WriteParam(f) = out.

Definition 8 (Partial equivalence of functions in MT programs). Two
functions f and f ′ are partially equivalent in their respective nondeterministic
programs if R(f) = R(f ′).

Denote by p.e.(f, f ′) the fact that f and f ′ are partially equivalent according
to Definition 8. Now, suppose that for some function f , ∀g ∈ cg(f) � δ(g).
Then, Theorem 1 implies that ∀in � [f(in)] = [f ′(in)]. Considering the main
goal of regression verification – providing feedback about the impact of changes
to a program – this is valuable information. It implies that the observable be-
havior of f, f ′ can only be distinguished by running them in different environ-
ments. Note that this does not imply that f, f ′ are partially equivalent according
to Definition 8, since they may have different I/O relation under the environ-
ments provided by P and P ′ respectively. On the other hand it is stronger than
I/O equivalence of f, f ′ under arbitrary but equivalent environments, because it
makes a statement about the entire observable behavior and not just the outputs.

While partial results are useful, our first rule prevents us from proving
p.e.(P, P ′) if even for one function g, δ(g) is false. Our second rule is aimed
at improving this situation.

void f1(int *o)

{
int t = x;

if (t < 0)

t = -t;

*o = t;

}

void f2(int i)

{
int t = i;

if (t < 0)

t = -t;

x = t;

}

void f1’(int *o’)

{
int t = x’;

*o’ = t;

}

void f2’(int i)

{
int t = i;

if (t < 0)

t = -t;

x’ = t;

}

Fig. 6. The programs f1 ‖ f2 and f1’ ‖ f2’ are partially equivalent, but since the
equivalence of f1 and f1’ depend on the values generated by f2 and f2’ (specifically,
it depends on the fact that these functions update the shared variable with a positive
value), δ(f1) is false, which falsifies the premise of (1). On the other hand rule (4)
proves their equivalence.

5 Second Proof Rule

The premise of our second rule, like the first one, is observable equivalence of
pairs of functions under equal environments. However, unlike the first rule, the
environments are not arbitrary, but rather consistent with the other threads in
the program. This enables us to prove equivalence of programs like the ones in
Fig. 6. Note that the functions f1 and f1’ are equivalent only if their respective
environments always write non-negative values to x and x’.

5.1 Recursion-Bounded Abstraction

As mentioned, for our second rule, when checking the equivalence of f and f ′,
we want to restrict their inputs from the environment to those that are actually
produced by the other threads. In general this is of course impossible, but we now
suggest an abstraction based on the observation that a bound on the number of
reads of shared variables in any execution of f̂ can be computed, since it does
not contain loops and interpreted function calls. Let B(f̂) denote this bound.

Given a thread rooted at fq, and a bound b, we construct its recursion-
bounded abstraction f b

q , which overapproximates that thread, by transforming
each recursive function g ∈ cg(fq) according to the scheme shown in Fig. 7. The
key idea is to bound the number of recursive calls, and make each of them start
from a nondeterministic state (this is achieved with havoc vars) . This emulates
b calls to g that are not necessarily consecutive in the call stack.

To understand what this construction guarantees, we define the following:
let W denote the set of all possible sequences of writes to shared variables
that can be observed in an execution of fq. A b-sequence is a sequence of b

or less elements from s ∈ W that is consistent with the order of s. For exam-
ple, if W = 〈(x, 1), (x1, 2), (x, 2), (x1, 1)〉 and b = 2, then some b-sequences are
〈(x, 1), (x1, 1)〉, 〈(x1, 2), (x, 2)〉, 〈(x, 1)〉 etc. We now claim without proof that:

Claim 1 Every b-sequence of fq can also be observed in some execution of f b
q .

This fact guarantees that the recursion-based abstraction allows a function f̂ to
interact with f b

q in any way it can interact with fq, if b ≥ B(f̂).

bool rec_flag_g = 0; int rec_count_g = 0;

gb() {
assume(rec_count_g < b); ++rec_count_g;

if (rec_flag_g) havoc_vars();

The rest is the same as ĝ , except that:
1. the RWC trace is recorded in a list out_q common to all g ∈ cg(fq).
2. a recursive call to g() is replaced by: rec_flag_g = 1; gb(); rec_flag_g = 0;

}

Fig. 7. To derive the recursion-bounded abstraction fb
q of a thread root-function fq,

we replace each g ∈ cg(fq) with gb as described here. Although gb is still recursive,
the assume statement in the beginning guarantees that only b calls are made, which
makes reachability decidable.

5.2 The Proof Rule

Let f ∈ cg(fi) and b = B(f̂). Define the predicate ∆(f) as being true iff the
following sequential program, V C∆(f), is valid for all input vectors in:

V C∆(f) : f b
1(in); . . . ; f

b
i−1(in); f̂(in); f

b
i+1(in); . . . ; f

b
k(in);

check assumption(f̂ .out, i);

f̂ ′(in); assert(f.out == f ′.out);

(3)

Here f̂ is constructed from f as before (see Sec. 4.1). The implementation of
check assumption is shown in Fig. 8. The goal of this function is to constrain the
values of shared variables read by f̂ to the last value written by either f̂ or some
other thread. We assume that the array w used in lines 6 and 11 is initialized to 0,
emulating a case that the variable read in line 11 is the initial value (in C global
variables are initialized to 0 by default). Furthermore, it guarantees (through
lines 13–15) that the values are read in the same order that they are produced
by the environment, while allowing skips. The function last(var, tid, loc) that is
invoked in line 16 returns the index of the last write to var in thread tid at or
before location loc. More information is given in the comments and caption.

Our second proof rule for partial equivalence of two MT programs P, P ′ is:

∀i ∈ [1..n]� ∆(fi)

p.e.(P, P ′)
. (4)

Example 6. Rule (4) proves the equivalence of the programs in Fig. 6, whereas
rule (1) fails because δ(f1) is false. ⊓⊔

5.3 Soundness of the Proof Rule

Let f and g be functions such that g ∈ cg(f) and let t ∈ [f] be a RW trace.
Consider all computations of f that run through g and whose observable behavior

check_assumption(list out, thread-id i) {
int cf[k] = {0,..,0}; // location in ‘out j’ for j 6= i

for(; q < |out|; ++q) { // recall that out is f.out
if(out[q] == (C,...)) continue; // skipping function calls
if(out[q] == (W,...)) { // suppose out[q] == (W, ”x”, v))

6: w[‘x’] = v; // storing the written value
} else { // suppose out[q] = (R, ”x”)

j = *; // j is the thread from which we will read x
assume (j ∈ {i | 1 <= i <= k, thread i already wrote to x});
if (j == i) // reading x from f itself

11: assume(UF_f_x(q) == w[‘x’]); // enforcing x = last written value
else { // reading x from another thread

13: oldcf = cf[j];

14: cf[j] = *; // nondet jump
15: assume(oldcf <= cf[j] < |out_j|);

16: ll = last("x", j, cf[j]); // last location ≤ cf[j] in out j
// in which x was written to

17: assume(UF_f_x(q) == out_j[ll]); // enforcing x to a value
// written-to by thread j

} } } }

Fig. 8. Pseudocode of check assumption(). This function enforces the value that was
read into a shared variable (through a call to an uninterpreted function) be equal to the
last value it wrote or to a value written to this variable by some other thread. Lines 13–
15 guarantee that the values are read in the same order that they are produced while
allowing skips. The lists out 1 . . . out k correspond to the lists mentioned in Fig. 7.

is t. Their subcomputations in g have corresponding subcomputations in [ĝ]. Let
[ĝ]t denote this set of subcomputations. The following claim, which follows from
Claim 1, will be useful to prove the soundness of our proof rule.

Claim 2 Let f1, . . . , fk be functions and let t1, . . . , tk be traces such that ∀i ∈
[1..k]� ti ∈ [fi] and ⊲⊳ (t1, . . . , tk) 6= ∅. Then, ∀i ∈ [1..k]� ∀g ∈ cg(fi)� ∀t̂ ∈ [ĝ]ti ,
there exists an execution of the program:

f b
1(in); . . . ; f

b
i−1(in); ĝ(in); f

b
i+1(in); . . . ; f

b
k(in);

check assumption(i);

such that at the end of the execution ĝ.out = t̂.

Theorem 4. Inference rule (4) is sound.

Proof. Falsely assume that P and P ′ are not partially equivalent despite the
validity of the premise. This means that ∃t ∈ [P] \ [P ′], which in itself implies
∃t ∈⊲⊳ ([f1], . . . , [fk])\ ⊲⊳ ([f ′

1], . . . , [f
′
k]). Since t ∈⊲⊳ ([f1], . . . , [fk]), we know that

∃t1, . . . , tk such that ∀i ∈ [1..k]. ti ∈ [fi] and t ∈⊲⊳ (t1, . . . , tk).
Since t 6∈⊲⊳ ([f ′

1], . . . , [f
′
k]), there exists at least one index i ∈ [1..k] such that

ti 6∈ [f ′
i]. This implies that there must be at least one function g ∈ cg(fi) for

which ∃t̂ ∈ [ĝ]ti � t̂ 6∈ [ĝ′]. By Claim 2 there exists an execution e of the program:

f b
1(in); . . . ; f

b
i−1(in); ĝ(in); f

b
i+1(in); . . . ; f

b
k(in);

check assumption(i);

such that at the end of the execution ĝ.out = t̂. But since ∆(g) is valid, then

ĝ.out = ĝ′.out, and hence t̂ ∈ [ĝ′] — a contradiction. ⊓⊔

6 Conclusion and future work

We proposed theoretical foundations for extending regression verification to
multi-threaded programs. We defined a notion of equivalence of nondeterminis-
tic programs, and presented two proof rules for regression verification of general
multi-threaded programs against this notion of equivalence. The premises of the
rules are defined by a set of sequential programs (one for each function), whose
validity is decidable and expected to be relatively easy to check.

One of the main areas for further investigation is to improve completeness.
One direction is to use reachability invariants to strengthen the inference rules,
similar to those found by threader [6] for the case of property verification.
Also, note that we did not consider locks at all, and indeed without locks it
is very hard to change a program and keep it equivalent. We therefore expect
that integrating synchronization primitives into our framework will also assist in
making the rules more complete. Finally, adding support for reactive programs
and dynamic thread creation are also important avenues for further work.

References

1. Full version at ie.technion.ac.il/∼ofers/publications/vmcai12 full.pdf.
2. Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learn-

ing assumptions for compositional verification. In 9th Intl. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’03), pages 331
– 346, 2003.

3. Benny Godlin . Regression verification: Theoretical and implementation aspects.
Master’s thesis, Technion, Israel Institute of Technology, 2008.

4. Benny Godlin and Ofer Strichman. Inference rules for proving the equivalence of
recursive procedures. Acta Informatica, 45(6):403 – 439, 2008.

5. Benny Godlin and Ofer Strichman. Regression verification. In 46th Design Au-
tomation Conference (DAC), 2009.

6. Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Threader: A
constraint-based verifier for multi-threaded programs. In CAV’11, pages 412–417.

7. Cliff B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

8. Owen Kaser, C. R. Ramakrishnan, and Shaunak Pawagi. On the conversion of
indirect to direct recursion. LOPLAS, 2(1-4):151–164, 1993.

9. Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebelo. Conditional equiva-
lence. Technical Report MSR-TR-2010-119, Microsoft Research, 2010.

10. Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.
11. Susan S. Owicki and David Gries. An Axiomatic Proof Technique for Parallel

Programs I. Acta Inf., 6:319–340, 1976.

